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Abstract: In this study, we conduct an analysis of traversable wormhole solutions within the framework of linear

f(Q,T) = aQ+pBT gravity, ensuring that all energy conditions hold for the entire spacetime. The solutions presented

in this paper are derived through a comprehensive analytical examination of the parameter space associated with the

wormhole model. This involves considering the exponents governing the redshift and shape functions, as well as the

radius of the wormhole throat (r(), the redshift function value at the throat (¢#¢ ), and the model parameters (a and ).
Moreover, we establish bounds on these free parameters, which guarantee the satisfaction of the energy conditions

throughout spacetime and also provide two solutions. Furthermore, we use the Israel junction condition to observe
the stability of a thin-shell around the wormhole. Finally, we calculate the null energy condition criteria as well as
the potential for the thin-shell and how it varies with the chosen shape function.
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I. INTRODUCTION

Black holes (BHs) have been extensively studied, and
evidence for their existence has been unambiguously es-
tablished [1-3]. With the recent discovery of gravity
waves, BHs and their study have become part of the ob-
servational astrophysics domain. The existence of anoth-
er interesting solution to general relativity (GR), known
as wormholes (WHs), has not yet been established, and
their existence is actively debated. This has encouraged
researchers to investigate their possible existence in the
universe [4]. Traditional methods used in confirming the
existence of BHs cannot be used for WHs because they
have very different structures. To date, WH studies have
remained theoretical, though researchers are trying to find
more efficient methods for their detection. Nevertheless,
it will be interesting to discover whether WHs exist, espe-
cially considering their intriguing potential, such as time
travel. BHs and WHs are two distinct entities with a fun-
damental difference. While BH formation is generic, om-
nipresent in nature, and requires no special matter con-
tent or energy condition (EC), the formation of a WH is
not so simple or generic. The matter content of a WH
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must be special, non-trivial, and exotic, and it must viol-
ate the null EC (NEC) for it to be formed. This shows that
while BHs can be formed under any EC, a WH requires
specific conditions and matter content for its formation
[5]. Hence, it can be concluded that the formation of a
WH is more demanding than that of a BH.

The study of WHs received a major boost after the
discovery of BHs and the possibility of probing their in-
terior using gravity waves. The concept of WHs and the
Einstein-Rosen bridge were once only thought of as a
formal mathematical result [6]. However, Wheeler's pion-
eering work [7] emphasized that WHs could be used to
form bridges between two widely separated regions. This
opened an entirely new line of research that could be used
to study and explore the possibilities of time travel and
shortcuts across galaxies. In 1988, Morris and Thorne [8]
observed another type of WH solution that can be tra-
versed by preserving the WH entrance. The throat of this
WH is held open by a special type of matter that violates
ECs, in particular the NEC. This type of matter is known
as exotic matter, which is not part of the standard model
of particle physics but an extension of the standard mod-
el. Over the years, many models for traversable WHs
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have been proposed, including those based on exotic mat-
ter [5]. Some theories suggest that traversable WHs may
offer an alternative method for interstellar travel, while
others suggest that they can act as gateways to other uni-
verses or even parallel universes. Theoretically speaking,
the idea of using a WH to form a bridge between two dis-
tant points is plausible; however, there are still many un-
knowns. If one was to successfully use a traversable WH,
a variety of challenges must first be addressed, such as
the stability of the throat.

In recent years, there has been growing interest
among researchers in modified theories of gravity, which
are geometrical extensions of Einstein's GR. These theor-
ies are used to explain the early and late-time accelera-
tion of the universe, and considerable work has already
been done on astrophysical objects such as WHs in modi-
fied theories. WHs in particular have sparked a signific-
ant amount of research, with Rastall theory [9], Born-In-
field theory [10—12], curvature matter coupling [13—15],
quadratic gravity [16], braneworld [17-21], and Einstein-
Cartan gravity [22—24] all being explored to further our
understanding. Lobo and Oliveira [25] extensively stud-
ied WH geometries in the context of f(R) gravity and
used specific shape functions and various equations of
state to find exact WH solutions. Furthermore, Azizi [26]
studied WHs in f(R,T) gravity and showed that this viol-
ation of the NEC was due to effective stress energy. For
more studies on WHs in modified theories of gravity, see
Refs. [27-36]

The recently introduced symmetric teleparallel grav-
ity or f(Q) gravity, where Q represents a non-metricity
scalar, is a novel class of modified gravity in which tor-
sion and curvature are absent. The affine connection
plays an important role in this theory compared to the
physical manifold [37]. Additionally, another prominent
feature is that the field equations of f(Q) gravity are
second order, whereas in f(R) gravity, they are fourth-or-
der [38], making it relatively easier to solve the equa-
tions. Non-metricity types of gravities have recently be-
come popular among researchers. The observational
study of f(Q) gravity was performed in [39—43]. More-
over, in the field of astrophysical objects, interesting liter-
ature can be found, for instance, on BHs [44, 45], WH
geometries [46—49], gavastars [50], spherically symmet-
ric configurations [51], and quintessence fields [52] in
f(Q) gravity.

The extension of f(Q) gravity, known as f(Q,T)
gravity, which is based on the coupling of non-metricity
0 and the trace of the energy-momentum tensor 7, was
presented by Yixin ef al. [53]. According to this theory,
the energy-momentum tensor 7 serves as a link between
the gravitational impact and manifestations from the
quantum field. Because it was only recently conceived,
this gravity has been the subject of considerable research
based on theoretical [54, 55] and observational [56] char-

acteristics. In [57], Harko et al. [58] examined the innov-
ative couplings between non-metricity and matter and
discussed coupling matter in modified Q gravity.

In the area of non-minimal matter-curvature coupling,
Garcia and Lobo [15] created several precise WH models
and concluded that non-minimal coupling could help re-
duce the violation of the NEC of typical WH throat mat-
ter content. When the radial component of pressure is
proportional to a real constant value of the torsion scalar,
theoretical occurrence of WH geometries may be pos-
sible according to Daouda et al.'s [59] investigation of
spherically symmetric WH solutions coupled with aniso-
tropic exotic matter content in the context of f(T) grav-
ity. WH models obeying ECs at its throat are feasible
with specific selections of redshift, f(7) functions, and
the shape function in modified gravity according to
Bohmer er al. [34]. Using specific shape and redshift
functions, Rosa et al. [60] examined traversable WH
solutions with the linear form of f(R,T) gravity fulfilling
all the respective ECs for the entire spacetime. Refer to
Refs. [28, 33, 61, 62] for further studies.

