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Abstract: Decays of unstable heavy particles usually involve the coherent sum of several amplitudes, like in a mul-
tiple slit experiment. Dedicated amplitude analysis techniques have been widely used to resolve these amplitudes for
better  understanding  of  the  underlying  dynamics.  In  special  cases  where  two spin-1/2  particles  and  two (pseudo-)
scalar particles are present in the process, multiple equivalent solutions are found owing to intrinsic symmetries in
the summed probability density function. In this study, the problem of multiple solutions is discussed, and a scheme
to overcome this problem is proposed by fixing some free parameters. Toys are generated to validate the strategy. A
new approach to align the helicities of initial- and final-state particles in different decay chains is also introduced.
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I.  INTRODUCTION

H0→ Zµ+µ−

Λ0
b→ J/ψpK−

Multi-body decays of unstable particles provide rich-
er experimental information than two-body decays owing
to  the  involvement  of  various  intermediate  resonances.
This  makes  multi-body  decays  extremely  important  in
testing the standard model of particle physics and search-
ing  for  new  resonances.  For  example,  the 
decay  is  used  to  determine  the  Higgs  spin  [1],  the

 decay gives rise to the first  observation of
pentaquark states  [2], and recently,  the  LHCb collabora-
tion observes various sources of violations of charge-con-
jugation  and  parity  asymmetries  in  the  final-state  phase
space of B meson decays into three hadrons [3].

Jη

P0→ P1P2P3 1/2

Following the isobar model [4–6], the total amplitude
of  a  multi-body decay of  a  hadron can  be  written  as  the
coherent sum of several sub-amplitudes, each one with a
definite helicity for all participating particles. The square
of  the  total  amplitude  modulus,  summed  over  the  initial
and  final  state  helicities,  gives  the  final-state  probability
density distribution (PDF). Unknown parameters, such as
the  contribution  of  a  new  resonance  in  the  decay,  spin-
parity , and strength of a specific amplitude, can be ex-
tracted  by  fitting  the  PDF  to  real  data.  Three-body de-
cays  that  involve  two  spin-  fermions
and  two  (pseudo-)scalars  (denoted  as h in  the  following

2F2P Λ0
b→ D0 ph−

Ξ−b → pK−K− Λ+c → pK−π+ B→ pp−h

equation) are often studied in heavy flavor physics. They
are referred to as  decays in the  [7, 8],

 [9],  [10],  and  de-
cays etc. When  fitting  to  experimental  data,  the  PDF  of
such decays  has  symmetries  that  prevent  a  unique  de-
termination  of  all  free  parameters,  for  which  there  are
multiple equivalent solutions.  In this paper,  this problem
is  demonstrated,  and  a  possible  strategy  to  fix  multiple
solutions is proposed. 

II.  HELICITY AMPLITUDE

2F2P
P0→ P1P2P3

1/2

P1 P2 P3

Dedicated approaches based on the fundamental sym-
metry of  Lorentz  invariance  have  been  adopted  to  pre-
pare the amplitudes of a multi-body decay, including the
tensor [11] and helicity [12] formalisms. In this analysis,
the helicity formalism is  followed to deal  with  de-
cays, namely the  decays involving two spin-

 fermions and two (pseudo-)scalars. According to the
isobar  model,  the  three-body  decay  is  viewed  as  a  two-
step decay comprising a weak decay followed by a strong
decay for the problems considered in this analysis. There
are a total of 12 degrees of freedom to describe the final-
state  kinematics,  corresponding  to  the  three  four-mo-
menta  of  particles , ,  and .  After  considering  the
constraints  from  the  energy-momentum  conservation
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P0

P0

mi j ≡ m(Pi,P j) Pi,P j ∈ {P0,P1,P2},
i , j PiP j

mi j

PiP j

between the initial and final states and the fact that the fi-
nal-state  particles  are  on  the  mass-shell, only  five  kin-
ematic variables  are  independent.  Three  of  the  five  re-
maining  variables  define  the  direction  of  the  normal  of
the  decay  plane  formed  in  the  rest-frame  of  and  the
simultaneous rotation of final-state particles in the decay
plane about the normal. If  is unpolarized (or specific-
ally spinless), the distribution of these three variables car-
ries  no  physical  information.  The  other  two  variables
define how the energy of  the decaying particle  is  shared
among  the  final  state.  They  can  be  expressed  by  a  two-
body  invariant  mass, , 

, and the helicity angle of the  system [12]. The
 distribution in the amplitude is usually described in a

model-dependent  manner  using  the  Breit-Wigner func-
tion  [13]  for  a  resonant  contribution  and  an  empirical
smooth function for a non-resonant component. The heli-
city angle distribution is determined by Wigner functions
[12], which depend on the spin of the  system and ro-
tation angles.

P0→ Ri jPk, Ri j→ PiP j

2F2P P0→ R(P1P2)P3

P0→ R(P1P3)P2 P0→ R(P2P3)P1

HP
λa ,λb

λa λb

Ri j→ PiP j

HR
λi ,λ j
=

ηiη jηR(−1)JR−Ji−J j HR
−λi ,−λ j

≡ ηR
i jH

R
−λi ,−λ j

J0 = Ji = 1/2 J j = Jk = 0
HR
+1/2 = η

RHR
−1/2

P0→ Ri jPk

H0
+1/2 H0

−1/2 ηR = ±1

ηR

Ji = J j = 1/2 J0 = Jk = 0
HR
+1/2,+1/2 = η

RHR
−1/2,−1/2

HR
+1/2,−1/2 = η

RHR
−1/2,+1/2

P0→ Ri jPk

HR
+ ≡ HR

+1/2,+1/2 HR
− ≡ HR

−1/2,+1/2

J0 = Jk = 1/2 Ji = J j = 0
H0

0,+1/2,H
0
−1,+1/2, H0

0,−1/2,H
0
+1,−1/2

Ri j→ PiP j

H0
± ≡ HR

0,±1/2 H
′0
± ≡ H0

±1,∓1/2

Resonances  may  contribute  to  the  amplitude  in  any
two-body systems as , such that the
three-body  decay  is  factorized  into  a  sum  of  several
chained  two-body decays.  In  total,  there  are  three  pos-
sible  decay  chains  for  a  decay, ,

,  and .  Resonance R can
be a fermion or a boson depending on the decay chain. In
the following, the first and second chains are restricted to
R being fermions, and the third one is for R being bosons.
Each  decay  in  a  chain  is  associated  with  a  helicity-de-
pendent  complex  coupling  to  describe  the  strength,
named as helicity coupling  for particle P decaying
into a and b with helicities  and , respectively. Strong
decay  conserves  the  parity  symmetry,  which
requires couplings with positive helicities, and those with
negative  helicities  are  only  different  by  a  sign, 

. Here, J and η are the
corresponding spin  and  parity  quantum  numbers  of  in-
volved  particles  [12].  For , ,  two
allowed  strong  couplings  can be  ab-
sorbed into the weak helicity coupling of the 
decay,  and , except for the  sign. Here,
the  other  subscript  of  the  helicity  couplings,  0,  is
dropped. Sign  measures the parity of the R resonance.
For , ,  the  four  strong  couplings
are  related  to  each  other  as ,

,  while  the  single  coupling  of  the
 weak decay can be dropped. In the following,

 and  are  denoted.  For
, ,  the  four  weak  couplings  are

,  while  the  single  coupling
of  the  strong  decay  can  be  dropped.  These
four couplings can be grouped into two parts, denoted as

 and .

Λ0
b→ D0 ph−

R→ D0 p

As an example,  the  modulus  squared of  the  unpolar-
ized  decay  amplitude,  contributed  by

 resonances, can be expressed as 

PDF =
∑
λΛbλp

∣∣∣∣∣∑
R

HΛb→Rh
λR ,λh

HR→D0 p
λD0 ,λp

dJΛb
λΛb ,λR

(θR)dJR

λR ,λp
(θp)FR(mD0 p)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
R

HR
+dJR

+1/2,+1/2

(
θp
)

FR
(
mD0 p

)∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

ηRHR
−dJR

−1/2,−1/2

(
θp
)

FR
(
mD0 p

)∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

ηRHR
+dJR

+1/2,−1/2

(
θp
)

FR
(
mD0 p

)∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−dJR

−1/2,+1/2

(
θp
)

FR
(
mD0 p

)∣∣∣∣∣
2

,

(1)

FR(mD0 p) FR

dJR

λΛb ,λp
(θp)

JR Λb λΛb

λp θp

HR→D0 p
λp

HΛb→Rh
λΛb

ηR B→ pph
R→ ph

where  (shortened to ) denotes the model de-
scribing the  mass  distribution  (the  propagator)  of  reson-
ance R, and  is the Wigner small d-function de-
pending on resonance spin ,  helicity , proton heli-
city , and helicity angle  defined by the proton polar
angle  in  the R rest-frame. For  the  second  equality,  heli-
city  coupling  is  absorbed  into ,  leaving
only the  sign. Similarly, for the  decay, con-
sidering only  resonances, the PDF is 

PDF =
∑
λpλp

∣∣∣∣∣∑
R

HB→Rp
λp

HR→ph
λp

dJR

λpλp

(
θp
)

FR

∣∣∣∣∣
2

, (2)

Λ0
b→ D0 ph−

λp λΛb

Λ0
b→ R(D0h−)p

B→ R(pp)h

which has a form identical to the unpolarized 
decay, by just replacing  with . In addition, the un-
polarized  decay has a PDF similar to that
of the  decay.

