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Abstract: On the premise of the importance of energy conditions for regular black holes, we propose a method to
remedy  those  models  that  break  the  dominant  energy  condition,  e.g.,  the  Bardeen  and  Hayward  black  holes.  We
modify the metrics but ensure their regularity at the same time, so that the weak, null, and dominant energy condi-
tions are satisfied, with the exception of the strong energy condition. Likewise, we prove a no-go theorem for con-
formally related regular black holes,  which states that the four energy conditions can never be met in this class of
black holes. In order to seek evidences for distinguishing regular black holes from singular black holes, we resort to
analogue gravity and regard it as a tool to mimic realistic regular black holes in a fluid. The equations of state for the
fluid are solved via an asymptotic analysis associated with a numerical method, which provides a modus operandi
for experimental observations, in particular, the conditions under which one can simulate realistic regular black holes
in the fluid.
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I.  INTRODUCTION

As  is  well-known,  Einstein's  general  relativity  lacks
[1] the ultraviolet (UV) completeness that is reflected [2]
in  the  singular  solutions  of  Einstein's  equations  at  the
classical  level  and  in  the  non-renormalizability  at  the
quantum level. Regular black holes (RBHs) [3, 4], which
have  no  curvature  singularities  at  the  centers,  challenge
the UV  incompleteness  at  the  classical  level.  This  chal-
lenge  originated  from  the  change  of  vacuum  [5, 6]  and
was implemented through various approaches, such as the
introduction  of  nonlinear  matter  [7],  the  deformation  of
the  commutative  spaces  [8], the  regularization  of  singu-
larities  by  quantum effects  [9, 10],  and the  assistance  of
alternative  theories  of  gravity  [11– 13].  Meanwhile,  the
apparent  differences  that  can  be  tested  between  RBHs
and singular BHs (SBHs) have motivated numerous stud-
ies  [14– 16].  Whether  we  can  distinguish  RBHs  from
SBHs by theoretical and experimental evidences is a crit-
ical point for research programs in the field of RBHs. Be-
cause  RBHs  are  widely  considered  to  be  related  to
quantum physics,  the discovery of RBHs in the universe
will  certainly provide a new hope to search for quantum
gravity.

There  are  two  ways  to  construct  RBHs.  The  first
starts with establishing BH metrics via certain mathemat-
ical  rules  [17–19]  that  guarantee  the  finite  curvatures  at
BH centers, followed by enduing these metrics with phys-
ical  meanings;  e.g.,  the  action  of  matter  was  provided,
and  then  the  theory  of  RBHs  was  established  [20].  The
second way draws support from physical theories or phe-
nomena, e.g.,  the existence of a finite length scale [8] or
the asymptotic safety [10], involves the derivation of the
corrected metrics, which give rise to finite curvatures.

Nevertheless, among all  the RBHs constructed in the
above two ways, more than a few models break physical
conditions  or  conjectures,  in  particular,  the  limited
curvature conjecture [21], which states that the curvature
invariants  should  be  bounded  by  some  universal  value;
the weak energy condition (WEC) that is associated with
the second law of BH mechanics [22] or the dominant en-
ergy condition  (DEC)  that  is  related  to  the  causal  struc-
ture of spacetime [23]. The violation of these energy con-
ditions motivates us to interpret RBHs from the perspect-
ive of quantum corrections.

If  the  violation  is  located  inside  regular  black  holes,
the interpretation would be reasonable. The first reason is
that an  event  horizon  prevents  any  observer  from  ob-
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serving  a  black-hole  interior,  and  the  second  one  is  that
some unknown effects that occur within event horizons or
reachable microscopic scales may cause quantum correc-
tions.  However,  if  the  violation  occurs  outside  horizons,
the problem immediately arises. For instance, if the DEC
is violated outside horizons, the causal structure of space-
time  will  be  broken,  indicating  that  the  observer  outside
horizons  will  encounter  chaotic  causal  phenomena.  This
is not acceptable from the perspective of physics.