The study of the thin-shell around WHs was first con-
ducted by Poisson [63], motivated by Poisson's earlier
work [64] in which the stability of the thin-shell around a
BH was considered. The idea was to consider a massive
but negligible thickness spherically symmetric shell
between two different metrics and then use the junction
condition given by Israel [65] to calculate the stress and
pressure across the shell. From the conservation of the
energy-momentum equation, one can find the potential
for the shell. The thin-shell across WHs has been studied
in other gravity models, such as f(R) gravity [66], rastall
gravity [67], and gauss bonnet gravity [68]. To the best of
our knowledge, there have been no studies conducted in
f(Q,T) gravity on the stability of the thin-shell around
WHs. In this paper, we study a spherically symmetric
massive shell of negligible thickness surrounding a WH.
We use the junction condition, for which we take the WH
metric for inside the shell and the Schwarzschild metric
for outside the shell. Following the junction conditions,
we obtain the stress (o) and pressure (p) for such thin-
shells. From ¢ and p, we can obtain the effective pressure
following the prescription of [63]. The potential v(r) can
offer a phenomenological description of the deflection of
light and the inner most stable circular orbit (ISCO) for
the accretion disk [69, 70].

This paper is organized as follows. The fundamental
theory of f(Q,T) gravity is demonstrated in Sec. II, and
the associated field equations for a WH solution in
f(Q,T) are provided in Sec. III. By considering the spe-
cific form of the shape function, non-constant redshift
function, and a linear form of f(Q,T), we analyze the
parameter space of the model under consideration to de-
rive the necessary parameter restrictions required to meet
the ECs and present several examples of solutions in Sec.
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IV. We also investigate the non-linear case of f(Q,T) in
Sec. V. We study the junction conditions of the model
under consideration in Sec. VI, followed by final re-
marks in Sec. VII.

II. BASIC FIELD EQUATIONS IN f(Q,T)
GRAVITY

We consider the action for symmetric teleparallel
gravity proposed by Y Xu et al. [53],

1
3=/Ef(Q,T)\/—_gd4X+/£m VEd, (1)

where the arbitrary f is a function of the non-metricity
scalar O and the trace of the energy momentum tensor 7,
g is the determinant of the metric g,,, and £, is the mat-
ter Lagrangian density.

The non-metricity tensor is explicitly given by [37]

Q/l;tv =Vai8uvs 2

Additionally, we can define the superpotential or non-
metricity conjugate as

@ 1 @ a Vo4 Na 4
P uv=Z[_Q 20w+ 08— 0 gl“’_é(#Q")}’
3)

where the traces of the non-metricity tensor are
Qa:Qafﬂus Qa:Qﬂ[m- (4)

By taking the following contraction from the previous
definition, we can deduce the non-metricity scalar as [37]

0= _Qavaaﬂv (5)
= gt <Lﬁaﬂ Ly-18 L, ) , (6)

where the disformation L'B,N is described as

1
=500 =00 (7

The gravitational equations of motion can now be ob-
tained by varying the action regarding the metric tensor
guv and can be written as

2 1
ﬁ Va ( \/__ngPa ,uv) - Egyvf+fT (Tyv"'@,uv)

—fo (Puap Qv # =20 , Popy) = 82Ty, (8)
where fp = Z—g,and fr= g—;

By definition, the energy-momentum tensor for the
fluid depiction of spacetime can be obtained as

2 6(VERLn)
Tw=—="" ©)
V-8  og¥
and
a9l ap
®w=gﬁ@‘;. (10)

III. WORMHOLE IN f(Q,T) GRAVITY

The static and spherically symmetric WH metric with
Schwarzschild coordinates (z, r, 8, @) is given by [5, 8]

-1
ds? = eX0gp? - <1 - M) dr? — > d6? — #? sin> 6dd?,
r
(11)

where ¢(r) and b(r) denote the redshift and shape func-
tion, respectively. Furthermore, both conform to the fol-
lowing requirements [5, 8]:

(1) For the condition r > ry, the shape function b(r)
must satisfy b(r) <r. At the throat of the WH, where
r = rp, the condition b(ry) = ryp must be met.

(2) The shape function b(r) must satisfy the flaring-
out condition at the throat, which requires that 5’(rg) < 1.

(3) The asymptotic flatness condition requires that the
. .. b(r
limit — — 0 as r — oo.
r
(4) The redshift function ¢(r) should be finite every-
where.

In this study, to analyze the WH solution, we assume
an anisotropic energy-momentum tensor provided by [5,
8],

T, =(p+p)uyu’ = p;6,+(pr—p)vuv’, (12)

where p indicates the energy density, p, and p, denote the
radial and tangential pressures, respectively, and both are
a function of the radial coordinate r. u, and v, are the
four-velocity vector and unitary space-like vectors, re-
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spectively. Additionally, both meet the requirements u,u” =
-y, =1. We find that the trace of the energy-mo-
mentum tensor is T = p— p, —2p;.

In this study, we discuss the matter Lagrangian
Ly =—P [71-74], and hence, Eq. (10) can be viewed as

Oy =—-gunwP-2T,, (13)

+2
where p= 2222 represents the total pressure.
For the metric (11), the non-metricity scalar Q is giv-

en by

b [rb-b .
Q“ﬁ{r(r—b)”‘p}' (14
Now, by incorporating Eqgs. (11), (12), and (14) into the
equation of motion (8), the following field equations for
f(Q,T) gravity can be obtained [75]:

87p :(r—b) {fQ ((Zr—b)(rb’—b) b(2r¢'+2))

273 (r—b)? * r—b
+2berQQ’ N fr3 _2r3fT(P+p)}
r—>b r—>b (r—b) ’

(15)

gnp, =— L0 {fQ( b (rb'"b +2r¢’+2> —4r¢')

273 r=b\ r=b
L 2brfeQ” | fr _2r3fT(P_pr)}
r=>b r=>b (r->b) ’
(16)
. (r=b) (rb’ =b) (2 +2r¢')  4Q2b— g’
87T[7t - 4}’2 |:fQ< V(V—b) b
—4r(¢)’ - 4r¢"> —4rfooQ'¢’
+2ﬁ2_4ﬂﬁ«P—mf
r—b (r=>b)
(17)

By considering various models of f(Q,T)gravity, we can
investigate WH solutions using these field equations.