H+ = 1+0i

{HR
+ ,H

R
−}

HR
+ → ηRHR

− ,H
R
− → ηRHR

+

|H−| < |H+|

Helicity couplings of a PDF are unknown parameters
that are to be determined by fitting the PDF to data. It is
apparent that the helicity couplings in a PDF have a non-
measurable  global  phase.  In  addition,  the  magnitude  of
one helicity coupling is not measurable owing to the PDF
normalization. These ambiguities can be removed by fix-
ing  for the  contribution  of  reference  reson-
ance R.  Moreover,  for  decays  with  all  resonances  in  the
same chain, the second equation of Eq. (1) and the prop-
erty  of d-functions  imply  that,  if  is  a  solution,
the simultaneous replacement  for
all resonances is also a solution. These two solutions can
be  distinguished  by  requiring, e.g.,  for refer-
ence R. Flipping the parity of all resonances gives anoth-
er  solution,  which  can  be  resolved  using  the  parities  of
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known particles.  In  Sec.  III,  it  will  be  shown  that  addi-
tional  multiple  solutions  exist,  and  more  requirements
have to be imposed to obtain a unique solution. 

A.    Multiple chains and alignment angle
In Eqs. (1) and (2), resonances are only present in one

decay chain, such that the initial-state and final-state heli-
cities for different sub-amplitudes are defined in the same
reference frames, and are directly summed over incoher-
ently. For decays that have resonances in multiple decay
chains, which is usually the case for multibody heavy-fla-
vor  decays,  the  final-state  helicities  in  different  chains
are,  however,  not  defined  in  the  same  reference  frames.
Additional  rotations  are  needed  to  align  the  final-state
helicity states, as has been discussed in Refs. [14–17]. In
this manuscript,  a new strategy is  proposed to determine

Cref

Calt

Cref Calt =

R(α,β,γ)Cref Calt |J,λ⟩alt

Cref

the alignment  angles  based  on  the  idea  that  the  eigen-
states of  a  particle  spin are  uniquely fixed by a  coordin-
ate system up to a common phase. Let  denote the co-
ordinate system  defining  the  helicity  states  in  the  refer-
ence  chain  and  denote  that  for  another  chain,  which
can  be  achieved  from  by  Euler  rotation 

. Then, the state defined in , , is the
linear superimposition of those in , given as 

|J,λ⟩alt =
∑
λ′

DJ
λ′λ(α,β,γ)|J,λ′⟩ref , (3)

DJ
λ′λ(α,β,γ)
2F2P

where  is the Wigner big D-function. Specific-
ally, for  decays, when there are two decay chains of
fermionic resonances, Eq. (1) is then extended to

|M|2 =
∑
λΛbλp

∣∣∣∣∣∣{AλΛbλp of ref. chain}+
(
⟨1/2,λp|

)ref

Ñ∑
λ′p

|1/2,λ′p⟩alt{AλΛbλ
′
p

of alt. chain}

é∣∣∣∣∣∣2
=
∑
λΛbλp

∣∣∣∣∣∣{AλΛbλp of ref. chain}+
∑
λ′p

D1/2
λp ,λ

′
p
(α,β,γ){AλΛbλ

′
p

of alt. chain}

∣∣∣∣∣∣
2

, (4)

∑
λ′p

|1/2,λ′p⟩⟨1/2,λ′p| = 1

Cref Calt

where  the  completeness  of  states 
has been inserted, and Eq. (3) is used to obtain the second
equation.  The  Wigner D-functions align  the  proton  heli-
cities in the alternative decay chain to the reference chain.
Two coordinate systems  and  have to be determ-
ined in  the  same reference frame as  stressed in  Ref.  [2].
The Euler  angles  describing  the  rotations  from  one  co-
ordinate  system  to  another  one  are  calculated  using  the
equations in Appendix B.

P0→ R1P1, R1→ R2P2, · · · , Rn→ Pn1Pn2

R′

P0→ R′1P′1, R′1→ R′2P′2, · · · , R′n→ Pn1P′n2

Pn1 P(′)
n2 Pi

Pn1

R′

Ci Ri

Ri+1 Ci+1

With  helicity  formalism,  the  coordinate  systems  for
final-state  particles  are  determined  sequentially.  Let  us
first  define  two  arbitrary  decay  chains:  the  sequence  of
decays  is re-
ferred to as the R chain, and the  chain refers to chained
decays  of .  Here,

 and  are the final-state particles, while other  is
the final-state or intermediate particles. The alignment of
the  helicity states in the two chains is interesting here
and those for other final-state particles can be determined
following the same strategy. While the R chain and the 
chain involve different structures and compositions of in-
termediate states, the set of final states is identical. Given
the coordinate  system, ,  for  particle  in  the R chain,
the  coordinate  system  for , ,  is  obtained  as  the
following [2]: 

ẑR
i+1 = I( p⃗Ri+1 ,Ci

) ŷR
i+1 = I (⃗zCi × p⃗Ri+1 ,Ci

)

x̂R
i+1 = ŷR

i+1× ẑR
i+1, (5)

p⃗Ri+1 ,Ci
Ri+1

Ri I (⃗v) v⃗

Ri Pi

Ri Pi

P0 R′ Ci(R)

Ci(R′)

where  is  the  momentum in  the  rest-frame  of
,  and  takes the unit  vector along .  It  is  clear that

within  our  convention,  the  coordinate  systems  for
particles  and  are  anti-parallel  in  the z and y direc-
tions and parallel  in the x direction.  For this  convention,
particles  and  are placed symmetrically in the amp-
litude,  and  the  parity  symmetry  relation  for  the  helicity
couplings  is  preserved.  An  initial  coordinate  system  for

 is given, that for any particle i in the R ( ) chain, 
( ), can be uniquely defined by repeating Eq. (5). It is
apparent that  a  particle's  coordinate  system  is  chain  de-
pendent.

Ci(R′) Ci(R)

P0

P0 P f

{BR
1 ,B

R
2 · · ·BR

f }
R′ {BR′

1 ,B
R′
2 · · ·BR′

f }
f ≡ n1

P0→ R12P3,R12→ P1P2 BR12
1

P0

BR12
2 R12 P1

P1 R12

C f (R′)

x f (R′) ≡ (x̂ f (R′),0) y f (R′) ≡ (ŷ f (R′),0) z f (R′) ≡ (ẑ f (R′),0)
x f (R′) P f

Systems  and  are  defined  in  two  different
reference  frames  because  they  are  reached  from  the 
rest-frame by different boost paths. They must be brought
to  the  same  reference  frame  before  helicity  alignment
angles can be calculated from the two systems. The list of
sequential  boosts  that  bring  the  rest-frame  to  the 
rest-frame in the R chain is  defined as  and
that  in  the  chain  is  defined  as ,  where

 for a special case in the previous section. For ex-
ample,  for  the  decay,  boost 
from  the  rest-frame  to  the R rest-frame  followed  by
boost  from  the  rest-frame  to  the  rest-frame
reaches the  reference frame in the  chain. Now, the
three coordinates of  are extended to four vectors by
adding  an  arbitrary  time  component  (0  for  example),

, ,  and .
Vector  can  be  transformed  to  the  particle  rest-
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frame through the R chain as 

x f (R′→R) =
(
BR

f · · ·BR
2 BR

1

)(
BR′

f · · ·BR′
2 BR′

1

)−1
x f (R′), (6)

y f (R′→R) z f (R′→R)

x f (R′→R),y f (R′→R)

z f (R′→R) P f R′

C f (R′→R)

C f (R) C f (R′→R)

similarly for  and . Here, boost B is repres-
ented  by  Lorentz  vectors  and  is  only  determined  by  the
momentum  of  a  particle  whose  rest  frame  is  to  be
reached. Taking the space components of ,
and , the coordinate system for  in the  chain
transformed  to  the R chain, ,  is  obtained.  The
Euler rotations that bring  to  give the align-
ment  angles  needed  in  Eq.  (4),  where  the R chain  is  the
reference.  The  same  procedure  is  repeated  to  determine
the helicity alignment angles of all final-state particles.

2F2P
P0→ R12P3,R12→ P1P2

J = 1/2 Λ0
b

P0

B→ pph
p

2F2P

In the case of the  decay, the decay chain can be
simplified  to .  If  the  decaying
particle has , e.g., the  baryon in Eq. (1), align-
ments of its helicities in different chains are also needed.
It is  appropriately  considered  by  choosing  the  same  ini-
tial coordinate system for  for all decay chains. Simil-
arly,  for  the  decay in  Eq.  (2),  helicity  align-
ments  should be  applied for  both p and .  Thus,  for  the

 decays,  two  additional  Wigner-D rotations  are
needed for the alternative chain in Eq. (4).