For more information about  the energy conditions of
RBHs, we refer the reader to Ref. [24], where the energy
conditions of four well-known regular black holes are re-
viewed; in  particular,  the  DEC  is  taken  into  considera-
tion  as  a  criterion  to  determine  whether  a  regular  black
hole is realistic. In brief, the weak, null, and dominant en-
ergy  conditions  are  the  primary  prerequisites  for  us  to
construct realistic RBHs, where the strong energy condi-
tion is an exception. Note that the violation of the DEC is
pointed out for some RBHs in Ref. [24]; our aim is to fur-
ther  study  how  to  achieve  the  recovery  of  the  DEC  for
these RBHs.

Analogue  gravity  as  a  tool  for  gaining  insights  into
general relativity has shown [25] its significance, repres-
enting  a  great  leap  from  passively  waiting  for  signals
from external galaxies to actively studying BHs in ground
laboratories.  Among  various  manifestations  of  analogue
gravity, acoustic  BHs  (ABHs)  have  not  only  a  long  his-
tory  [26]  but  also  an  active  status  in  current  research
[27–29]. Following our previous work [30], in which we
proposed a new method to construct acoustic regular BHs
(ARBHs), we explore ARBHs in terms of the energy con-
ditions  of  their astronomical  counterparts in  the  present
work.  Meanwhile,  the  simulation  strategy  used  in  the
present  work is  different  from our previous one;  i.e.,  we
adopt the approach proposed in Ref. [31], where the sin-
gular  Schwarzschild  and Reissner-Nordström spacetimes
can be simulated in fluids. Our aim is to investigate real-
istic  RBHs  with  the  help  of  analogue  gravity  and  try  to
find apparent evidences or phenomena for distinguishing
RBHs from SBHs.

The  remainder  of  this  paper  is  organized  as  follows.
In Sec. II, we clarify what a realistic RBH means by dis-
cussing  the  energy  conditions.  In  Sec.  III,  we  propose  a
remedy  to  those  RBHs  that  break  the  dominant  energy
condition,  including  the  Bardeen  BH,  the  Hayward  BH,
and their extensions. Sec. IV is dedicated to conformally
related  RBHs,  where  we  prove  a  no-go  theorem  under
two general  situations.  In Sec.  V, we simulate a realistic
RBH  in  a  fluid  by  using  the  properties  of  flows,  where
two specific models are discussed in terms of the asymp-
totic analysis  associated  with  the  numerical  method.  In-
spired by  the  locally  polytropic  behaviors  in  the  equa-
tions of state (EoSs) in the above section, we address the
question of  whether  it  is  possible  to  obtain  an RBH that
possesses a globally polytropic EoS in Sec. VI. Secs. VII

and  VIII  cover  cylindrical  RBHs and  lower  dimensional
RBHs with  polar  symmetry,  respectively.  The  conclu-
sions, along with future outlooks, are summarized in Sec.
IX. The appendices are dedicated to detailed discussions
of the differential inequalities (Apps. A and B), the deriv-
ation of Eq. (8) (App. C),  the regularity conditions of n-
dimensional RBHs (App. D), and the asymptotic analysis
for  solving  nonlinear  differential  equations  (App.  E). 

II.  REALISTIC REGULAR BLACK HOLES

Let us first consider the simplest case of RBHs whose
metrics  are  spherically  symmetric  and  of  the  following
form: 

gµν = diag{− f , f −1, ξ2, ξ2 sin2 θ}, f := 1− 2Mσ(ξ, xi)
ξ

, (1)

xi i = 1, . . . ,N

ξn0 xn1

1 · · · x
nN

N
n0

N −1

where f is  the  shape  function, ξ is  the  radial  coordinate,
and σ is dimensionless and may contain several paramet-
ers , ,  such  as  mass  and  charge.  Moreover,
these  parameters  must  appear  in σ via  the  combinations

, which are also dimensionless. If every com-
bination includes a non-zero , we can reduce one para-
meter  and  obtain  independent dimensionless  para-
meters by following the Buckingham π theorem [32].