Let us now discuss the Raychaudhuri equations-de-
rived classical ECs. The physically realistic matter con-
figuration is discussed using these conditions. The four

a
“12(4n—B)(B+8m)r

—10BAr¢y (%O)A (/l+/l¢0 (Lf)ﬂ - 1)} ,

e

ECs that are commonly used in GR are

e Null energy condition (NEC), which requires
p+p;=0forallj.

e Weak energy condition (WEC), which requires
p>0and p+p;>0 forallj.

e Strong energy condition (SEC), which requires
p+pj=0and p+};p;=>0 forall;.

e Dominant energy condition (DEC), which requires
p>0and p+p; >0 forallj,

where j=r,1.

These ECs are important in studying the properties of
spacetime and the matter sources that generate it. For ex-
ample, the violation of the NEC in a WH solution would
indicate the presence of exotic matter in the throat of the
WH. Additionally, a positive energy density is required
for a physically realistic matter source that can sustain a
WH solution in GR.

IV. WORMHOLE SOLUTIONS WITH
LINEAR f(Q,T)

In this part, we examine WH solutions with linear
functional forms of f(Q,T) gravity, given by [53]

Q. T)=aQ+pT, (18)

where a and f are model parameters.
Moreover, we choose the redshift function ¢(r) and
shape function b(r) as [76]

¢(r) = ¢o (r—ro)ﬂ (19)

by =ro ()", 20)
respectively, where 1 and # are constant exponents that
are strictly positive to satisfy the asymptotic flatness con-
dition. ¢ is an arbitrary constant. Here, we especially
consider n > 1 to more easily analyze the WH solution.

Using a linear form of f(Q,T), a particular form of
the redshift and shape function, Eqgs. (15)—(17) give

{ro (%0)] (4(ﬁ— 1277+ Ado (V—;’)A (ﬁ(5n+ 100—11) + 108y (V—:)} —487r)>

2D
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a
“ 1247 —B) B+ 8n)r

+21rdo (%‘))A (5/31 +7B+ 5B, (%O)A —48n)} :

Pr

a

“12(n—-B) B+ 8m)r

Pt

{rg (’7")" <4ﬁ(2n+3)—/l¢0 (r7°)ﬂ (,8(517+ 104+ 13) + 108140 (%0)1— 1447r) —487r>

(22)

[ (L:) 7 (2601-3) + 2420+ 1) + A6 (%0) LB+ 24+ 17) = 24r(n+ 24— 1)

_2(247— B)Ady (%0) *)) +21rdo (r7°) A (—,8(/1 +5)+ 2470+ (247 - B)Ado (%0) *)] . (23)

Therefore, considering the density and pressures from Egs. (21)—(23), we get

S o ()" (n-2100 () 1) w2000 ()] (24)

o=t (2 (a0 (2) (i (2) 1) 1) 20n (2) s (2]

(25)

p—Dr =6(47r—,8)c(fB+ — {ro (i’?)" (—Zﬁ(n+ 3) = 24n(n— 1)+ Ado (%O)A (Sﬁn+ 1081+ B+ 108y (r—r‘))A
~967)) - 2Ardhy (%0) ! <5m +B+ 5o (%") - 24n)} , (26)

p=pi =6(4ﬂ_ﬁ)c(yﬂ+8ﬂ)r3 {ro (%0)" (,8(17+3)— 127630+ 1) + 20 (%O)A(ﬁ(n+2/l—7)+6n(77+2/1—3)
+2(8+6m)Ado (’70)”» +20rdy (’70)1 <—2(B+ 671+ 58— 2(8+6m)do (,70)1)} , 27)
~2(247—B)Ado (%O)AD +2Q247 - B)Ardo (%")ﬂ (a + Ao (%")A - 1)} . (28)
. . . ) ((7+ Ao +7—-1)

o e s 0 b ] <D oo

verify that the WH solution satisfies the ECs everywhere.
We discuss this in subsections IVA-IVE.

A. Conditions for the NEC

Let us start with an analysis of the NEC. Considering
the particular form of the redshift functiong(r) and shape
function b(r) given in Egs. (19) and (20), respectively, we
can use the following boundary condition at the throat
r=ro.

an+1)

BRI

o)+ p(r)

(r=ry)

Because n >0, we can verify from Eq. (29) that when
a =1 and B =0, as in the GR case, p + p, is always negat-
ive at the throat r = oy, which results in violation of the
NEC. However, in the general case, i.e., « #1 or B #0,
we can verify that p+ p, > 0 along with Eq. (29) impose a
constraint on parameters o and f, i.e.,

a<0,8>-8ror a>0,B<-8n. (31

In addition, p + p, > 0 along with Eq. (30) impose a con-
straint on parameter ¢y, i.e.,
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I-n _
Am+1)

$o > Pe. (32)

If the constraints from Egs. (31) and (32) are satisfied, the
NEC will be satisfied at the throat, which is unattainable
in GR. Moreover, from Eq. (32), we may observe that
¢ — +o0 as 1 — 0 with n< 1, ie., the NEC is not satis-
fied for any value of ¢, at the throat r=ry, and n=1
gives ¢. = 0. Furthermore, ¢. is undefined as 1 — 0 and
n— 1. Thus, to define ¢., we must restrict n-» 1 if
A — 0. Therefore, depending on the combination of para-
meters, either the NEC is satisfied for the entire space-
time or the NEC is satisfied for a finite range of the radi-
al coordinate » around the throat, for example, r < r., but
is violated elsewhere for r > r,.

To guarantee the physical relevance of the obtained
WH solutions, it is not sufficient to satisfy the NEC at the
throat. Thus, to guarantee the physical relevance of the
obtained WH solutions for the entire spacetime, we be-
gin the analysis with the combination p+ p, and p+ p,
separately and impose constraints on the parameters 4, #,
and ¢g, which offers such a guarantee for p+ p, >0 and
o+ p, > 0. Then, we combine the results into a unified set
of constraints.

1. Constraints from p+p, >0

Here, we begin with an analysis of the combination
p+pr>0. Using Eq. (24), the inequality p+ p, >0 with
the restriction given in Eq. (31) can be written in the form

(L;))"” (n_z/wo (%’)ﬂ 1) +2160 (%O)A >0. (33)

By rearranging Eq. (33), the parameter ¢, can be written
with the combination of A, , r, and r as

L+7 (L;))”H
AT )

At the throat r = ry, the combination p + p, is positive if
¢o > ¢. from Eq. (32). Moreover, from Eq. (34), we can
see that ¢ is positive for the entire range of , i.e., condi-
tion p+ p, does not have any zeroes or does not change
the sign if ¢¢ > dmin. Thus, p+ p, is always positive in the
entire spacetime if ¢g > max(¢d, Pmin)-

= ¢min . (34)

2. Constraints from p+p; >0

Now, we look into the combination p+ p; > 0. Using
Eq. (25), the inequality p + p; > 0 with the restriction giv-
en in Eq. (31) can be written in the form

(%’)"+1 (—n—wo (%O)A <77+2/l+2/l¢0 (i:)ﬁ + 1) + 1)
atn(2) ((2)' 1) <.