Λ0
b→ pK−π0

Λ0
b

[0,π]

Λ0
b→ R(pK−)π0

Λ0
b→ R(pπ0)K−

m2
pK− m2

pπ0

mK−π0

Next,  our  approach is  compared with  other  methods,
e.g.,  that  in  Ref.  [15],  for  unpolarized  de-
cays. For these decays, three chains are possible to reach
the final state, and alignments of the proton helicity states
in different chains are needed. Numeric values show that
a β rotation about the y-axis (defined to be the normal of
the decay plane in the  rest-frame) is identical in both
methods to align two chains.  However,  in our method, a
rotation by π around the z-axis may be needed since the y-
axis of the proton coordinate system may flip the sign in
different  chains  and the β angle  is  restricted to  the 
range. In Fig. 1, the distribution of the β angle that aligns
the  proton  helicity  in  the  chain  (refer-
ence) to that in the  chain as a function of
the  two-body  invariant-mass  squared,  and ,  is
shown. At low , the two proton helicities are almost

mK−π0

parallel  such  that  a  small β rotation  is  needed,  but  they
are almost anti-parallel at high , demanding a large
rotation β about the y-axis. 

III.  MULTIPLE SOLUTIONS OF AMPLITUDE
FITS

Λ0
b→ ph−h0

2F2P
Λ0

b→ R(ph−)h0

Jη = 1/2−

Jη

In  this  section,  the  decay  is  taken  as  an
example to demonstrate why there are multiple solutions
in  the  amplitude  fits  of  the  decays and  how to  re-
solve it. As a starting point, only the  chain
is allowed and only two resonances, with , con-
tributing  to  the  amplitude  are  considered.  Secondly,  the
study is  extended  to  decays  with  more  states  and  arbit-
rary . Finally, decays with more than one chain are dis-
cussed. 

Jη = 1/2−A.    One chain with two  resonances
ph−

Λ0
b→ ph−h0

For  only  one  decay  chain  with  resonances,  the
PDF of the  decay can be obtained using Eq.
(1) and is shown in Eq. (7) 

PDF =

∣∣∣∣∣∑
R

HR
+d1/2
+1/2,+1/2

(
θp
)

FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−d1/2
+1/2,+1/2

(
θp
)

FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
+d1/2
−1/2,+1/2

(
θp
)

FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−d1/2
−1/2,+1/2

(
θp
)

FR

∣∣∣∣∣
2

, (7)

FR

ph−

d j
m,m′ = d j

−m′ ,−m = (−1)m−m′d j
m′ ,m

ηR = 1 Jη = 1/2−

where  is the model describing the lineshape of the res-
onances  in  the  invariant mass  spectrum.  The  rela-
tions of  Wigner-d functions 
and parity coefficient  for the  resonances
are  used  to  simplify  the  expression.  Notably,  since  the
real d-functions are identical for all resonances, they can
be extracted to the outside of the modulus, giving 

PDF =

(∣∣∣∣∣∑
R

HR
+FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−FR

∣∣∣∣∣
2)[

d1/2
+1/2,+1/2

(
θp
)]2

+

(∣∣∣∣∣∑
R

HR
+FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−FR

∣∣∣∣∣
2)[

d1/2
−1/2,+1/2

(
θp
)]2

=

(∣∣∣∣∣∑
R

HR
+FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

HR
−FR

∣∣∣∣∣
2)¶[

d1/2
+1/2,+1/2

(
θp
)]2

+
[
d1/2
−1/2,+1/2

(
θp
)]2©

 

 

β ∈ [0,π]Fig.  1.    (color  online)  Distribution  of  Euler  angle ,
which  aligns  the  proton  helicity  in  two  decay  chains,  as  a
function of the phase-space position.
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=

∣∣∣∣∣∑
R

(AR+ iBR)FR

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

(CR+ iDR)FR

∣∣∣∣∣
2

, (8)

AR ≡ Re(HR
+ ) BR ≡ Im(HR

+ ) CR ≡ Re(HR
− )

DR ≡ Im(HR
− )

H+ H−

where , , ,  and
 represent the respective real and imaginary

parts  of  complex  couplings  and  1).  For  the  last
equation,  the  explicit  expressions  of  the  Wigner-d func-
tions, which are listed in Table 1, are applied.

FR(mph− )The lineshape model, , is usually taken to be
the form of the Breit-Wigner distribution, 

FR(mph− | µR,gR) =
1

µ2
R−m2

ph− − iµRΓR(mph− | µR,gR)
, (9)

µR gRwhere  and  are the mass and natural width of reson-
ance R, respectively. Then, Eq. (8) is transformed to 

PDF =

∣∣∣∣∣∑
R

(AR+ iBR)
FR
R − iFR

I

∣∣∣∣∣
2

+

∣∣∣∣∣∑
R

(CR+ iDR)
FR
R − iFR

I

∣∣∣∣∣
2

, (10)

FR
R ≡ µ2

R−m2
ph FR

I ≡ µRΓR(mph− | µR,gR)

ph− Jη = 1/2−

where  and  are  the
real and imaginary parts of the denominator of the Breit-
Wigner distribution, respectively. Notably, Eq. (10) holds
for any number of  resonances with .

G2
1×G2

2 ≡∣∣FR1
R − iFR1

I
∣∣2× ∣∣FR2

R − iFR2
I
∣∣2For  two  resonances,  by  multiplying 

 on both sides of Eq. (10), Eq.
(10) can be rewritten as 

PDF×G2
1G

2
2 =

∣∣∣(AR1 + iBR1
)(

FR2
R − iFR2

I
)

+
(
AR2 + iBR2

)(
FR1
R − iFR1

I
)∣∣∣2

+

∣∣∣(CR1 + iDR1
)(

FR2
R − iFR2

I
)

+
(
CR2 + iDR2

)(
FR1
R − iFR1

I
)∣∣∣2

=
[
(AR1 )2+ (BR1 )2+ (CR1 )2+ (DR1 )2

]
×
[
(FR2
R )2+ (FR2

I )2
]

+
[
(AR2 )2+ (BR2 )2+ (CR2 )2+ (DR2 )2

]
×
[
(FR1
R )2+ (FR1

I )2
]

+2
(
AR1 AR2 +BR1 BR2 +CR1CR2 +DR1 DR2

)
×
(
FR1
R FR2

R +FR1
I FR2

I
)

+2
(
AR1 BR2 −AR2 BR1 +CR1 DR2 −CR2 DR1

)
×
(
FR2
R FR1

I −FR1
R FR2

I
)
,

(11)

{AR,BR,CR,

DR}
where  only  helicity  coupling  parameters 

 are unknown, to be determined from data. Only com-
binations  of  these  coupling  parameters  are  observed  to
appear in  the  PDF.  For  simplicity,  the  following  nota-
tions are made: 

P1·1 ≡ (AR1 )2+ (BR1 )2+ (CR1 )2+ (DR1 )2 = |HR1
+ |2+ |HR1

− |2,

P2·2 ≡ (AR2 )2+ (BR2 )2+ (CR2 )2+ (DR2 )2 = |HR2
+ |2+ |HR2

− |2,

P1·2 ≡AR1 AR2 +BR1 BR2 +CR1CR2 +DR1 DR2

=Re(HR1∗
+ HR2

+ +HR1∗
− HR2

− ),

P1×2 ≡AR1 BR2 −AR2 BR1 +CR1 DR2 −CR2 DR1

=Im(HR1∗
+ HR2

+ +HR1∗
− HR2

− ),

(12)

Pm·n
Pm×n Rm

Rn

{AR,BR,CR,DR}

and  when  there  are  more  than  two  resonances,  and
 can be defined similarly for any two resonances 

and . These four P parameters can be determined sim-
ultaneously  by  fitting  Eq.  (11)  to  the  data.  However,  as
there  are  eight  parameters  in  the  set  of 
parameters, four  of  them  are  redundant.  This  is  an  ex-
ample of the multiple solution problems that are particu-
larly considered  in  this  manuscript.  Notably,  when  deal-
ing  with  fit  fractions,  multiple  solutions  are  physically
equivalent. This  implies  that  the  fit  fraction  of  each  res-
onance and the interference between any two resonances
should  be  the  same  for  different  solutions.  However,  it
should be noted that the helicity couplings differ for dif-
ferent solutions.  Therefore,  if  helicity  couplings  are  re-
quired,  such  as  in  measurements  of  CPV  using  helicity
couplings, these solutions are not physically equivalent.

2F2P
{AR,BR,CR,DR}

Jη

The multiple-solution problem for the  decays is
rephrased  as,  given  an  arbitrary  set  of 
parameters, there are other sets that will lead to the same
P parameters  and  finally  the  same  PDF  value.  For  two
resonances  of  the  same  in a  single  decay  chain,  ac-
cording to Eq. (12) not all the free helicity couplings can
be  determined,  four  of  which  must  be  fixed  to  reach  a
stable fit  result.  For  a  maximum  likelihood  fit,  the  re-
quirement  to  normalize  the  PDF removes  one  additional
parameter.  This  trivial  multiple-solution problem  is  al-

 

Table 1.    Examples of the Wigner-d functions.