σ ∼ O(ξn) n ≥ 3
σ ∼ O(ξm) 0 ≤ m < 1

m = 1
R = 0

From the  mathematical  perspective,  the  regularity  of
curvature  invariants  at  BH  centers  demands  the  limit

 with , and  the  asymptotic  flatness  re-
quires  the  limit  with  [33].  When

, f may converge  to  a  non-zero  and  non-unit  con-
stant, such that the spacetime is Ricci flat, with , at
infinity. The general properties of the shape function are
illustrated in Ref. [18].

σ′ σ′′

σ ∼ O(ξn) n ≥ 3

Given  a  Riemann  tensor,  one  can  construct  17
curvature invariants  in  total,  which  are  called  the  Za-
khary-Mcintosh (ZM) invariants [34]. For the metric Eq.
(1), all 17 ZM invariants consist of the combinations of σ
and  its  first  and  second  derivatives,  i.e.,  and .  If
certain conditions are further considered, e.g., σ is a posit-
ive definite  or  monotonic  function of  the  radial  coordin-
ate, one can show that  with  and simultan-
eously  guarantee  that  all  the  ZM  invariants  are  finite  at
the center of the RBH described by Eq. (1). 

A.    Energy conditions
From the physical perspective, the constructed RBHs

should  not  violate  the  weak,  null,  and  dominant  energy
conditions, which play important roles [35, 36]. The three
energy conditions together with the strong energy condi-
tion can  be  formulated  in  three  classes  via  different  ap-
proaches: geometric, physical,  and effective ones [37].  If
the mechanism of constructing RBHs does not change the
gravitational part of Einstein's equations, e.g., the gravita-
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tional field coupled with nonlinear electric fields or mag-
netic  monopoles  [7, 38],  the  three  classes  of  definitions
are  equivalent.  In  this  situation,  the  energy-momentum
tensor can be represented via Eq. (1), and Einstein's equa-
tions read as follows: 

T µν :=
1

8π
Gµν = diag

ß
−Mσ′

4πξ2
,−Mσ′

4πξ2
,−Mσ′′

8πξ
,−Mσ′′

8πξ

™
, (2)

T t
t = T ξξ

ϵ pξ
p⊥ T µν

where the prime denotes the derivative with respect to ξ.
Because , there is no need [39] to distinguish the
definitions of energy densities inside and outside the hori-
zon; i.e., the energy density inside the horizon is the same
as that outside the horizon for the metric we are consider-
ing. We define the energy density  and pressures  and

 by the diagonal components of : 

ϵ :=
Mσ′

4πξ2
, pξ := −Mσ′

4πξ2
, p⊥ := −Mσ′′

8πξ
. (3)

Thus, the four energy conditions can be cast [40] in terms
of σ and its derivatives: 

WEC : σ′ ≥ 0 ∪ ξσ′′ ≤ 2σ′,

NEC : ξσ′′ ≤ 2σ′,

SEC : σ′′ ≤ 0 ∪ ξσ′′ ≤ 2σ′,

DEC : σ′ ≥ 0 ∪ −2σ′ ≤ ξσ′′ ≤ 2σ′, (4)

where WEC denotes the weak energy condition, NEC de-
notes  the  null  energy  condition,  SEC  denotes  the  strong
energy condition, and DEC denotes the dominant energy
condition.

ξσ′′ ≤ 2σ′

ξσ′′ ≤ 2σ′

σ ≤ σ0ξ
3

σ0 := limξ→0σ/ξ
3

σ = exp[−q2/(2Mξ)]

σ0 = 0

It  is  not  difficult  from  the  four  energy  conditions  in
Eq.  (4)  to  find  that  the  NEC,  i.e., ,  must  be
maintained;  otherwise,  the  other  three conditions  will  be
broken.  In  other  words,  is  an  inequality  that
ensures the four energy conditions; furthermore, this dif-
ferential  inequality  can  be  solved  using  the  Grönwall-
Bellman  lemma  [41],  and  its  solution  reads ,
where  is  a  positive  constant  (see  App.
A  for  details).  As  a  counterexample,  we  consider  the
widely  discussed  model  [19]  with ,
where q represents the charge, in which this inequality is
invalid  because  of .  Therefore,  the  model  of  Ref.
[19] is suggested to be ruled out from realistic RBHs, as
are  its  extensions  [42],  because  matter  generating  such
RBHs breaks the four energy conditions.