(35)

By rearranging Eq. (35) the same as Eq. (33), the para-
meter ¢y has some bound. However, Eq. (35) is quadrat-
ic in ¢, and this equation imposes a double constraint on
the value of ¢. Thus, the range of ¢ is given by

max [h_ (r—:)} < ¢p < min [h+ (%0)] , (36)

where the functions 4 (L:) and A, (r70> are given by
()" (v () - (D)e (7).
o (7
(37)
B (D) V() (e ()
he (%) = (@) :
r

(38)

and the functions A; (—ro) , By (—ro) ,and C; (—ro) in the
r r r
form of Aandn are given by

W@ (@@ e
1 (2)=a(2) (w2 (D))

a(2) - ()"

At the throat r = r(, the combination p + p, is positive
if ¢9 > ¢. from Eq. (32). Moreover, from Eq. (36), we can
see that ¢ is positive for the entire range of r, i.e., condi-
tion p+ p; does not have any zeroes or does not change
the sign if Eq. (36) holds. Thus, p+ p; is always positive

. . . . ¥ .
in the entire spacetime. The function A_ (—0) monotonic-
r
. . . r .
ally increases in the interval L (0,1], which shows that

max [h_ (@ﬂ =h_(1) = ¢.. Interestingly, while analyz-
r

ing p+p, >0, we find that if Bj>-4A,C; =0 for some

ro o\l _ . r\7. L

- max {h_ (7” = min [hJ, ( . )} ; however, it gives a
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contradiction for Eq. (36) and is impossible to satisfy.
Therefore, there would not be a ¢y such that p+ p, does
not change sign.

3. Full set of constraints and solution

In Secs. IV.A.1 and IV.A.2, we establish the condi-
tions necessary for maintaining the combinations
p+p,>0 and p+ p, >0 throughout space-time. By com-
bining the results of our analysis, we create a set of con-
straints on the parameters 4,7, and ¢y that enable us to
find WH solutions that satisfy the NEC for the entire
spacetime. This is in line with our initial assumption that
either @ <0, 8> -8 or a >0, f < -8, which we previ-
ously established as necessary for the NEC to be valid at
the throat. From Sec. IV.A.1, a necessary condition for
p+p,>0 1S ¢y >max(¢., dmin); however, from Sec.
IV.A.2, a necessary condition for p+p; >0 is ¢, < ¢ <

r .
min {h+ (—Oﬂ . Furthermore, a necessary condition to sat-

isfy bothr combinations simultaneously is ¢, < ¢ <
min [h+ (r—o)} with min [h+ (@)} > Gmin-

r r
From Eqs. (34) and (38), we find that ¢y, =
o (2]

=0 in the parameter range A <7+ 1. In this
-

range, ¢o = 0 is the only possible value for ¢y to allow the
solutions to satisfy the NEC for entire spacetime, leading
to the trivial redshift function ¢(r) =0. Consequently,
when A >n+ 1, the NEC is satisfied for the entire space-
time if ¢¢ > 0. This indicates that the redshift function
should be non-trivial (i.e., not equal to zero) for physic-
ally relevant solutions to exist. This requirement of a non-
trivial redshift function is consistent with the condition
¢ > Pmin, Which must be fulfilled at all times. Therefore,
we restrict our analysis to only the parameter region in
which ¢y > 0 to ensure the existence of physically mean-
ingful solutions with non-trivial redshift functions. In par-
ticular, as highlighted in our earlier discussion, we must
consider the parameters 4,7, and ¢ such that

. < o < min [m (i‘))} n>1, Azn+1  with
r (42)

(@>0,8<-8m) or (<0, 8>-8n),

for WH solutions that satisfy the NEC for the entirety of
spacetime.

Subsequently, this analysis can be extended to en-
compass the verification of the WEC and SEC throughout
the spacetime. Because these conditions are implied by
the NEC, a comprehensive analysis of the entire paramet-
er space is unnecessary, and we can instead limit our as-
sessment to the already specified parameter region in Eq.
(42). Therefore, in the following sections, we focus on
this particular parameter region to conduct a further in-
vestigation into the required constraints.

B. Conditions for the WEC

Let us turn to the WEC analysis. For the WEC, the
combinations p > 0, p+ p, > 0, andp + p, > 0 must be satis-
fied. We discuss p+ p, > 0andp + p, > 0 in subsection IV
A. Therefore, in this subsection, we study the positivity
of energy density, i.e., p>0. The following boundary
condition applies at the throat:

__a(A¢o(=58n + B+ 481) —4Bn +481n) 43
PO ™ 12047 BB+ 812 @

Here, we can clearly see that p is always positive at r = rg
under the conditions given in Eq. (42) except a <0,
B> —8xn. Therefore, we again restrict Eq. (42) to satisfy
the NEC in the entire spacetime and make p positive at
the throat so that

de < o <min{h+(r—0)}, n>1, A>2n+1
r

with (@ >0, < —87). (44)

In addition, p > 0 along with Eq. (43) impose a constraint
on the parameter ¢y, i.e.,

4n(B-12m)
A(48r+B-58n)
Now, using Eq. (21), the inequality p > 0 with the restric-
tion given in (44) can be written in the form

$o > P2 (45)

(%0)"“ <4(ﬂ— 1270+ Ado (%O)A (ﬂ(5n+ 104-11)
o (24

—10ﬁ,1¢0(r—r°)ﬂ(1+1¢0 (%’)1—1) <0. (46)

By rearranging Eq. (46) the same as Eq. (35), i.e., the
analysis of p+ p,, the parameter ¢y has some bound.
However, Eq. (46) is quadratic in ¢g, and this equation
imposes a double constraint on the value of ¢¢. Thus, the
range of the parameter ¢ is given by

e ()] < mife (2], @

where the functions g (r—:) and g, (r70) are given by
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g- (LO) B (r70) - \/32 (rjo) — 44, (%0) c, (go)

r o (®) |
(43)
oy B (DB () (D)o ()
8+ (7) = 24, (LO) s
r
(49)

and the functions A, (—ro) , B (Lo) ,and C, (Lo) in the
r r r
form of A, n, andB are given by

w() = (- () () e
B (") =2 (") ()" s

+10/l—11)—487r)—10ﬂ(/1—1)), (51)

s (ir“) = 48— 1270 (’70)"“. (52)

At the throat r = rg, the energy density p is positive under
the restriction given in Eq. (44). Moreover, from Eq. (47),
we can see that ¢y is positive for the entire range of 7, i.e.,
p does not have any zeroes or does not change the sign if
Eq. (47) holds. Thus, the energy density p is always posit-

ive in the entire spacetime. The function g_ (r—:) mono-
tonically increases in the interval e (0, 1], which shows
that max [g_ (r—:) =g_(1) = ¢».. Here, we can verify that
¢ > ¢ and min |y (Lroﬂ < min {g+ (%0)} under the re-

strictions given in Eq. (44), revealing that bounds on ¢

arising from the NEC are stronger than those arising from
p>0, ie., if we choose parameters from restrictions ob-
tained from the NEC to satisfy the NEC through the en-
tire space, this process will keep p positive everywhere,
and thus the WEC will also be satisfied through the en-
tire space. However, the converse of this is not true, i.e.,

p >0 -» verification of the NEC. This one sided result

To
guarantees that we do not get max [g_ (7)} =

. (2]

C. Conditions for the SEC

Let us now analyze the SEC. For the SEC, the com-
binations p+ p, >0, p+p, >0 and p+ p, +2p, > 0 must be
satisfied. We discuss p+p, >0 and p+ p, >0 in subsec-

tion IV.A. Therefore, in this subsection, we study the pos-
itivity of p+ p,+2p,. The following boundary condition
applies at the throat:

p(r)+ pr(r) +2p(r)

(r=ry)

_a(Ago(B(n+T) —24n(n— 1)) + 86n)
- 6(47 —B)(B + 8m)ry?

(53)

Here, we can see that p+ p,+2p; is always positive at
r = rp under the conditions given in Eq. (44). In addition,
p+pr+2p: >0 along with Eq. (53) impose a constraint
on the parameter ¢y, i.e.,

_ 86n _
BnA+76A—24nmmA+24x4

$o > P3e - (54)

Now, using Eq. (28), the inequality p+ p, +2p, >0 with
the restriction given in (44) can be written in the form

(r70)’7” (8ﬁn+/1¢0 (L:)/l (ﬁ(n+2/l+5)
— 247(n + 24— 3) - 2241 - B)Ado (L:)A»

+ 2247~ B)Ady (%’)A (/1+/1¢0 (%’)1—1) <0. (55)

By rearranging Eq. (55) the same as Eq. (35), i.e., the
analysis of p+ p,, the parameter ¢, has some bound.
However, Eq. (55) is quadratic in ¢¢, and this equation
imposes a double constraint on the value of ¢y. Thus, the
range of the parameter ¢y is given by

max [f_ (r—:)} < ¢p < min [f+ (%0)} , (56)

where the functions f_ (L;)) and f, (%0) are given by

(58)

and the functions Aj; (—ro) , B3 (—ro) ,andC3 (—ro) in the
r r r
form of 4, , andg are given by
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() 20 (1= (2)7) ()" o

n(2)-4(2) (amir-pa-- (2)"

r r

x(247r(77+2/l—3)—ﬁ(n+2/l+5))), (60)

(%) =t (=) o

At the throat r =rg, p+ p,+2p; is positive under the re-
striction given in Eq. (44). Moreover, from Eq. (56), we
can see that p+ p, +2p; is positive for the entire range of
r, i.e., p+p,+2p; does not have any zeroes or does not
change the sign if Eq. (56) holds. Thus, p+ p, +2p; is al-

ways positive in the entire spacetime. The function

F . . . .
- (—0> monotonically increases in the interval
,

%O € (0, 1], which shows that max [f_ (%0)} = f.(1) = ¢3..
Here, we can verify that ¢, > ¢4, and min [h+ (%0)} <

min { S+ (QH under the restrictions given in Eq. (44),
which revreals that bounds on ¢¢ arising from the NEC
are stronger than those arising from p+ p,+2p, >0, i.e.,
if we choose parameters from restrictions obtained from
the NEC to satisfy the NEC through the entire space, this
process will keep p+ p,+2p, positive everywhere, and
thus the SEC will also be satisfied through the entire
space. However, the converse of this is not true, i.e.,

o+ p,+2p; >0 -» verification of the NEC. This one sided

"
result guarantees that we do not get max [f, (—0)} =
-

min [f+ (L’oﬂ .
r
D. Conditions for the DEC

Finally, let us analyze the DEC. For the DEC, the
combinations p>0, p+p,>0, p+p,>0,p—p,>0, and
o—p, >0 must be satisfied. We discuss p>0,p+ p, >0,
and p+ p, >0 in subsections IV A—IV B. Therefore, in
this subsection, we study the positivity of p—p, and
p—p:. The following boundary condition applies at the
throat for p — p,

p(r)—pr(r)
(r=ry)
__ a(Ago(=5Bn+p+48m) +2B(n+3) +24n(n-1)) 62)
B 6(4m —B)(B +8m)r} ’

p(r) = pi(r)

(r=ro)

_aa¢o(B(n—2) +6m(n—3))+B(n+3)—127(3n + 1))
B 6(47 — B)(B+ 87m)rg2 ‘

(63)

Here, we can see that p— p; is always positive at r=r
under the conditions given in Eq. (44) and does not re-
quire any extra conditions other than those given in Eq.
(44). However, p— p, along with Eq. (62) impose a con-
straint on parameter ¢ to be positive at the throat, i.e.,

26n+ 6B+ 24nn —24n
= . 4
Spod—pi_dsal - Pk (64)

¢o >

By taking the combination p — p, at the throat r = ry, i.e.,
Eq. (62) along with the restrictions given in Eqgs. (44) and
(64), we can verify the positivity of the combination
p—p, at the throat. To guarantee the physical relevance
of the obtained WH solutions, it is not sufficient to satis-
fy the DEC at the throat. Thus, to guarantee the physical
relevance of the obtained WH solutions for the entire
spacetime, we begin the analysis for the combination
p—pr and p— p, separately and impose constraints on the
parameters S, 4, #, and ¢, which offers such a guarantee
for p— p, >0 and p—p,; > 0. Then, we combine the res-
ults into a unified set of constraints.

1.  Constraints from p—p, >0

Here, we begin with the analysis of the combination
p—pr>0. Using Eq. (26), the inequality p—p, > 0 with
the restriction given in Eq. (44) can be written in the form

(%O)"H <‘2ﬂ(n+3)—24”(’7‘ D+ 440 (?)A

x (5ﬁn+ 1084+ B+ 108140 (%0)1—9&) )

~2140 ('lf)} (5& + B+ 5By ('lf)ﬂ - 2471) <0. (65)

As in the previous case, Eq. (65) is quadratic in ¢y and
hence imposes a double constraint on the value of ¢y.
Thus, the range of the parameter ¢ is given by

1o

max {F_ (i’?)] < o < min {F+ (7)] . (66)

where the functions F_ (%0) and F, (%0) are given by
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(D) (DD
) () |
(67)
) T (e
) () |

(68)

and the functions Ay (—ro) , By (—ro) ,and Cy (—ro) in the
r r r
form of A, n, and B are given by

B (G M ) R

B. (%0) 2 (r—")ﬂ ( (%0)"“ (580 + 1081+ —967)

;
-2(5p1 +,8—247r)>, (70)
Cu (") =208+ 3+ 1220 - 1) (%) ™. (71)

Thus, p— p, is positive at the throat » = ry under the re-
striction given in Eq. (44) with the extra restriction on ¢
in Eq. (64). Moreover, from Eq. (66), we can see that
o — p, is positive for the entire range of 7, i.e., p— p, does
not have any zeroes or does not change the sign if Eq.
(66) holds. Thus, p— p, is always positive in the entire

. . g . .
spacetime. The function F_ (—O ) monotonically in-
r

creases in the interval %0 €(0,1], which shows that
max [F_ (%0)} = F_(1) = ¢4.. Additionally, in this case,
we must verify whether we obtain By (?)2—
4A4 (r—o Cy Q) =0 at any point Q, which corresponds

to max {F _ (@ﬂ = min [F+ (Lo)} and prevents us from
r r

obtaining a suitable value of ¢y. Now, taking the coordin-
ro\ 1+

ate transformation (—) = x, we can rewrite the equa-

b r
tion By (r70) —4A4 (r—:) Cy (%O) =0 in the form
[~108A— 2B+ x(5Bn + 1084 + B— 967) +487]
+80B[B(n+3)+ 127(n— 1] (x-1)x =0. (72)

Eq. (72) is quadratic in x; thus, it gives two roots, x; and
x,, and we can verify that x; and x, are real and belong
to the interval (0,1] under the restrictions given in Eq.

(44), which  correspond

7o
to max {F_ (—)] =
,
T . .
min [F+ (—Oﬂ . Therefore, we must require extra restric-
r

tions other than those given in Eq. (44) to avoid these
roots, and we impose a constraint on f§ and # in the form

127 —127n

— <B<-8r and n>9. (73)

Now, using the extra restrictions given in Eq. (73) with

Eqs. (44) and (64), we can guarantee that
max [F _ (%0)] = rmin {F . (r—:)} does not occur, and be-
cause max [F - (%0)} = ¢4, We can guarantee the positiv-

ity of p— p, for the entire spacetime.

2. Constraints from p—p, >0

Now, we look into the combination p— p, > 0. Using
Eq. (27), the inequality p — p, > 0 with the restriction giv-
en in Eq. (44) can be written in the form

+1 1
(%)’ (ﬂ(n+3)—12ﬂ(3n+1)+2/l¢>0 ()
r r
ro 1
x (,8(77+2/l—7)+67r(n+2/1—3)+2(B+67r)/1¢0 (7) ) )
,

2 1
+2A¢0(@) (—2(ﬁ+6n)/1+55—2(,3+6n)/1¢0(r—o) ) <0,
r r

(74)
By rearranging Eq. (74) the same as Eq. (35), i.e., the
analysis of p+ p,, the parameter ¢, has some bound.
However, Eq. (74) is quadratic in ¢¢, and this equation

imposes a double constraint on the value of ¢¢. Thus, the
range of the parameter ¢, is given by

max [G_ (Lro)} < ¢p < min {G+ (%0)] , (75)

I%

where the functions G ( 0) and G, (r—()) are given by
r r

and the functions As (r—o),BS (r—o),andcs (r—o) in the
o r r
form of A, n, andB are given by
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() amrem (%)) () am

() 21 (2)' ()" v

+6m(n+24—3)) = 2(B+ 6m) A+ 55) , (79)

Cs (%’) =(ﬁ(n+3)—127r(3r]+1))(r70)n+]. (80)

Here, we can verify that the roots of the equation
2
Bs (r—o) —4As (Q) Cs (r—o) =0 do not lie in the interval
r r r
(0,11 and also do not result in max [G_ (Lro” =
ro

min {G+ (—)} Thus, p—p; is positive in the entire

. r ..
spacetime with the restrictions

127 —12nn

> Pge, 1>9, A>n+1, d
0 > Pac, 1 n an 13

<pB<-8m.
(81)

Hence, we can see that the DEC requires more restric-

tions than the NEC to be satisfied throughout the space-

time. In the next subsection, we combine all the neces-
sary conditions to satisfy the NEC, WEC, SEC, and DEC.

E. Explicit examples of solutions
In subsections IV A-IV D, we analyze the WH solu-

tion and form several conditions necessary for the ECs to
be satisfied. They are summarized as follows:

Solution satisfying the NEC:

1. Choose (@ >0, B< —8n) or (<0, B> —87n),

2.Choose n>1and A >n+1,
3. Choose ¢. < ¢g < min [h+ (Q)} .

r
Solution satisfying the NEC and WEC:

1. Choose a >0 and B < -8,

2.Choose p>1and A>n+1,

3. Choose ¢. < ¢y < min {h+ (ro)} .

r
Solution satisfying the NEC, WEC, and SEC:
1. Choose @ >0 and B8 < -8,

2.Choosep>1land A>n+1,

. ro
3. Choose ¢. < ¢g < min {h+ ( . )] .
Solution satisfying the NEC, WEC, SEC, and DEC:

1. Choose @ >0 and B < -8,

12n—12nn

2. Choose n > 9 such that <p < —8n,

3.Choose 1 =n+1,
4. Choose ¢4 < ¢g < min [F+ (Lro)] .

Now, considering the above analysis, we explore two ex-
amples of solutions. The first satisfies the NEC, WEC,
and SEC, as shown in Fig. 1, and the second is for the
solution satisfying all the ECs, i.e., the NEC, WEC, SEC,
and DEC, as shown in Fig. 2. This is done by consider-
ing several particular values of a, f, 4, 1, and ¢.

V. WORMHOLE SOLUTIONS WITH
NON-LINEAR f£(Q,T)

In this section, we consider the following non-linear
form of f(Q,T) [77]:

fQ.T)=Q+yQ*+uT, (82)
where y and ¢ are model parameters.

Moreover, we choose the same redshift function ¢(r)
and shape function b(r) as used in the linear model given
by Egs. (19) and (20). Using a non-linear form of f(Q,T),
a particular form of the redshift and shape function, en-
ergy density p, radial pressurep,, and tangential pressure
p: are calculated from the field equations (Egs.
(15)—(17)) and written as
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Fig. 1. (color online) Profile shows the behavior of the NEC, WEC, and SEC for a =1, 8=-97, =2, 1=4, ry =2, and ¢o = —0.05.
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Fig. 2. (color online) Profile shows the behavior of the NEC, WEC, SEC, and DEC for =1, 8=-25.5, =10, 1=12, rp =2, and
$o = —0.0008.
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1 3 (T0\" ro\4 2
- — Ago [ — 2y (572 +20(n + 1)A + 340 + 49
F  an— i+ 80 (r—ro (2)) {”O(r) (¢°(r) (k (2 (57 + 2007+ DA+ 347+ 49)

+r2(57+ 104 = 11)) + 10y (%O)A (4y(n+1)+77) — 487 (2y(n + 1)+r2)) —4(127 ) (2y(p+2)?
7)) + 27713 (%0)2" (mo (’70)1 (—51,1450 (%O)A (2y(n+ 1)+3) = (10y(p(A +2) + A+ 3) + ~(5n
5 2 6 ro T]+l rO A
+150— 16)) +487r2) + dn(127 — p)r?) + 7 (7) <4n(/.t—127r)+/l¢0(7) (u(57+301—31)+301
P 1 2 4
1o (%O) —48n>)—10,1ﬂr6¢0(1r°) </1+A¢0(r7°) —1)+7r3(r—’?> !~ +30) + 27\ + 24

(n(3n+10) +11)+ 2140 (L;’)A (—,u (577 + 1007+ 1)A+ 147+ 19) +487(+ 1) — 1007+ ) Apagho (%")A)ﬂ . (83)

! 3(70 3n ro\ 4 )
"~ —) (o) (=u(2y (5™ +2007+ DA +82n+97
P 12(477_#)(#"‘871')1”6(F—ro(%)'i)Z {rro(r) ( ¢0<r) ( /J( y( n n n )

7 ro 4 2 2
+r°(Sn+104+ 13)) —10Aupo <7) (4y(77+ D+r ) +48r (10y(7]+ 1)+3r )) +4u@yn(n+1)-2y+
2 A A
@n+3)2) =487 (12 =2y +3))) + 27273 (’—ro) ! (/upo (770) <2w(5(n +1)A+227+27) + 5Audo (770)
(2y(m+1)+3r%) =96m (yn+y+2r7) + 5ur*(n+ 31+ 4)) +4r* (12— 20+ 3)p)) +1° ('"70)'”1 (42n+3)

1= Ao (%O)A (u(sm 300+ 41) +30udy (i’?)l - 336n> —4877) +2/5, (%")A (5@ +7p+ 5udo (%0)1

1o
r

—487) + yrd ( )4" ((3 (130 + 18)yu + 247((7— 2 —T) + 2o (%’)A (1 (5172 + 1007+ 1A+ 38y +43)

s

—144n(n+ 1)+ 1007 + 1) Augo (r70)1>)
(84)

1
Pt =
1247 — p)(u + 8m)rd (r -19

2 2 (To\ " ro\* ro\* 2
BL {Zr P (7) <,1¢0(7) (/1(247r—u)¢0(7) (2y(n+1)+3r2)
—1 (2y(A+8) + A+9) + 2 (n+34+22)) + 2471 (2y((A+3) + A+ 4) + r*(n+32- 1)) ) = 2r* (- 3)u

3 A A

127+ 1)) + 17 ('"70) "(mo('ir“) (—21(2471—,1)(;50 (’70) (4y(n+ D)+ 1) +uQy((n +44+38)+
A0+ 41)+ P2+ 20+ 17)) =247 (2y(p(n + 42+ 10) + 44+ 13) + (1 + 24— 1)) ) + 21 y(n(n + 10) + 13)
+(1=3)2) + 247+ 1) (2y(n+ 1)+ 7)) +7° (%0)"“ (2(77—3)/,t+247r(r]+ 1)+ 4o (%0)/1(;1(77+6/l+37)
~24n(n+ 61— 1) = 64247 — W)do (%’)A)) +205, (%0)1 (—(/l+5);1+247r/l+/l(247r—,u)¢0 (V—f)}> +y
4

r (%0)4" (—(n(n+ 18) +33)u — 24n(n + 1) + 2 (%0)1 (—p((+ 24+ 22) + 24+ 23) + 247(p( + 22+ 4)

1204 5) + 207+ D) AQ47 - o (%")1))} . (85)

Finding the NEC in the radial and tangential directions is made possible by the following components:
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(ro ()" 2yt + Dro ()"

)+r)< (&))" (77 220 ()" +1)+2/lr¢0(7°))

+ = N 86
prp (u + 8m)rd (r—ro (%)n) (86)
1 2
p+p = — {2;’2;’(2) (10) (,upo (”)) (27(n(xl+3)+/1+4) + o ( ) Qy(n+ 1)+
2(u + 8m)ro (r— (Lr") ) r r
3
372) + 2+ 30+ 1)) + (= 1)) =i (ir‘)) <2y(77(17+6)+7) + Ado ( ) Qy(n(n+42+12) + 44
1 1
+15)+ 210 (10) (dy(n+ D)+ 2) + 2+ 20+ 1)) +(p- 1)r2> _ /5 (@)’“ <n+1¢0 ( ) (n+61
r r
+61¢0 ( p ) +1) 1) +22°r ¢0( r) do ( p ) +1 ) +2yrg ( r) n(n+4)+ g ( ) (m(n+22
1
+6) + 24+ 27+ 1) Ado (LO) +7) +5)} :
r
(87)
In this particular instance, we observe that the NEC along solution of the form
the radial and tangential directions becomes undefinable
at the WH's throat, or r = ry. This demonstrates that WH ds? = —F(d2 + (F(r)~'dr? + 72 +dQ2. (89)

solutions are impossible to achieve using this shape func-
tion (20). As a result, we draw the conclusion that postu-
lating a non-linear form (82) is inappropriate for WH
solutions with the shape function (20). Yet, there are oth-
er shape function options that we might explore more in
the future.

VI. JUNCTION CONDITION

Because there are two different metrics across the thin
shell to match the condition along the boundary, we must
use the Israel junction condition to obtain the solutions
(in general, we use the junction condition because, along
hypersurfaces, the metric must be continuous as well as
differentiable; therefore, we check both the Christoffel
symbol and Riemann curvature tensor to see what the
boundary condition leads to, because in thin shell formu-
lation, we can obtain such a thing via the calculations per-
formed below).

We also note that the thin shell or three-manifold
would be denoted by Z. Outside of the thin shell, there
are Schwarzschild solutions denoted by M*, and inside,
there is a WH M, and the total space-time would be
M*UXZUM~. We can focus the stress ¢ and pressure p,
construct the effective potential from this, and find the
condition for certain exotic matter given the NEC viola-
tion.

This can be done as follows. We have the interior solu-
tions

ds? = e¥Vd? — (f(r)"'dr* = ? d6? — 12 sin 0dD? . (88)
For the exterior solutions, we take the Schwarzschild

We also note that in both cases, the space-like compon-
ent is spherically symmetric, and on the boundary, we can
obtain the FLRW metric

ds? = —dr* + a(1)?dQ?. (90)
Now, if we take the formula for the first junction condi-
tion, we get

+ &l

and using the first Israel junction condition, we can ob-
tain the proper boundary condition.

For interior geometry, we obtain the following compon-
ents:

C2))

y 0X5 O
ﬂﬁ’ dee d é’b

Vf@+a®

__ J@)+2a - - -
r :W; K B — K$ =s1n26Kg .
92)

For exterior geometry, we obtain the following compon-
ents:

K" = F@+2a Kyt =Y——— Fa+a, K$+ =sin® OK§".

T T 2\F@+a ¢ a ’
93)

where a dot denotes the derivative with respect to the
proper time (z), and a prime denotes the derivative with
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respect to ordinary time.
Now, to calculate the surface stress and pressure for
the thin shell to sustain itself, we use the Lankoz equation

1
Sap =

@ [gahK_Kab} P (94)

where a,b = 0,2,3because, at the shell, » is constant,

1
@)=~ [VF@+d- /f@+a] (95

and

1 {2F(a) +aF’(a) +2ad + 2d*

~16ma VF(a)+ a2

_2f(a)+af'(a)+2ai+ 2a2}

Vf@+a?

pla)

(96)

Note that at the throat a = ag, we get dp = 0; hence, at the
throat, we get

1
o(aop) = " dran [m_ \/J%] 97)
Tapn
and also
plag) = 1 {2F(ao)+a0F'(a0) ~ 2f(ao)+aof’(a0)}
16may VF(ao) Viao)

Note that at the throat, the NEC must be violated. In oth-
er words, o(ag) + p(ag) <0 at the throat. The violation of
the NEC on the shell would imply the presence of exotic
matter.

By following the prescription given by [72, 73], we
can go further and calculate the potential V(r) by noting
that the energy-momentum has a conservation relation,

dg _

il 99)

d
a(mﬁ) =p

where o = 4na®. From the conservation equation above,
we can find

o’ =—%(0'+p). (100)

Following the prescription given in [66], the last equa-
tion has the form &®+ V(a); therefore, from the above
equation, we can get

f@ F@ (@-F@? , 5,5

Vi =
(@ 2 * 2 64a’n?o?

(101)

We also note that in our case, f(r) and F(r) are given by
the following:

fn=1-2"
,
and
F(r):l—ZGiM

Outside the thin shell, we can take the Schwarzschild
solution because there is no matter, and hence, the
Schwarzschild solution is applicable in a vacuum with
spherical symmetry.

Figure 3 shows that a thin shell in the junction feels a
similar potential (in natural units) to that of a massive
particle in the Schwarzschild metric.

VII. FINAL REMARKS

The present study involves a comprehensive analytic-
al investigation of the parameter space for a particular
family of WH solutions within the framework of the lin-
ear f(Q,T)=aQ+pT theory of gravity. The main object-
ive is to determine the necessary constraints on the free
parameters of the model that ensure the traversability and
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(color online) Profile shows the behaviour of V(a) for M =0.2 and ay = 3.68.
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non-exoticity of the WH solutions, which implies that all
ECs are satisfied across the entire spacetime. Addition-
ally, we demonstrate that even in cases where some para-
meter bounds are exceeded, resulting in the WH becom-
ing exotic beyond the throat at a finite radius r., such
exoticity can be effectively eliminated through a space-
time matching an exterior vacuum solution.

We consider a family of WHs with a redshift and
shape function described by the expressions in Egs. (19)
and (20), respectively, within a linear version
of f(Q,T) = aQ+BT theory. Our main finding is that en-
suring the WH solution satisfies the NEC for the entire
spacetime automatically guarantees that the WEC and
SEC are also satisfied. This is because the parameter
bounds arising from the ECs p >0 and p+ p, +2p; > 0 are
weaker than those arising from p+ p; > 0. However, it
should be noted that the implications are one-directional,
and thus a solution satisfying p>0 or p+p,+2p, >0
may not necessarily satisfy the NEC for the entire space-
time. Regarding the DEC, we show that the bounds
arising from p—p;>0 are stronger than those from
p+pi >0, which means that a solution satisfying the
NEC may not necessarily satisfy the DEC. Nonetheless,
we demonstrate that strong solutions satisfying all four
ECs (NEC, WEC, SEC, and DEC) can be achieved for a
wide range of parameter combinations. Our choice of the
linear form f(Q,T) enables us to perform an analytical
study of the parameter space and prove that even the

simplest extension of GR within the framework of f(R,T)
can effectively address the issue of exotic matter in WH
spacetimes.

In the paper, we also show the stability of the thin-
shell around a WH. We calculate the stress (o) and pres-
sure (P) of such a thin shell. Furthermore, we find the
conditions under which the thin-shell has exotic matter
(by checking the NEC). We also show that, by using the
energy-momentum conservation equation, we can find
the potential (V(a)) across the thin shell. We draw the
shape of V for various values of # and reveal that it exhib-
its a similar behavior to what a particle feels outside the
Schwarzchild radius. This potential can be used to calcu-
late the gravitational lensing, accretion disk (via ISCO),
etc., of such a thin shell. From the observation of gravita-
tional lensing and phenomena around a thin shell com-
posed of dust, one can reconstruct the potential and ob-
tain the shape function using backward bootstrap.
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