JR dJR

+1/2,+1/2 (θ) dJR

−1/2,+1/2 (θ)

1/2 cos
θ

2
−sin

θ

2

3/2
1
2

cos
θ

2
(3cosθ−1) − 1

2
sin

θ

2
(3cosθ+1)

5/2
1
2

cos
θ

2

(
5cos2 θ−2cosθp −1

)
− 1

2
sin

θ

2

(
5cos2 θ+2cosθ−1

)
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∣∣HR
+

∣∣ = 1

P1·1

ways resolved by fixing  for reference resonance
R and is not considered anymore in the remaining part of
this manuscript. For the special case that only one reson-
ance is present in the decay, only  remains in Eq. (12),
and all four parameters can be fixed after the normaliza-
tion, the detailed proof is shown in Appendix A. Later on,
a strategy  to  systematically  fix  redundant  helicity  coup-
lings to remove multiple solutions will be proposed. 

B.    One decay chain with N resonances

Jη
Equation (11) can be extended to an arbitrary number

(N) of resonances with varied  in the same decay chain
as 

PDF×
∏

R

G2
R

=

∣∣∣∣∣∑
R

(AR+ iBR)dJR

+1/2,+1/2 (θ)
∏

R′ ,R′,R

(
FR′
R − iFR′

I
)∣∣∣∣∣

2

+

∣∣∣∣∣∑
R

ηR(AR+ iBR)dJR

−1/2,+1/2 (θ)
∏

R′ ,R′,R

(
FR′
R − iFR′

I
)∣∣∣∣∣

2

+

∣∣∣∣∣∑
R

ηR(CR+ iDR)dJR

+1/2,+1/2 (θ)
∏

R′ ,R′,R

(
FR′
R − iFR′

I
)∣∣∣∣∣

2

+

∣∣∣∣∣∑
R

(CR+ iDR)dJR

−1/2,+1/2 (θ)
∏

R′ ,R′,R

(
FR′
R − iFR′

I
)∣∣∣∣∣

2

. (13)

{AR,BR,CR,DR}
The list of P parameters that appear in the PDF can be

defined using those  in Eq. (13) as 

Pm·n =η
RmηRn ARm ARn +ηRmηRn BRm BRn +CRmCRn +DRm DRn ,

Pm×n =η
RmηRn ARm BRn −ηRmηRn ARn BRm +CRm DRn −CRn DRm ,

(14)

Rm Rn mth nth

ηR

AR↔ ηRCR,

where  and  represent the  and  resonances in
the  list.  Oarity  coefficients  are  present  in  the  PDF
since  they are  not  identical  for  all  resonances.  From Eq.
(14),  it  is  clear  that  the  interchange 

BR↔ ηRDR

ÃR ≡ ηRAR

B̃R ≡ ηRBR

, for all R will lead to the same P parameters
and finally an equivalent PDF. Furthermore, Eq. (14) will
have the same form of Eq.  (12) by redefining 
and .

N2

4N
N ≥ 4

For N resonances  in  the  same chain,  a  total  of  P
parameters  can  be  defined  from the  degrees of  free-
dom  in  helicity  couplings.  For ,  the  number  of P
parameters is noticeably not less than the number of inde-
pendent  helicity  parameters.  However,  not  all  helicity
parameters can be uniquely determined from data. To ex-
plain the reason, let us define a matrix H of helicity para-
meters as 

H ≡
(

ÃR1 + iB̃R1 ÃR2 + iB̃R2 · · · ÃRN + iB̃RN

CR1 + iDR1 CR2 + iDR2 · · · CRN + iDRN

)
, (15)

H†H Pm·n Pm×n

(H†H)m,n = Pm·n− iPm×n

then  would  give  all  and  terms  as
.

2×2 U , I
U†U = I (UH)†UH = H†U†UH = H†H

UH
((UH)†UH)m,n Pm·n− iPm×n

2×2
U(2)

For  any  non-trivial  unitary  matrix ,
,  identity  holds,

which means that if the H matrix elements provide a solu-
tion  for  a  fit,  the  elements  of  provide another  solu-
tion  as  will  lead  to  the  same .
The arbitrariness of U leads to the multiple-solution prob-
lem  and,  in  general,  any  two  solutions  are  linked  by  a
unitary transformation. The  matrix U belongs to the

 group, which has four independent parameters. The
U matrix  can  be  properly  chosen  to  eliminate  four  free
parameters in the H matrix to reach a definite solution.

For example, given the solution in Eq. (15), matrix U
in the specific form can be calculated as 

U =

(
1 0

0 expiψ

)
× 1
N

(
ÃR1 − iB̃R1 CR1 − iDR1

−CR1 − iDR1 ÃR1 + iB̃R1

)
,

(16)

N =
√

(ÃR1 )2+ (B̃R1 )2+ (CR1 )2+ (DR1 )2where  and ψ is  a
phase  factor  to  be  determined  later.  It  is  easily  verified
that U is unitary. Then,

H
′′ ≡ UH =

1
N

Ñ
N2 (ÃR1 − iB̃R1 )(ÃR2 + iB̃R2 )+ (CR1 − iDR1 )(CR2 + iDR2 ) · · ·

0 expiψ
[
(ÃR1 + iB̃R1 )(CR2 + iDR2 )− (ÃR2 + iB̃R2 )(CR1 + iDR1 )

]
· · ·

é
, (17)

B
′′R1 =C

′′R1 = D
′′R1 = 0

D
′′R2 = 0

H
′′

4N −4

where  have  been  obtained  and ψ
can be tuned to set , i.e., four redundant paramet-
ers have been fixed. Of course, one can choose another U
matrix  to  get  the  preferred  form  of .  Therefore,  this
proves that it is always possible to fix four parameters to
zero if resonances are limited to only one chain, reducing
the total unknown helicity coupling parameters to .

The  detailed  form  of  the  transformed H matrix  is
provided in Appendix C.

N2− (4N −4) =
(N −2)2 ≥ 0 Pm×n

After  fixing  four  helicity  coupling  parameters,  the
number of independent P terms is always no less than the
number  of  remaining  free  parameters, 

. Notably,  terms only appear in the PDF
if the mass distribution of either the m or n component of
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Pm×n

N +N(N −1)/2 = N(N +1)/2

4N −4 N < 6

P1×2

the  amplitude  is  complex  (e.g.,  the  Breit-Wigner func-
tion).  If  all  terms  disappear,  then  the  number  of P
terms  reduces  to ,  which  is
smaller  than  the  number  of  free  coupling  parameters

 for , suggesting additional parameters can be
fixed.  For  example,  for  two resonances,  the  following P
terms are obtained without  

P1·1 ≡ (ÃR1 )2,

P2·2 ≡ (ÃR2 )2+ (B̃R2 )2+ (CR2 )2,

P1·2 ≡ ÃR1 ÃR2 , (18)

ÃR1

P1·1 ÃR2 P1·2 ÃR1 P2·2
(B̃R2 )2+ (CR2 )2 CR2 = 0

CR2 =CR3 = 0

where  other  four  coupling  parameters  have  been  set  to
zero  following  Eq.  (17).  Parameter  is  fixed  by

,  is fixed by , and , while  can only ad-
ditionally  determine .  One  can  fix 
to  reach  a  definite  solution.  For  three  resonances  in  the
same  chain,  one  can  set ,  and  so  on.  This
specific decay is not discussed anymore in the following. 

C.    Multiple decay chains

Λb→ R(ph−)h0

H+ H−
H+ H−

H− H+

H+ H−
H− H+

H+ H−

In  Sec.  III.B,  resonances  are  only  considered  in  the
 decay  chain  (referred  to  as  the  reference

channel in the following). In this case, the  ( ) coup-
ling  for  one  resonance  only  couples  to  the  ( )  of
other resonances but not the  ( ) coupling, which can
be seen from Eqs. (1) and (2), wherein the same modulus
of  the  helicity  for  the  initial  (final)  state  is  the  same  for
different  resonances.  However,  when  more  than  one
chain  is  included  in  the  amplitude,  as  can  be  seen  from
Eq. (4), the  ( ) couplings of resonances in the refer-
ence chain also couple to the  ( ) couplings of anoth-
er chain owing to the realignment of the initial- and final-
state helicities. One would naively think that all the relat-
ive phases fixed as phases of  and  of the alternat-

H+
H+ H−

H−

Im(HR1
+ ) = 0

Im(HR1
− ) = 0

R1

ive chain are fixed to a  in the reference chain through
one of the moduli. Then, the phases of  and  in the
alternative chain fix the  of the reference chain in oth-
er  moduli.  However,  it  will  be  shown  that  apart  from  a
global phase, which can be used to fix , there
is a second degree of freedom to set ,  where

 is the reference resonance.
2F2PFor  a  decay  with  resonances  in  two  different

chains,  two  kinds  of  combinations  of  helicity  coupling
parameters  are  present  in  the  PDF.  Without  the  loss  of
generality,  the  discussions  are  based  on  the  first  two
chains,  where  intermediate  resonances  are  fermions.  In
addition to the P terms in Eq.  (12) for  resonances in the
same chain, the following new terms appear between res-
onances in two different chains 

PS
m·n ≡Re(HRm∗

+ HR′n
+ +S×HRm∗

− HR′n
− ),

PS
m×n ≡Im(HRm∗

+ HR′n
+ +S×HRm∗

− HR′n
− ),

QS
m·n ≡Re(HRm∗

+ HR′n
− +S×HRm∗

− HR′n
+ ),

QS
m×n ≡Im(HRm∗

+ HR′n
− +S×HRm∗

− HR′n
+ ), (19)

R′

S = +1 −1 Rm,Rn

where  and R and  belong  to  two  different  chains,
 or  depending  on  parity  parameters η

and  if  a π angle  is  needed  to  align  the  initial/final-state
helicities in  the  two  decay  chains.  The  detailed  deriva-
tion of terms in Eq. (19) can be found in Appendix D. As
shown,  the Q terms represent  interferences  of  the  posit-
ive  and  negative  helicities  of  two  separate  amplitude
components.

M2+N2+4MN

For M resonances in the reference chain and N reson-
ances in the other chain, the total number of independent
P and Q terms  is .  To  generate  all  these
terms,  two H matrices  similar  to  that  in  Eq.  (15)  are
needed, defined as

HP ≡

Ñ
HR1
+ HR2

+ · · · HRM
+ H

R′M+1
+ H

R′M+2
+ · · · H

R′M+N
+

HR1
− HR2

− · · · HRM
− H

R′M+1
− H

R′M+2
− · · · H

R′M+N
−

é
,

HQ ≡

Ñ
HR1
+ HR2

+ · · · HRM
+ H

R′M+1
− H

R′M+2
− · · · H

R′M+N
−

HR1
− HR2

− · · · HRM
− H

R′M+1
+ H

R′M+2
+ · · · H

R′M+N
+

é
,

(20)

S
HP

HQ M+1 M+N
HQ

H− HQ

(H†PHP)m,n = Pm·n− iPm×n (H†QHQ)m≤M,n>M =

Qm·n− iQm×n

where the  coefficient  is  omitted for  simplicity  as  they
will not affect the conclusion. The first M columns of 
and  are  identical,  and  for  the  to 
columns,  the  first  and  second  rows  of  are  swapped,
which means s are in the second row of . It is veri-
fied  that  and 

 , giving all the desired P and Q terms.
The  question  is  to  find  unitary  matrix U with

H′P ≡ UHP H′Q ≡ UHQ and , such that
 

(H′P)1 j =(H′Q)1 j

(H′P)2 j =(H′Q)2 j (21)

j ≤ Mfor  (the reference chain), and
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(H′P)1 j =(H′Q)2 j

(H′P)2 j =(H′Q)1 j (22)

M < j ≤ M+N
HP HQ

(HP)i j = (HQ)i j

j ≤ M

for  (the  alternative  chain).  Namely,  the
elements of  the transformed  and  matrices are re-
lated.  Eq.  (21)  holds  automatically  since 
for ,  corresponding  to  the  reference  chain.  For  the
alternative chain, Eq. (22) can be translated to finding a U
matrix that meets the requirements 

U

(
X

Y

)
=

(
X′

Y ′

)
, U

(
Y

X

)
=

(
Y ′

X′

)
, (23)

X,Yfor any , which requires (
0 1

1 0

)
U

(
0 1

1 0

)
= U. (24)

For a generic unitary matrix of four degrees of freedom, 

U =

(
α β

−β∗eiγ α∗eiγ

)
, (25)

|α|2+ |β|2 = 1where α and β are complex and , Eq. (24) im-
plies 

α = α∗eiγ, β = −β∗eiγ, (26)

γ = 2argα argβ = argα±π/2which lead to  and ,  and thus
eliminate  two  degrees  of  freedom.  Now,  the  reduced U
matrix has the generic form, 

U(ϕ, t) = eiϕ

(
cos(t) i sin(t)

i sin(t) cos(t)

)
, (27)

ϕ ∈ (0,2π] t ∈ (−π/2,π/2]
(ϕ, t)

Im(HR1
+ ) = Im(HR1

− ) = 0

with  and .  Next,  it  will  be
demonstrated  that  parameters  can  be  tuned  to  set

.
HPMultiplying  the  reduced U matrix  in  Eq.  (27)  to 

(only the first column is needed without the loss of gener-
ality) reaches 

U(ϕ, t)HP =eiϕ

(
cos(t) i sin(t)

i sin(t) cos(t)

)
×
(

H+ · · ·
H− · · ·

)

=eiϕ

(
cos(t)H++ i sin(t)H− · · ·
cos(t)H−+ i sin(t)H+ · · ·

)

≡eiϕ

(
H′+ · · ·
H′− · · ·

)
, (28)

R1

H+ H−
ϕ = −δ

where superscript  has been omitted. Parameter t is ad-
justed  to  make  and  have  a  common  phase, δ,
which  can  then  be  removed  by  choosing . It  re-
quires
 

tan(δ) =
Im(H+)cos(t)+Re(H−) sin(t)
Re(H+)cos(t)−Im(H−) sin(t)

=
Im(H−)cos(t)+Re(H+) sin(t)
Re(H−)cos(t)−Im(H+) sin(t)

, (29)

tan(2t) = Im
(
2H+H∗−

)
/
(
|H+|2− |H−|2

)
δ =

arg(H′+) = arg(H′−)
H+ H−

giving .  Then, 
 can  be  determined.  It  is  emphasised

that  in  Eq.  (29),  and  can  be  chosen  to  belong  to
two separate resonances.

2F2PThe discussions above are also valid for the  de-
cays with resonances in all three chains. In this case, four
H matrices,  built  from  all  possible  helicity  couplings,
would be required to produce all required P and Q terms
in the PDF, as
 (

HR
+ · · · HR′

+ · · · HR′′
+ · · ·

HR
− · · · HR′

− · · · HR′′
− · · ·

)
,(

HR
+ · · · HR′

+ · · · HR′′
− · · ·

HR
− · · · HR′

− · · · HR′′
+ · · ·

)
,(

HR
+ · · · HR′

− · · · HR′′
+ · · ·

HR
− · · · HR′

+ · · · HR′′
− · · ·

)
,(

HR
+ · · · HR′

− · · · HR′′
− · · ·

HR
− · · · HR′

+ · · · HR′′
+ · · ·

)
, (30)

R′ R′′where subamplitude components R, , and  belong to
the three different chains.

2F2P

Now, this  proves  that,  in  the  generic  case,  a  positive
and  negative  helicity  coupling  can  be  set  to  be  real  for

 decays. Limited to only one decay chain, two more
coupling parameters  can be  fixed to  zero.  With  the  mat-
rix  transformation  method,  no  more  additional  freedoms
are  found  to  constrain  more  helicity  parameters.  Since
any two  helicity  couplings  can  be  fixed  to  be  real,  heli-
city couplings are no longer good physical observables to
be compared with theoretical calculations or cross-experi-
ments.  Instead,  the  fit  fraction  (FF)  of  the R resonant
component, defined as [18] 

FFR =

∫
PDF(HR

+ ,H
R
− ,H

R′
+ = HR′

− = 0 for R′ , R)dΦ∫
PDF(HR

+ ,HR
− ,HR′

+ ,HR′
− )dΦ

, (31)

only depends on those P and Q parameters, and is thus a
quantity independent  of  conventions  on  helicity  coup-
lings.
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IV.  PSEUDO-EXPERIMENT RESULTS

B+→ pp−π+

Re(HR1
+ )

B+→ ∆++(pπ+)p−

Pseudo-experiment studies are performed to numeric-
ally verify  the  conclusions  reached  in  the  previous  sec-
tion.  Events  are  generated  for  the  decay
composed  of  a  set  of  resonances,  and  are  then  studied
with  amplitude  fits  considering  the  aforementioned
strategies  to  fix  helicity  couplings.  The  fit  is  carried  out
with the unbinned maximum likelihood method, such that
the PDF normalization can be used to fix a helicity coup-
ling parameter  in  addition  to  the  interesting  ones  dis-
cussed in the previous section. The parameters that max-
imize  the  likelihood determine the  results  of  the  fit.  The
Iminuit  package  [19]  is  used  to  maximize  the  likelihood
with respect  to  free  coupling  parameters.  In  the  follow-
ing,  is  always  set  to  1  to  comply  with  the  PDF
normalization  requirement.  The  decay
is taken as the reference channel. 

A.    One decay chain with multiple resonances

B+→ pp−π+

∆++ ∆++→ pπ+

Jη ∆++

Here, only the reference channel is considered for the
 decay (i.e.,  only a single decay chain),  with

three  resonances  in  the  decay.  The
masses, widths, and  of these  states are listed in the
first  few  rows  of Table  2.  A  random  number  of  about
15000  decays  are  generated,  and  the  helicity  couplings
for these resonant contributions are randomly assigned.

A
Im(HR1

+ ) = 0 B

Im(HR1
+ ) = Re(HR1

− ) = Im(HR1
− ) = Im(HR2

− ) = 0 R1 R2

B

Two amplitude fits are performed to the pseudo-data.
In the scheme  fit, all helicity couplings are floated apart
from ,  while  in  the  scheme  fit, four  para-
meters are fixed to zero following the strategy in Sec. III,

.  and 
can be arbitrarily chosen among the three resonances. Ac-
cording to our discussions in Sec. III, the two fits should
lead to the same likelihood, and there should be no more
multiple solutions for the scheme  fit.