σ′ ≥ 0 σ ≥ 0
σ(ξ)|ξ=0 = 0

Next,  the  first  inequality  in  the  WEC and  DEC,  i.e.,
,  provides  a  solution,  i.e., , under  the  bound-

ary condition ; that is, σ is a non-negative and
monotonically  increasing  function  of ξ.  It  is  known  that

σ = −ξ3
(
Q2−

2Mξ)/[2M
(
2qQ2+ ξ4

)
]

σ′ ≥ 0

σ = 4exp
(
−q2/ξ2

)
−

exp
(
−2q2/ξ2

)

the  non-minimal  Wu-Yang  monopole  [43– 47]  is  a
counterexample because its σ function, i.e., 

,  where Q is  a  charge  parameter,
is not monotonic and not strictly positive either. Thus, the
WEC  of  the  Wu-Yang  monopole  is  broken,  as  is  the
DEC. In addition, the breaking of  may lead to oth-
er  problems  in  the  construction  of  RBHs.  For  instance,
when σ is  bell  shaped,  i.e., 

,  the  corresponding  BH  has  two  horizons
and all the curvature invariants are finite, but the extreme
horizon  radius  is  the  maximum  of  the  horizons,  and  the
temperature is  divergent  as  the  radial  coordinate  ap-
proaches the extreme horizon radius.

−(ϵ + pξ +2p⊥) ∝ σ′′ ≤ 0

σ′′(ξ∗) = 0

The  SEC  implies  an  attractive  interaction  due  to  the
Landau-Raychaudhuri  equation  [48]; i.e.,  when  the  af-
fine parameter increases, the expansion scalar of a family
of  neighboring  time-like  geodesics  decreases  because  of
the  condition . Therefore,  the  vi-
olation  of  the  SEC  leads  to  a  repulsive  interaction.
However, this violation is nothing to be concerned about,
because the SEC of an RBH must be broken [39] near an
RBH  center.  Moreover,  the  zeros  of  the  equation,  i.e.,

,  separate the spacetime into different types of
interactions,  which  will  be  discussed  later  with  concrete
examples.

ξσ′′ ≥ −2σ′

R ∝ ξσ′′+2σ′

ξσ′′ ≥ −2σ′ ξσ ≥ 0
σ(ξ)|ξ=0 = 0 = σ′(ξ)|ξ=0

Compared with the other energy conditions, the DEC
has  its  particularity  reflected  in  the  inequality

,  which  can  be  visualized  from  the  Ricci
curvature ; i.e., the negative Ricci curvature
violates [49] the DEC. However, the differential inequal-
ity gives the solution under the bound-
ary  conditions .  This  solution  is
trivial and provides no more constraints to the σ function.
In  practice,  one  does  not  need  to  verify  the  four  energy
conditions. If the DEC is valid, the WEC ad NEC are also
valid. Therefore, checking the DEC is enough to guaran-
tee the WEC and NEC. As for the SEC, we do not need to
check it  individually  for  RBHs,  because  it  is  valid  bey-
ond  an  RBH  central  region  but  invalid  within  an  RBH
central region because of a repulsive interaction. As a res-
ult,  if  the DEC is maintained for an RBH, the WEC and
NEC are ensured automatically.

In  summary,  we  list  the  requirements  for  a  realistic
RBH  from  the  perspective  of  energy  conditions.  If  an
RBH with the metric Eq. (1) is realistic, its σ-function has
the following behaviors:
 

ξ ∈ [0,∞)
● σ is  a  non-negative  and  monotonically  increasing

function of ξ, where ;
 

σ0ξ
3

σ ≤ σ0ξ
3 σ0 := limξ→0σ/ξ

3 σ0

● σ must  be  bounded  by  from  above,  i.e.,
, where  and  must be posit-

ive.
 

These two conditions are necessary but not sufficient
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for an RBH to be realistic; see App. A for a detailed ex-
planation.  In  the  next  section,  we  show  that  some  well-
known examples, such as the Bardeen and Hayward BHs,
comply with these two conditions, but their dominant en-
ergy  conditions  are  broken.  To  solve  this  problem,  we
provide  a  phenomenological  approach  to  restore  their
dominant energy conditions. 

III.  REMEDY TO REGULAR BLACK HOLES
BREAKING DOMINANT ENERGY

CONDITION

σ = ξ3/(ξ3+q3)
ξ > 21/3q

The  problem  of  Hayward  BHs  depicted  [17]  by
, where q represents the charge, is the vi-

olation of the DEC in the region , even if this σ
satisfies the two items above. The reason is explained in
App. A.

ξ > 21/3q
ξ ∈ [0,∞)

As  we  mentioned  above  regarding  the  special  status
of  the  DEC,  Hayward  BHs  also  violate  the  WEC  and
NEC  when .  For  constructing  a  Hayward-like
BH  that  ensures  the  DEC  in ,  we  propose  the
following σ function: 

σ =
Mµ−3ξ3

ξµ+qµ
, (5)

Mµ−3

2 < µ ≤ (
√

145−7)/2 ≈ 2.52

ξ ∈ [0,∞)

σ = (ξ/l)3/[1+ (ξ/l)µ]

where  is  introduced  for  balancing  the  dimension.
The  DEC  requires ,  under
which  the  Hayward-like  BH  given  by  Eq.  (5)  would  be
realistic in the whole region of ξ, i.e., . Alternat-
ively, the dimensionless σ can be established via paramet-
erization, i.e., , where l is a paramet-
er with the length dimension.

A  similar  procedure  can  be  applied  to  the  Bardeen
BH, which gives rise to a Bardeen-like σ function: 

σ =
M3µ/2−3ξ3

(ξµ+qµ)3/2 . (6)

4/3 < µ ≤
Ä√

113−
7)/2 ≈ 1.82
For this model, the DEC gives rise to 

.
In fact, we can construct a general σ function 

σ =
Mµν−3ξ3

(ξµ+qµ)ν
, (7)

which satisfies the DEC if the parameters μ and ν take the
values in the following regions (see App. C for the deriv-
ation): 

2
ν
< µ ≤ 1

2

…
49ν+96
ν

− 7
2
, when

2
5
< ν ≤ 3;

(8a)
 

2
ν
< µ ≤ 3

ν
, when ν > 3. (8b)

σ ∼ O(ξ3) ξ→ 0
f → 1

µν

ξ→∞

It is not difficult to verify that the RBHs described by
Eq. (7) are realistic because the numerator plays a decis-
ive  role,  when , and the  asymptotic  flat-
ness  is  maintained  [33]  simultaneously,  i.e., , be-
cause the power of the denominator, , is greater than 2
when .

σ = exp[−q2/(2Mξ)]

Nevertheless,  we  cannot  remedy  all  the  RBHs  that
break  the  DEC  by  simply  changing  the  power  of  radial
coordinates.  If σ is  not  a  rational  function,  for  instance,

,  this  model  cannot  be  repaired.  On
the  other  hand,  although the  RBH obtained via  quantum
corrections,  e.g.,  Refs.  [9, 10],  can  be  remedied  via  the
above  phenomenological  method,  the  remedied  model
will  lose the original  motivation of quantum corrections.
Let  us  take  the  RG-improved Schwarzschild  BH [50]  as
an example, which is motivated by the theory of gravita-
tional  asymptotic  safety  [51, 52].  The  shape  function
reads 

f = 1− 2G(r)M
r
, G(r) =

G0r3

r3+ωG0(r+γG0M)
, (9)

G(r)
G0

G(r) −2G′ ≤ rG′′

r0 r0

where  is the running Newton constant, which plays a
similar role to the σ-function,  is identified with the ex-
perimentally observed value of Newton's constant, and ω
and γ are two positive parameters. This RG-improved BH
is regular from the perspective of finite curvatures, but it
breaks  the  DEC  because  violates  bey-
ond a certain value , where  is determined by a posit-
ive root of the algebraic equation 

−6γ2G3
0M2ω+3γG0Mr3−8γG2

0Mrω−3G0r2ω+ r4 = 0.

r3

rµ M3−µ

G(r)

Thus, according to our remedy used above, we change 
to  and multiply by  for  balancing the dimension
in the denominator of : 

G̃(r) =
G0r3

M3−µrµ+ωG0(r+γG0M)
, (10)

0 ≤ µ ≤ (
√

145−7)/
2 ≈ 2.52

G̃(r) =G0λ
2/(G0ω+λ

2)

which  reveals  that  the  DEC  requires 
. However, such a modification loses the original

motivation of the RG-improvement, which can be under-
stood from the distance scale λ that provides the relevant
cutoff  for  the  Newton  constant.  Using  Eq.  (10)  and  the
formula [50] , we obtain 

λ2 =
G0ωr3

M3−µrµ− r3+G0ω (r+γG0M)
, (11)
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and give the asymptotic behaviors at zero and infinity, re-
spectively: 

λ2 r→0› r3

γG0M
, λ2 r→∞˜ −G0ω, (12)

λr→∞˜ r
where the second one violates the original asymptotic re-
quirement, i.e., .

In the next section, we demonstrate that the conform-
ally related RBHs cannot be repaired either, by proving a
no-go theorem. 

IV.  NO-GO THEOREM FOR CONFORMALLY
RELATED REGULAR BLACK HOLES

We discuss  two  classes  of  conformally  related  regu-
lar  black  holes:  the  conformally  related  Schwarzschild-
type black holes and the astronomical counterparts of the
ARBHs with the unit speed of sound. 

A.    Conformally related Schwarzschild-type
black holes

We  claim  that  one  cannot  establish  a  scale  factor  Ω
that  regularizes  the  Schwarzschild  BH  and  makes  the
metric  satisfy  the  DEC at  the  same time.  To specify  our
statement,  let  us  first  express  the  metric  of  conformally
related Schwarzschild BHs [53]: 

g̃µν =Ωgµν, gµν = diag

®
−
Å

1− 1
ξ

ã
,

Å
1− 1
ξ

ã−1

, ξ2, ξ2 sin2 θ

´
,

(13)

Ω = exp[S (ξ)] > 0
2M = 1

Wµναβ Wµναβ

W :=WµναβWµναβ

W = K −2R2+R2/3

R2 := RµνRµν

R := gµνRµν

where  the  scale  factor  is  set  to  be  and
 is  chosen  for  the  discussions  in  this  subsection.

The metric being regularized implies that the correspond-
ing curvature invariants are finite in the whole spacetime,
particularly  at  the  BH center.  Next,  instead of  observing
the Kretschmann scalar K, we concentrate on the contrac-
tion  of  two  Weyl  tensors  and ,  where

,  which  is  referred  to  as  the  Weyl
curvature hereinafter.  Because  of  the  Ricci  decomposi-
tion  [54, 55],  we  obtain  and  see  that
the Kretschmann scalar  and Weyl  curvature  are  equival-
ent for diagnosing the singularity in the four-dimensional
spacetime,  where  is  the  contraction  of  two
Ricci  tensors  and  is  the  Ricci  scalar.  The
Weyl  curvature  corresponding  to  the  metric  Eq.  (13)
reads 

W =
12 e−2S (ξ)

ξ6
, (14)

e−S (ξ)

ξ3 e−S (ξ)

ξ3 e−S (ξ) ∼ O(ξ3) S (ξ)

Ω→ 1 ξ→∞
S (ξ)

S (ξ) Ω−1 = e−S

which is finite at the BH center if  converges to zero
no slower than . When  converges to zero on the
order  of ,  i.e., ,  diverges  positively,
and its first-order derivative must be negative. In contrast,
the  asymptotic  flatness  requires  as ;  i.e.,

 must  converge to  zero at  infinity.  Summarizing the
above  properties  of ,  we  find  that  is  a
bounded function on the whole non-negative axis of ξ.

T t
t

T ξξ T t
t = T ξξ

Gt
t =Gξξ

S (ξ) e−S = c2(ξ+2c1)2

ξ3 c1 c2

ξ < 1

The  energy  conditions  of  the  conformally  related
Schwarzschild BH given by Eq. (13) should be investig-
ated inside and outside the horizon, because  no longer
equals .  In other words,  the constraint  breaks
the finiteness  of  the  Weyl  curvature.  This  can  be  under-
stood easily by solving  as a differential equation
of ,  which provides a solution  that
converges  to  zero  slower  than ,  where  and  are
two integration constants. Consequently, the energy con-
ditions  inside  and  outside  the  horizon  are  different  and
should be treated separately. The energy density and pres-
sures are defined inside the horizon ( ) as 

ϵin := − 1
8π

Gξξ, pin
ξ :=

1
8π

Gt
t, pin

t :=
1

8π
Gθθ; (15)

ξ > 1and are defined outside the horizon ( ) as 

ϵout := − 1
8π

Gt
t, pout

ξ :=
1

8π
Gξξ, pout

t :=
1

8π
Gθθ, (16)

Gt
t Gξξ Gθθ

S (ξ) S ′(ξ) S ′′(ξ)
ξ < 1 ξ > 1
ϵin+ pin

ξ ≥ 0 ϵout+ pout
ξ ≥ 0

where , ,  and  are  components  of  the  Einstein
tensor  calculated  using  the  metric  of  Eq.  (13).  Thus,  the
DEC is  reduced  to  four  differential  inequalities  in  terms
of  and its derivatives  and  in the range of

 or .  Among  all  the  differential  inequalities,
 and  provide the same differen-

tial inequality: 

(S ′)2−2S ′′ ≥ 0, ξ ∈ [0,1)∪ (1,∞). (17)

e−S/2
Multiplying both sides of this inequality by a non-negat-
ive factor , we arrive at 

e−S/2 [(S ′)2−2S ′′
]
=

d2

dξ2
(
4e−S/2) ≥ 0, (18)

e−S/2

ξ ∈ [0,1)∪ (1,∞)

e−S e−S/2

ξ→ 0

from which we can conclude that  is a convex func-
tion in the range of . However, the finite-
ness of curvature invariants and asymptotic flatness of the
metric demand that  is bounded; therefore,  must
be  a  constant,1) which  is  obviously  contradictory  to  the
asymptotic  behavior  of  the  Weyl  curvature  at ,

Regular black holes with improved energy conditions and their analogues in fluids Chin. Phys. C 47, 052001 (2023)
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e−S ∼ O(ξn) n ≥ 3 with .

ξ = 0

In  other  words,  there  exists  no  such  a  conformal
factor  Ω  that  can  regularize  the  Schwarzschild  BH  and
guarantee  the  DEC  simultaneously.  This  conclusion  can
be  extended  to  the  conformally  related  Schwarzschild-
type  BHs  with  singularity  at .  For  such  a  BH  with
the metric 

gµν = diag{− f , f −1, ξ2, ξ2 sin2 θ}, f = 1− σ(ξ)
ξ
, (19)

σ(ξ)/ξ ξ = 0
ξ→∞

where  is of a unique pole at  and goes to zero
as , there  exists  no  conformal  factor  Ω  that  satis-
fies the following two conditions simultaneously:
 

Ωgµν
ξ ∈ [0,∞) Ω→ 1 ξ→∞

●  The  Weyl  curvature  of  metric  is  finite  in
, where  at ;

 
Ωgµν● The DEC based on  is valid.

 
This is  the so-called no-go theorem for the conform-

ally related  Schwarzschild-type  BHs  that  belong  to  con-
formally related RBHs.

The proof exactly follows the case of conformally re-
lated Schwarzschild BHs. At first, the Weyl curvature of
metric Eq. (19) reads 

W =
e−2S

3ξ6
[
ξ
(
ξσ′′−4σ′

)
+6σ

]2
. (20)

ξ = 0Assuming  that  is  the d-th  order  pole  of σ,  we  can
obtain an asymptotic relation: 

e−S ