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Abstract: The chiral magnetic wave (CMW) is a collective mode in quark-gluon plasma originated from the chiral
magnetic effect (CME) and chiral separation effect. Its detection in heavy-ion collisions is challenging owing to sig-
nificant background contamination. In [Y. S. Zhao et al., Phys. Rev. C 106, L051901 (2022)], we constructed a neur-
al network that accurately identifies the CME-related signal from the final-state pion spectra. In this study, we have

generalized this neural network to the case of CMW search. We show that, after an updated training, the neural net-

work effectively recognizes the CMW-related signal. Additionally, we have assessed the performance of the neural

network in comparison with other known methods for CMW search.
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I. INTRODUCTION

The interplay between the chiral anomaly and extern-
al electromagnetic or vortical fields can lead to intriguing
anomalous transport phenomena in many-body systems
with chiral fermions. A notable example is the chiral
magnetic effect (CME) [1, 2], which induces an electric
current aligned with an external magnetic field. In heavy-
ion collisions, the CME may cause charge separation rel-
ative to the reaction plane, which can potentially be ob-
served by analyzing the azimuthal-angle distribution of
charged hadrons using specific observables [3, 4]. Other
notable anomalous transports include the chiral separa-
tion effect (CSE) [5, 6], the chiral vortical effect [7-10],
and the chiral electric separation effect (CESE) [11, 12].
For reviews, see Refs. [13—17].

In the presence of an external magnetic field, the
coupled evolution of CME and CSE gives rise to a gap-
less collective mode known as the chiral magnetic wave
(CMW) [18]. The CMW can transfer both chirality and
electric charge, potentially resulting in distinct charge and
chirality distributions. In heavy-ion collisions, the fire-
ball contains a small amount of positive charges inher-
ited from the colliding nuclei. Thus, theoretical studies
have suggested that the CMW can induce a charge quad-
rupole in the fireball, with an accumulation of positive
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charges at the tips and negative charges around the equat-
or. As the fireball expands, this quadrupole leads to an
imbalance in the elliptic flow of charged pions, specific-
ally vo(77) > vo(7*) [19]. Owing to event-by-event fluctu-
ation of charges, some events could have net negative
charges in the fireball, thereby leading to v,(77) < vo(7").
This characteristic feature of CMW provides a method to
detect it in heavy-ion collisions, and a series of experi-
ments have found signals of charged pion elliptic flow
consistent with CMW expectations [20-24]. However,
similar to CME, CMW in heavy-ion collisions faces
strong background noise [25-31], which significantly ob-
scures the observables designed for CMW detection.

In Ref. [38], we developed a CME-meter based on
convolutional neural networks (CNNs) (for reviews of
deep learning techniques applied to nuclear physics, see
Refs. [32-35]). After training this CME-meter with
AMPT-generated data simulating CME (introducing an
initial charge separation into the AMPT model [36]) for
Au + Au collisions at 200 GeV, the CME-meter demon-
strated exceptional robustness in distinguishing events
with CME from those without. Additionally, the CME-
meter maintained strong performance across different
charge separation fractions, collision energies, and colli-
sion systems. This success suggests potential for creating
a similar CMW-meter. As an extension of our earlier
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work, we aimed to increase the upper limit of salience at
the cost of some generalization capability. This approach
could pave the way for future studies on CMW physics
and its detection.

In this paper, we report on the construction and per-
formance of such a CMW-meter. Section II details the
training process, including the generation of training
samples using AMPT, the structure of the neural network,
and the training procedure. Section III examines the ana-
lysis of the trained model, including its basic properties,
comparisons to flows and observables, and a hypothesis
test. Section IV provides a summary of our findings.

II. CONSTRUCTION AND TRAINING OF THE
CMW-METER

In this section, we introduce the deep learning model,
data set preparation, and training strategies employed in
constructing the CMW-meter. The pion spectra of heavy-
ion collision final states serve as the input of this deep
learning model. Pions carry most of the electric charges
in the final state, establishing an appropriate representa-
tion of charge distribution. A convolutional neural net-
work (CNN) was trained within a supervised learning
scheme to identify the CMW signals. The training data
were generated from the string-melting AMPT model
[36], a transport model which is widely used to simulate
the evolution of both partonic and hadronic matter in
heavy-ion collisions.

To incorporate the CMW effect into the AMPT mod-
el, we adopted a global charge quadrupole scheme intro-
duced in Ref. [37]. For an AMPT event with A, > -0.01,
we propose to interchange the positions of certain u (or
d) quarks in the initial state with those of # (or d) quarks
if the former are relatively farther from the reaction plane
(RP); for events with A, < —0.01, we propose to do the
opposite. Here, Ay, denotes the asymmetry of the charged
particle number, given by A, =(N"-N")/(N*+N),
where N* denotes the number of positively charged
particles measured in a given event, and N~ denotes neg-
atively charged particles. The RP of all events is set in the
zOx—plane. The fraction of particles that are inter-
changed is represented by a relative percentage with re-
spect to the total number of quarks,

_ # Exchanged particles
© #Allparticles

(M

According to a previous study [37], switching f =
2% —3% of quarks generates a CMW signal comparable
to experimental observables. For training and validation
purposes, we chose events with a f =2% switching frac-
tion. The transition point A, =—0.01 in this scheme is
based on STAR experimental results [20], where more

details are provided. Events at +/syy =200 GeV and dif-
ferent centrality were generated for training and valida-
tion.

There are two primary reasons for training a model
that results in bias and overfitting at 200 GeV. First, the
pivotal issue pertains to the occurrence of CMW in
heavy-ion collisions rather than to the magnitude of the
signal. Consequently, any technique that can distinctly
distinguish CMW signals from background noise is con-
sidered valuable, irrespective of the +/syy or event cent-
rality. Second, our research on the application of neural
networks for CME detection [38] confirmed the robust-
ness of the trained network against variations in collision
energy and event centrality. The training was successful
on the most comprehensive dataset, demonstrating high
accuracy levels. Only small variance in the detection per-
formance of the network was observed from such vari-
ations. Therefore, a model trained on a single energy is
capable of enhancing the signal detection in certain
events while still maintaining a considerable degree of
generalization. However, further examinations involving
various energies and centralities have also been conduc-
ted to provide a more nuanced analysis. The structure of
the CNN used in this study is shown in Fig. 1. It includes
three 2D-convolutional layers and two dense layers that
contain parameters to be fit. Some pooling layers are also
included for proper data reduction while keeping the net-
work simple. To encode "knowledge" about CMW in the
model, samples with and without CMW, labeled as 'l'
and '0' separately, were fed to it during training, and the
model was set to classify these samples. The last activa-
tion function of the network is SoftMax, which returns a
pair of numbers (Py, P;) for this binary classification
problem. Samples with P; > 0.5 are categorized as class
'1'; otherwise, they are categorized as class '0'. Therefore,
P; can be interpreted as the probability that a specific
sample be recognized by the neural network as contain-
ing the CMW signal.

Data pre-processing involved several steps to convert

BN
Flatten
Input Cylindrical 2D Cylindrical 2D Dense
saxsoxa [ Conv Comv. - = “4oo
24x20x64 6x5x64
BN L Cylindrical 2D 4| BN Dense
&' Conv. &. 2
pooling 12x10x64 pooling (Output)

Fig. 1.  (color online) A VGG-like network [39] with four
hidden layers was chosen for this study. Batch normalization
(BN) is applied after each hidden layer. The convolutional
layers were modified to satisfy the periodic boundary condi-
tion of the input data; each layer is followed by an average
pooling. A 10% dropout was set for the second-to-last dense
layer.
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events into analyzable samples. Initially, the spectra for
mid-rapidity (|5| < 1) pions, denoted as p*(pr,¢), were
calculated, with the symbol + representing either n* or
n~, while p; denotes the transverse momentum in the
range of 0—2 GeV and ¢ indicates the azimuthal angle.
These spectra were then segmented into histograms con-
sisting of 20 by 24 bins. Second, each spectrum was nor-
malized so that the sum of all bins became 1. Sub-
sequently, a random selection of events was made, and
for each type of pion, their spectra were averaged bin by
bin. These resulting normalized and averaged pion spec-
tra served as the datasets for the training, validation, and
testing phases of the neural network. Unless otherwise
stated, the number of events in the last step is assumed to
be 100 in the rest of this article. The training of the mod-
el encompassed 250 epochs, with each epoch containing
64 batches, and each batch comprising 100 samples. A
total of 1.6 million samples were generated for training.

II1. PERFORMANCE OF THE CMW-METER

Accuracy, robustness, and extrapolations.— As men-
tioned above, the model was trained (and also validated)
on samples generated at +/syy =200 GeV that mimic fi-
nal-state CMW behavior. The model achieves high accur-
acy on most events with signal at different +/syy and
centrality, as shown in Fig. 2. This indicates preferable
generalization of the trained model. Reduction of accur-
acy was observed at low collision energy and large cent-
rality. The reasons for this are varied. Different patterns
of CMW, weaker signals, stronger backgrounds or just
overfitting, all of them can account for the reduction of
accuracy. One of the approches to detect CMW in experi-
ments is based on the dependency of charge distribution
and flow analysis. Specifically, the linear order depend-
ency of Ay on the difference in charged-particle elliptic
flow,

Avy =v; vy ~rAg, 2

gives a measure for the CMW signal. Here, v; and vJ are
separate elliptic flows of negative- and positive-charge
particles, and the slope 7 is related to the strength of the
signal. Experimental results from the STAR experiment
for Au + Au collisions [23] indicate that the uncertainty
of the 7 slope r increases at lower energies and higher
centralities. Although the neural network was trained on
pions from a larger kinematic window than that used in
experimental analyses, which suggests improved com-
pleteness and distinguishing capability, its performance
aligns with traditional statistical analysis trends (Av,(r)).
The decrease in accuracy is likely due to strong back-
grounds in scenarios that compare with the signal
strength. However, a new model can be trained using

(a) Accuracy on samples with CMW(%)
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Fig. 2.  (color online) Accuracy of the trained model on
samples (a) with CMW, and (b) without CMW. Samples from
various +/syy and centralities are considered. The accuracy is
remarkably high if the signal is encoded in the samples, while
those without signal can be mistaken as containing it, espe-
cially at lower energy and for more peripheral cases.

low-energy samples or in combination with high-energy
samples to create a more comprehensive training set, en-
hancing robustness. This approach is left for a future,
more detailed study. Overall, the accuracy of the trained
model in decoding the CMW signal is sufficient across all
tested +/syy levels, especially on high-energy samples.
As a potential detector for CMW, a measure of per-
formance is the prediction on non-labeled samples, where
accuracy cannot be defined, and the sample-by-sample
output becomes important. The two components of the
model output are identified as probabilities, i.e., P; de-
notes the probability that the neural network regards the
input spectrum to include CMW, and P, is the probabil-
ity associated to the other class; thus, the two compon-
ents jointly satisfy Py+ P, =1. A positive correlation of
P, with the CMW signal is clearly expected. Events with
different initial charge quadrupole fractions f were simu-
lated and prepared into samples as mentioned above.
Tests on these samples resulted in high true-positive ac-
curacy, yet the returned P, values for all f were close to
1, which means small differences among them. For the
sake of a clear comparison, we enlarged the differences
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of their output by introducing an additional logit function,
. X
logit(x) = log——. 3)
1-x

This logit function, which is the inverse function of
SoftMax, acting on P; reveals feature space information
that is encoded in the neural network one layer before
output. Besides, the logit function is monotonically in-
creasing, so logit(P;) keeps the correlation of P; and f
qualitatively.

Figure 3 shows the outcomes with varying initial
charge quadrupoles. As f increases, the peak of the
logit(P;) distribution shifts to the right. In cases where f
equals 4%, P, approaches 1 so closely that the logit func-
tion becomes numerically unstable with single precision
calculations. However, the pattern of the f = 4% distribu-
tion is still in line with the general trend. Additionally,
the width of the peak remains essentially unaffected by f,
indicating that the model introduces minimal error and re-
liably extracts the expected CMW signal. The width of
the peak is due to the event-to-event initial-state fluctu-
ations and the method of implementing the initial charge
quadrupole. The reasonable extrapolation of P, for vari-
ous f values suggests that the CMW strength for f has
been correctly aligned to P; by the neural network. Con-
sequently, it is also indicative of the CMW signal intens-
ity.

The model was also validated through some other
tests. In tests on no-CMW events generated by UrQMD,
it classifies most events correctly as '0' class. To analyze
whether the CME signal affects this CMW detector, a test
set including AMPT events with CME was prepared. The
trained model mostly output negative predictions.

Comparison with observables.— Above, we have
demonstrated that the trained model efficiently decodes
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Fig. 3. (color online) Distribution of logit(P;) on events @

vVsyv =200 GeV and centrality 30%—40%. Tests were con-
ducted on events with different initial charge quadrupoles
(f =1%-4%). The distributions are normalized to 1.

CMW information from p*(pr,¢), providing a potential
measure of CMW in heavy-ion collisions. However, fur-
ther comparisons with experimental observables are ne-
cessary before constructing a measurement based on the
model. Figure 3 shows that logit(P;) is correlated with f,
which in turn has a positive correlation with the slope r.
In addition to this slope, the following covariance
between v, and ¢;, which is essentially a three-particle
correlator, constitutes another noteworthy observable
(21],

An = <Vn%> - (%)(Vn), (4)

where v, is the n-th harmonic flow of the event, g5 is the
charge of the third particle, and (---) denotes event aver-
age. The differential three-particle correlator, which
measures the correlation between the flow at a particular
kinematic region and the charge of the third particle at
another particular coordinate, is more convenient when
comparing across experiments as no correction for effi-
ciency is needed. In the following, we set n = 2 for correl-
ation with the elliptic flow. Using vj o« v, +rA,4/2 and
A ~{(q3), one notice that A, ~ +r((A%)—(Awm)?)/2 for
positive-charge/negative-charge cases. In the following,
A, 1s obtained by calculating half the difference between
the positive-charge and negative-charge cases.

Figure 4 shows the results of the comparison between
logit(P;) and A,. The average A, of events increases
gently as the response of the model becomes stronger.
Knowing that logit(P;) is positively correlated to the
CMW signal, this indicates a reasonable trend in 1, when
the signal becomes stronger. This agrees with early stud-
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Fig. 4. (color online) Distribution of logit(P;) on events for
Au + Au at +/syny =200 GeV and centrality 30%—40%. Events
are divided into logit(P;) bins, and their A, are averaged sep-
arately. The events are all embedded with the initial charge
quadrupole. A range of logit(P;) was chosen in which most
events are included, thereby avoiding statistical minority. The
three-particle correlator clearly demonstrates a positive correl-
ation with logit(P; ).
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ies on A, [21] and also proves that the model prediction is
qualified for measurement.

The performance under backgrounds must be evalu-
ated before advancing. There are several mechanisms that
may cause final-state Av, and A, dependency, as dis-
cussed in Refs. [25-31]. To examine how the trained
neural network performs under such backgrounds, its pre-
dictions for different Av, ranges (either with or without
initial charge quadrupoles) were analyzed. The results are
shown in Fig. 5. For an input sample without CMW, the
prediction increases when events with larger absolute Av,
are chosen. This shows that the neural network tends to
regard events with larger Av, as events containing CMW
signals, although they do not actually include CMW sig-
nals. However, it should be emphasized that even in this
situation, P; is still less than 0.5, meaning that the neural
network still correctly classifies them as events without
CMW. For samples with CMW, the model exhibits
strong robustness against the background, and the model
classifies all the samples correctly.

Hypothesis test.— As previously discussed, the neur-
al network demonstrates good accuracy in predicting the
CMW signal and exhibits robustness across different col-
lision energies, centralities, and background effects after
training. This makes it feasible to create a CMW-meter
based on this neural network. However, the need for aver-
aging events poses a challenge when it comes to deploy-
ing this measurement experimentally, given that it is not
possible to know the charge quadrupole pattern in ad-
vance or align events according to their charge distribu-
tion patterns.

However, from a hypothesis test perspective, the
CMW-meter also holds experimental feasibility. For a

1.0
‘h%%
0.8
—— Events w/o CMW
—— Events w/ CMW
0.6 |
—
a
04
0.2
OO 1 1 1
-0.04 -0.02 0.00 0.02 0.04
Av,
Fig. 5. (color online) Distribution of P; on events at

Vsny =200 GeV against Av,. Events are divided into 10 Av,
bins, and their P; values are averaged separately. As the mag-
nitude of Av, increases, the tendency of the model to output a
false positive classification also increases. Nevertheless, in
events involving an initial quadrupole, the model consistently
maintains a high level of accuracy.

fixed finite number M of events, one can assume the pres-
ence of a sufficiently large residual quadrupole that can
be detected through our meter if CMW is assumed to ex-
ist in these events. Conversely, if no CMW is observed in
experiments, the predictions output by the neural net-
work will consistently fall within the '0' class. As demon-
strated in Fig. 3, the intensity of the CMW signal signific-
antly alters the distribution of logit(P;) or P, thus influ-
encing the distribution of P; itself (denoted by P(P))).
This distribution responds differently depending on the
presence or absence of CMW in the data set. If CMW ex-
ists in the heavy-ion collisions, the prediction of the neur-
al network model regarding the residual quadrupole of a
sample will align with P(P;) in the f # 0 case. In contrast,
with no CMW signal, the distribution will match the
f =0 scenario. To establish a reasonable estimation of
P(P,) for testing M events, we treat f as a latent variable
representing CMW in a single event, as defined by the
initial charge quadrupole fraction used in this study. For
event-by-event fluctuations, we model fas a random vari-
able following a Gaussian distribution, f ~ N(u,0?),
where 4 is the mean of the latent variable £, which is ex-
pected to be around 0. The variance o is estimated ac-
cording to [37], where the average of |f| is approxim-
ately 2%,

2% = (f]) = / N (102 dif, 5)

where N”(|f|;02) is the half normal distribution and |f]| is
a positive-definite variable because the model prediction
is independent of the sign of f. Solving Eq. (5) yields
o ~0.025. Given that we employed averaged events to
prepare the CMW-meter, the procedure to compose p(fer)
from single events {p(f;)} becomes crucial, where f.s is
the effective charge quadrupole rate of averaged events.
One can choose the arithmetic mean as

1 X 1 <
MZp(f»:p (M Zﬁ) = p(fur)- (6)

Therefore, the distribution of |f.| can be achieved as

Fe ~ N(u/M,M*|M?) = N(0,0° /M), (M

with Fy = |fig| ~ N>(02/M). The conditional probability
P(P,| F.¢) can be approximated as a Beta distribution,

I'a+p)

BenaB) = ore)

XA =xF, ®)

with a and f being the parameters of the Beta distribu-
tion, and I' denoting the Gamma function. To describe
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Fig. 6. (color online) P(P;)for AMPT events with M =25.

The peak of this distribution near P; =0 suggests that the
charge quadrupole in most events negate each other, and the
peak near Py =1 is due to the strong response to some large
enough residual quadrupole.

P(Pi| Fex) at any F.z, we assume that o and £ are func-
tions of F.; and fit several sets of (@,8) from the fitted
beta distribution with a polynomial (for a) and Softplus
(for B, to reach proper asymptotic behavior around
Pl = 1)

After parameterizing P(P;| Fez), P(P;) is derived as

P(P)) = /P(PllFetf)P(Feff)dFetf

2

= / Be(Pi;a(Feq),B(Fer))N” <(T >dFeﬂ~- ©
0

M

The numerical results are shown in Fig. 6. P(P,) for
the "existing CMW" has an evident rise around P; =1
compared to the "no CMW" case, which suggests a non-
zero probability of composing a large residual quadru-
pole. With a smaller M, the width of f.; becomes larger,
which allows obtaining a visible P,. Figure 6 also
presents results of random mixing events of both charge
quadrupole patterns generated by AMPT, where M = 25.
For both large- and small-P; areas, these results are qual-

itatively consistent with our hypothesis test analysis,
which indicates that the trained neural network is capable
of recognizing charge quadrupoles with less averaged
events.

IV. SUMMARY

In this paper, we propose a deep convolutional neural
network model for CMW detection. Building upon a pre-
vious study of ours [38] focused on deep-learning-based
CME detection, this model expands its application to
CMW detection. We trained the neural network using
data generated from the AMPT model for Au + Au colli-
sions at 200 GeV, with the CMW-like initial charge
quadrupole encoded. The trained model exhibits a robust
capability to discern events with CMW from those
without, and it can quantitatively measure the fraction or
strength of the initial charge quadrupole, effectively func-
tioning as a CMW-meter. Furthermore, we validated the
model's performance across a broad range of collision en-
ergies and centralities, thereby demonstrating its resili-
ence. We also checked that the trained model is well
qualified even for other collision systems such as Zr + Zr
and Ru + Ru collisions. Comparative analysis against
three-particle correlators and Av, proves the model's ef-
fectiveness even in the presence of strong backgrounds.
By employing a hypothesis test, an experimentally viable
analysis based on the model can be established, wherein
the distribution of model predictions serves as an indicat-
or of CMW occurrence in the data.

One drawback of the proposed model is that its
brightness is achieved at the cost of generalization ability,
as the training data is confined to a narrow range of colli-
sion energies. In the future, it would be interesting to en-
hance the generalization capabilities of the model and
transform it into an end-to-end CMW meter.
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