2F2P

The logarithm likelihood (LL)  and  the  fit  fraction  of
each  component  obtained  with  the  two  fits  are  listed  in
Table 3. A detailed table of the fit fraction of each com-
ponent and  the  interference  between  each  two  compon-
ents are shown in Appendix E. It is seen that the two fits
give identical LL and fit  fractions (interferences) up to a
numeric precision  required  by  the  fitter.  Both  fit  frac-
tions are also consistent with inputs. It confirms that, in-
deed,  four  helicity  parameters  can  be  fixed  to  reach  the
same physical result for a single-chained  decay.

A

A

Notably,  the  helicity  couplings  that  maximize  the
likelihood  in  the  scheme  fit depend  on  the  initial  val-
ues of the free parameters in the fit; they converge to dif-
ferent positions in the parameter space of equivalent solu-
tions. Practically, this makes it difficult to judge whether
the fit gives the correct result and to compare different fit
results of  the  same  dataset,  particularly  when  the  likeli-
hood  is  complicated  by  local  minima.  Additionally,
scheme  encounters  challenges  in  calculating  the  error

B
B

matrix  using  the  usual  second  partial  derivative  method
as in Iminuit, since the second partial derivative matrix is
not  invertible.  While  in  general,  no  such  problems  exist
for the  fit. The helicity couplings used to generate pe-
sudo-data and those obtained from the fit using scheme 
are  shown in Table  4, where  the  uncertainties  are  repor-
ted by the fitter.  The fit  results  are  consistent  with  input
values.
  

B
Table 4.  Helicity couplings used to generate pesudo-data and
results of the fit using scheme .

Coupling Input Fit result

Re(H+∆(1940)) 1.51 1.54±0.06

Ie(H+∆(1940)) 0.35 0.37±0.11

Ie(H−∆(1940)) −0.78 −0.77±0.08

Re(H+∆(1750)) 0.32 0.32±0.02

Ie(H+∆(1750)) −0.09 −0.10±0.03

Re(H−∆(1750)) 0.52 0.50±0.05

Ie(H−∆(1750)) 0.40 0.41±0.08

 

A

B HA A

HA HAtrans
HB

B

To further  verify  our  conclusion,  the  helicity  coup-
lings obtained from the scheme  fit with an arbitrary set
of  initial  parameters  are  transformed  using  the  strategy
mentioned in  Sec.III.B.  The  matrix  after  the  transforma-
tion is compared with the matrix obtained from the fit in
scheme . Matrix  obtained from the scheme  fit and
the  corresponding  unitary  transformation  matrix U are
shown in  Eqs.  (32)  and  (33).  The  transformed matrix  of

, , and the  matrix obtained from the scheme
 fit  are  shown  in  Eqs.  (34)  and  (35),  respectively.  The

 

B+→ pp−π+Table 2.    Resonances considered to generate  de-
cays.

Resonances Jη Mass (MeV/c2) Width /MeV

∆(1600)++ 3/2+ 1570 50

∆(1940)++ 3/2− 2000 400

∆(1750)++ 1/2+ 1721 70

∆(1700)0 3/2− 1710 300

∆(1900)0 1/2− 1860 250

 

2F2P
A Im(HR1

+ ) = 0

B Re(HR1
− ) = Im(HR1

− ) = Im(HR2
− ) = 0

R1 = ∆(1600)++,R2 = ∆(1750)++

Table 3.    Logarithm likelihood and fit fraction of each com-
ponent for two schemes of fitting to a single-chained  de-
cay.  In  scheme ,  is  fixed,  while  in  scheme

,  are  additionally  required,
where .

Fit LL
FF

∆(1600)++ ∆(1750)++ ∆(1940)++

A 29823.04 0.484655 0.367544 0.148588

B 29823.04 0.484653 0.367547 0.148588
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latter two matrices are identical within the numeric preci-
sion of the fitter,  as they should be according to the dis-

cussion in Sec.III.B.

HA| =

(
1 −3.5264−5.1065i −3.9552+6.4977i

5.0599−8.0252i −0.1755+3.1207i −11.2024+9.9042i

)
(32)

 

U =

(
1 0

0 −0.7839−0.6208i

)
×
(

1 5.0599+8.0252i

−5.0599+8.0252i 1

)
(33)

 

HA|trans
=

(
1−0.3237+0.1019i −1.5396−0.3657i

0−0.5006−0.4057i 0.7669i

)
(34)

 

HB| =

(
1 −0.3236+0.1019i −1.5397−0.3657i

0 −0.5007−0.4057i 0.7669i

)
(35)

 

B.    Multiple decay channels
∆0→ pπ

∆(1600)++

i.e. R1

A Im(HR1
+ ) = 0

B Im(HR1
+ ) = Im(HR1

− ) = 0

C
Re(HR1

− ) = 0 B

In  this  study,  two  resonances,  listed  in  the
second half of Table 2, are included in the pseudo-data as
a second chain. A total of about 15000 decays are simu-
lated.  The  resonance  is  taken  as  the  reference
resonance ( , ). To test our fitting strategy obtained in
Sec. III, the pseudo-data are fitted with three schemes. In
scheme ,  is  set,  which  is  expected  to  have
multiple solutions. In scheme ,  is
fixed, which  complies  with  our  strategy  of  fixing  mul-
tiple  solutions.  In  scheme ,  one  additional  parameter,

, is fixed on top of scheme , which is expec-
ted  to  have  a  reduced  fit  quality  owing  to  insufficient
amount of free parameters.

A B

A

The LL and fit fractions for the fits in the three differ-
ent  schemes are  listed  in Table  5.  A detailed  table  of  fit
fractions  of  each  component  and  interferences  of  each
two components  are  shown in  Appendix  E.  The  LL and
fit fraction results for  and  are identical within the nu-
meric precision of the fitter. The fit fractions are also con-
sistent with those calculated using input helicity coupling
parameters.  The error  matrix  of  fit  cannot  be  properly

C
A B

calculated by the Iminuit fit package. The fit quality of 
is  worse than those of  and ,  as  can be seen from the
smaller LL.

A B

A B

In Fig. 2, the one-dimensional invariant mass distribu-
tions of pseudo-data are shown, overlaid by the results of
fit  scheme  and ,  showing  reasonable  consistency
between the two fit schemes. Similarly, matrices of heli-
city  couplings  obtained  from  both  and  fits,  and  the
transformation  matrices  are  shown  in  Appendix.
63141592631415927. 

V.  SUMMARIES AND CONCLUSIONS

1/2Weak  decays  involving  two  spin-  fermions  and
two (pseudo-) scalar particles are very common in heavy
flavor physics, and are used for hadron spectroscopy or to
study decay properties, with the aim of searching for new
hadrons  or  testing  the  standard  model.  In  amplitude  fits
for such decays, the problem of multiple solutions to the
helicity couplings  is  usually  encountered,  which  is  stud-
ied in  detail  in  this  analysis.  Detailed  studies  in  this  art-
icle showed that multiple solutions arise since only com-

 

A Im(HR1
+ ) B Im(HR1

+ ) = Im(HR1
− ) = 0 C Re(HR1

− ) = 0

B R1 = ∆(1600)++

Table 5.    Logarithm likelihood and fit fraction of each resonant component for the three different schemes of fits to two-chained de-
cays. In scheme ,  is fixed to zero, and in scheme ,  are required, while in scheme ,  is ad-
ditionally required compared to scheme , where .

Fit LL
FF

∆(1600)++ ∆(1700)0 ∆(1750)++ ∆(1900)0 ∆(1940)++ Sum

A 24210.79 0.274907 0.051978 0.433754 0.16862 0.060224 0.989483

B 24210.79 0.274909 0.051976 0.433758 0.16862 0.060221 0.989484

C 24194.10 0.275794 0.054087 0.435634 0.17215 0.055602 0.993271
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binations of helicity couplings are present in the probabil-
ity density  function  rather  than  each  coupling  independ-
ently.  With multiple solutions,  the converged position in
the  parameter  space  depends  on  the  initial  values  of  the
free parameters, making it difficult to judge whether a fit
result  is  the  correct  answer  or  not.  Moreover,  the  error
matrix of  the  free  parameters  cannot  be  obtained  prop-
erly using the usual second partial derivative method.

A  strategy  obtained  using  a  matrix  transformation
method  is  proposed  in  our  study  to  resolve  the  multiple
solutions  by  properly  fixing  some  helicity  couplings.  In
particular,  it  is  found  that  if  all  intermediate  resonances
contribute to a single decay chain, four helicity paramet-
ers  can  be  fixed  to  zero  without  any  loss  of  fit  quality,
three of them belonging to a reference resonance and an-
other one for a second resonance. If there are multiple de-
cay chains, it is proved that one can set both the positive
and  negative  helicity  couplings  of  a  reference  resonance
to be real without reducing the fit quality. Using the pro-
posed  scheme,  there  is,  in  general,  no  multiple  solution

problem,  and  the  error  matrix  of  free  parameters  can  be
calculated from the second partial derivatives of the like-
lihood.  Pseudo-experiments  are  generated  with  one  or
two  decay  chains  to  verify  the  conclusions  of  the  study.
In  this  analysis,  a  strategy  is  also  proposed  to  align  the
helicity  states  of  initial- and  final-state  particles  defined
in two  different  decay  chains,  which  compares  the  co-
ordinate systems  defining  these  helicity  states.  The  res-
ults of this study will benefit relevant amplitude analyses
at LHC, BESIII, and B-factory experiments. 

APPENDIX A: SPECIAL CASE WHEN THERE IS
ONLY ONE RESONANCE

AR BR CR DR∣∣AR+ iBR
∣∣2+ ∣∣CR+ iDR

∣∣2
P1·1

If there is only one resonance, Eq. (13) can be simpli-
fied to Eq. (36). It is clearly shown that although there are
four  parameters , , ,  and , only  the  combina-
tion  of  them  can  be  determined,
which is exactly  in Eq. (12).

PDF×G2
1 =

∣∣∣(AR+ iBR)dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣ηR(AR+ iBR)dJR

−1/2,+1/2 (θ)
∣∣∣2

+

∣∣∣ηR(CR+ iDR)dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣(CR+ iDR)dJR

−1/2,+1/2 (θ)
∣∣∣2

=
∣∣AR+ iBR

∣∣2Å∣∣∣dJR

+1/2,+1/2 (θ)
∣∣∣2+ (ηR

)2
∣∣∣dJR

−1/2,+1/2 (θ)
∣∣∣2ã

+
∣∣CR+ iDR

∣∣2Å(ηR
)2
∣∣∣dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣dJR

−1/2,+1/2 (θ)
∣∣∣2ã

=
∣∣AR+ iBR

∣∣2Å∣∣∣dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣dJR

−1/2,+1/2 (θ)
∣∣∣2ã

+
∣∣CR+ iDR

∣∣2Å∣∣∣dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣dJR

−1/2,+1/2 (θ)
∣∣∣2ã

=
Ä∣∣AR+ iBR

∣∣2+ ∣∣CR+ iDR
∣∣2äÅ∣∣∣dJR

+1/2,+1/2 (θ)
∣∣∣2+ ∣∣∣dJR

−1/2,+1/2 (θ)
∣∣∣2ã (A1)

 

 

Fig. 2.    (color online) One-dimensional invariant mass distributions in pseudo-data superimposed by the results in the two fit schemes.
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APPENDIX B: DETERMINATION OF EULER
ANGLES

C0 = (x̂0, ŷ0, ẑ0)
C1 = (x̂1, ŷ1, ẑ1) C1 C0

ẑ0

ŷ′

ẑ′′

Given  two  coordinate  systems,  and
, the  system is reached from the  sys-

tem by first rotating α about the  axis, followed by ro-
tating β about  the new  axis,  and then rotating γ about
the new  axis. The three Euler angles are calculated to
be 

α = atan2(ẑ1 · ŷ0, ẑ1 · x̂0) (B1)
 

β = acos(ẑ1 · ẑ0) (B2)
 

γ = atan2(ẑ0 · ŷ1,−ẑ0 · x̂1), (B3)

β ∈ [0,π] α,γ ∈ (−π,π]
(ϕ,θ,ψ) ≡ (α,β,γ)
with the domains , .  In literature, the

 notation is also often used. 

APPENDIX C: MATRIX TRANSFORMATION FOR
A SINGLE CHAIN

As  mentioned  in  Sec.  III.B,  an H matrix  defined  as
Eq.  (15)  can  be  used  to  determine  all  the  helicity-coup-
ling  combinations,  and  the U matrix  defined  in  Eq.  (16)
helps to find a definite solution among multiple solutions.
In this part,  the detailed calculations are shown. Without
the  loss  of  generality,  only  three  resonances  in  the  same
decay  chain  are  considered  for  simplicity  of  writing.
Now, Eq. (15) becomes 

H =

(
AR1ηR1 + iBR1ηR1 AR2ηR2 + iBR2ηR2 AR3ηR3 + iBR3ηR3

CR1 + iDR1 CR2 + iDR2 CR3 + iDR3

)
,

(C1)

U = U1×U2

where  the  parity  symmetry  coefficient η has been  expli-
citly spelled. The U matrix in Eq. (16) is divided into the
product of two parts as , where 

U1 =

(
p1− ip2 p3− ip4

−p3− ip4 p1+ ip2

)
, U2 =

(
1 0

0 expiψ

)
, (C2)

p1 = AR1ηR1/N p2 = BR1ηR1/N p3 =

CR1/N p4 = DR1/N
N =

√
(AR1 )2

+ (BR1 )2
+ (CR1 )2

+ (DR1 )2

p2
1+ p2

2+ p2
3+ p2

4 = 1

with  definitions , ,
,  and ,  and

.  It  is  noted  that
.

U1It is easy to obtain the -transformed H matrix as 

H′ ≡ U1H =

(
A
′R1 A

′R2 + iB′R2 A
′R3 + iB′R3

0 C
′R2 + iD′R2 C

′R3 + iD′R3

)
, (C3)

with 

A
′R1 =

(
AR1
)2
+
(
BR1
)2
+
(
CR1
)2
+
(
DR1
)2
,

A
′R2 = AR1 AR2ηR1ηR2 +BR1 BR2ηR1ηR2 +CR1CR2 +DR1 DR2 ,

B
′R2 = AR1 BR2ηR1ηR2 −AR2 BR1ηR1ηR2 +CR1 DR2 −CR2 DR1 ,

A
′R3 = AR1 AR3ηR1ηR3 +BR1 BR3ηR1ηR3 −CR1CR3 −DR1 DR3 ,

B
′R3 = AR1 BR3ηR1ηR3 −AR3 BR1ηR1ηR3 −CR1 DR3 +CR3 DR1 ,

C
′R2 = AR1CR2ηR1 −AR2CR1ηR2 −BR1 DR2ηR1 +BR2 DR1ηR2 ,

D
′R2 = AR1 DR2ηR1 −AR2 DR1ηR2 +BR1CR2ηR1 −BR2CR1ηR2 ,

C
′R3 = AR1CR3ηR1 +AR3CR1ηR3 −BR1 DR3ηR1 −BR3 DR1ηR3 ,

D
′R3 = AR1 DR3ηR1 +AR3 DR1ηR3 +BR1CR3ηR1 +BR3CR1ηR3 .

(C4)
H′ U2Matrix  multiplied by  becomes

 

H
′′ ≡ U2H′ =

(
A
′′R1 A

′′R2 + iB′′R2 A
′′R3 + iB′′R3

0 C
′′R2 + iD′′R2 C

′′R3 + iD′′R3

)
,

(C5)
with
 

A
′′R1 = A

′R1 ,

A
′′R2 = A

′R2 ,

B
′′R2 = B

′R2 ,

A
′′R3 = A

′R3 ,

B
′′R3 = B

′R3 ,

C
′′R2 =C

′R2 cos(ψ)−D
′R2 sin(ψ),

D
′′R2 =C

′R2 sin(ψ)+D
′R2 cos(ψ),

C
′′R3 =C

′R3 cos(ψ)−D
′R3 sin(ψ),

D
′′R3 =C

′R3 sin(ψ)+D
′R3 cos(ψ). (C6)

ψ = −arctan(D′R2/C
′R2 )+nπ H

′′Therefore, for ,  becomes
 

H
′′
= U2U1H =

(
A
′′R1 A

′′R2 + iB′′R2 A
′′R3 + iB′′R3

0 C
′′R2 C

′′R3 + iD′′R3

)
.

(C7)

2×2 U(2)
Im(HR1

+ ) Re(HR1
− ) Im(HR1

− )
Im(HR2

− )

tan(ψ) =C
′R2/D

′R2

C
′′R2 ηRm

HRm
− CRm DRm

HRm
+

The four free parameters of a   matrix have been
used  to  eliminate , , ,  and

. Of course, they can be alternatively used to re-
move  other  helicity-coupling  parameters.  For  example,
according  to  Eq.  (45),  would  remove

.  In  Eq.  (15),  parity  symmetry  coefficients  can
also be attached to the  couplings (i.e.,  and )
rather than  couplings, which would eventually yield
the same result.
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APPENDIX D: COMBINATIONS OF HELICITY

COUPLINGS IN THE PDF OF TWO-CHAIN

DECAYS

2F2PFor simplicity of writing, a  decay with a total of

two resonances  in  two  channels  is  considered  as  an  ex-
ample to demonstrate the study, and the intermediate res-
onances  are  taken  to  be  fermions.  For  decays  involving
both  fermionic  and  bosonic  intermediate  resonances,  the
conclusion  is  the  same.  The  PDF  of  this  decay  has  the
form,

PDF =
∑
mb ,mp

∣∣∣∣∣∣HR1
mb

hR1
mp

dJR1
mbmp

FR1 +
∑
λb ,λp

D1/2
mbλb

D1/2
mpλp

HR2
λb

hR2
λp

dJR2
λbλp

FR2

∣∣∣∣∣∣
2

=
∑
mb ,mp

∣∣∣HR1
mb

hR1
mp

dJR1
mbmp

FR1

∣∣∣2︸                           ︷︷                           ︸
T1

+
∑
mb ,mp

∣∣∣∣∣∣∑λb ,λp

D1/2
mbλb

D1/2
mpλp

HR2
λb

hR2
λp

dJR2
λbλp

FR2

∣∣∣∣∣∣
2

︸                                              ︷︷                                              ︸
T2

+2
∑
mb ,mp

Re

ÄHR1
mb

hR1
mp

dJR1
mbmp

FR1
ä∗∑

λb ,λp

D1/2
mbλb

D1/2
mpλp

HR2
λb

hR2
λp

dJR2
λbλp

FR2


︸                                                                                 ︷︷                                                                                 ︸

T3

, (D1)

R1 R2 FR1 FR2

P0→ Ri jPk Ri j→ PiP j

where  the  two  resonances  and  belong  to  two  separate  chains,  and  and  are  their  respective  mass
lineshapes. Note that Wigner rotations are needed for both particles b and p in the second chain to align their helicities
defined in the second chain to those in the first chain. The H (parity violating) and h (parity conserving) parameters are
the corresponding helicity couplings for  and  decays, respectively.

T1 T2 T3

T1

There are three different terms in Eq. (47),  labeled as , ,  and , respectively,  which will  be dealt  with separ-
ately below. The term  is simply rewritten as
 ∣∣∣HR1

mb
hR1

mp
dJR1

mbmp
FR1

∣∣∣2 = ∣∣FR1
∣∣2(∣∣HR1

+

∣∣2 [ÄdJR1
++

ä2
+
Ä

dJR1
+−

ä2]
+
∣∣HR1
−
∣∣2 [ÄdJR1

−+

ä2
+
Ä

dJR1
−

ä2])
=
∣∣FR1

∣∣2 [ÄdJR1
++

ä2
+
Ä

dJR1
+−

ä2]Ä∣∣HR1
+

∣∣2+ ∣∣HR1
−
∣∣2ä , (D2)

hR1
mp

P1·1where trivial helicity couplings  are omitted. This term gives the  combination of helicity couplings.
T2Term  is expanded to

 

∑
mb ,mp

∣∣∣∣∣∣∑λb ,λp

D1/2
mbλb

D1/2
mpλp

HR2
λb

hR2
λp

dJR2
λbλp

FR2

∣∣∣∣∣∣
2

=
∣∣FR2

∣∣2 ∑
λbλpλ

′
bλ
′
p

∑
mbmp

Ä
D1/2

mbλb
D1/2

mpλp
HR2
λb

hR2
λp

dJR2
λbλp

ä∗ Ä
D1/2

mbλ
′
b
D1/2

mpλ
′
p
HR2
λ′b

hR2
λ′p

dJR2
λ′bλ
′
p

ä
=
∣∣FR2

∣∣2∑
λbλp

∣∣∣HR2
λb

hR2
λp

dJR2
λbλp

∣∣∣2
 = ∣∣FR2

∣∣2 [ÄdJR2
++

ä2
+
Ä

dJR2
+−

ä2]Ä∣∣HR2
+

∣∣2+ ∣∣HR2
−
∣∣2ä , (D3)

where the unitarity of Wigner-D functions
 

∑
k

D j
m′k(α,β,γ)∗D j

mk(α,β,γ) = δm,m′ (D4)

hR2
λp

P2·2has  been  used  to  obtain  the  third  equation.  Again,  trivial  helicity  couplings  are  omitted.  This  term gives  the 
term.
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T3Term  is expanded as
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ó
, (D5)

S ≡ e2i(mbϕb−mpϕp)ηR1ηR2 +1
−1 ϕb,ϕp = 0
or π ηR1ηR2

mb,mp

{mb,mp,λb,λp}
{−mb,−mp,

−λb,−λp}
d j
−m′ ,−m = (−1)m−m′d j

m′ ,m

T3

where  the  constant  is  either  or
,  depending  on  Wigner  rotation  angles 

 and two parity parameters , but not depending
on helicities . The second equation is obtained us-
ing the fact that for a term with helicities ,
there  is  always  a  corresponding  one  with 

. The parity symmetry for helicity couplings and
the  relation  for d-functions  have
been  used  to  derive  the  last  (third)  equation.  Term 
gives the helicity coupling combinations in Eq. (19). 

APPENDIX E: FIT FRACTIONS FOR SIMULA-
TION RESULTS, INCLUDING INTERFERENCE

BETWEEN DIFFERENT RESONANCES

A B

The fit  fraction  of  each  component  and  the  interfer-
ence  between  every  two  components  for  simulation  in
Sec. IV.A and Sec. IV.B are shown in this section. Tables
A1 and A2 summarize  the  FFs  and  interferences  for  the
scheme  and scheme  fit data of the single chained 

B+→ pp−π+

A' B'
B+→ pp−π+

decay. Tables A3 and A4 summarize the FFs and interfer-
ences  for  the  scheme  and  scheme  fit  data  of  the
two chained  decay. Refer to the text for a de-

tailed description of the fit schemes. 

 

ATable A1.    Fit fractions obtained using the scheme  fit. The
off-diagonal  components  are  for  interferences.  Owing  to  the
symmetry of the off-diagonal components, only the upper part
is displayed while the lower part is replaced with '–'.

∆(1600)++ ∆(1750)++ ∆(1940)++

∆(1600)++ 0.484655 −0.000420 0.000139

∆(1750)++ – 0.367544 −0.000507

∆(1940)++ – – 0.148588

 

BTable A2.    Fit fractions obtained using the scheme  fit. The
off-diagonal  components  are  for  interferences.  Owing  to  the
symmetry of the off-diagonal components, only the upper part
is displayed while the lower part is replaced with '–'.

∆(1600)++ ∆(1750)++ ∆(1940)++

∆(1600)++ 0.484653 −0.000420 0.000139

∆(1750)++ – 0.367547 −0.000507

∆(1940)++ – – 0.148588

 

A′Table  A3.    Fit  fractions  obtained  using  the  scheme  fit.
The  off-diagonal  components  are  for  interferences.  Owing to
the symmetry of the off-diagonal components, only the upper
part is displayed while the lower part is replaced with '–'.

∆(1600)++ ∆(1700)++ ∆(1750)++ ∆(1900)++ ∆(1940)++

∆(1600)++ 0.274907 0.000591 −0.000407 −0.004418 0.007996

∆(1700)++ – 0.051978 0.021664 0.001391 0.001788

∆(1750)++ – – 0.433754 0.017107 −0.000605

∆(1900)++ – – – 0.168620 −0.018600

∆(1940)++ – – – – 0.060224

 

B′Table  A4.    Fit  fractions  obtained  using  the  scheme  fit.
The  off-diagonal  components  are  for  interferences.  Owing to
the symmetry of the off-diagonal components, only the upper
part is displayed while the lower part is replaced with '–'.

∆(1600)++ ∆(1700)++ ∆(1750)++ ∆(1900)++ ∆(1940)++

∆(1600)++ 0.274909 0.000593 −0.000407 −0.004418 0.008002

∆(1700)++ – 0.051976 0.021663 0.001391 0.001787

∆(1750)++ – – 0.433758 0.017109 −0.000605

∆(1900)++ – – – 0.168620 −0.018600

∆(1940)++ – – – – 0.060221
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APPENDIX F: DETAILED HELICITY COUP-
LINGS FOR MULTIPLE DECAY CHANNELS

B+→ pp−π+

HA′
A′

The matrices of the helicity couplings obtained from a
fit to pseudo-data of two chains of the  decay.
Matrix  is formed by helicity couplings obtained from
the scheme  fit with an arbitrary set of initial paramet-

HB′
B′

i.e.
HA′

HA′trans
HB′

ers, which does not converge with the correct  error mat-
rix.  Matrix  is built  from  the  helicity  couplings  ob-
tained from the scheme  fit, which converges properly.
Matrix U is a unitary transformation that makes the heli-
city couplings of the reference resonance real, , that of
Eq.  (27).  Under the transformation of U,  matrix  be-
comes , which is compared to matrix .

HA|′ =

(
1+0i −1.9333−2.1460i −3.6880−1.9885i 0.9339+2.2177i −2.6738+1.4067i

2.9673−0.7981i 0.9111+0.81522i 0.3518+1.3642i −0.0967−2.3994i 2.2107+1.2875i

)
(F1)

 

HB|′ =

(
1+0i −1.0658−2.8354i −2.810−3.1818i −0.0919+2.4206i −2.8802+0.2964i

2.9672+0i 0.3124+1.2448i −0.4720+1.8034i 0.9904−2.4216i 1.8090+2.3633i

)
(F2)

 

HA|′trans
=

(
1+0i −1.0656−2.830542i −2.8088−3.1761i −0.0914+2.4174i −2.8747+0.2985i

2.9629+0i 0.3130+1.2441i −0.4699+1.8008i 0.9868−2.4189i 1.8088+2.3600i

)
(F3)

 

U = (0.9473+0.3203i)×
(

0.1132+0i 0.9935i

0.9935i 0.1132+0i

)
(F4)
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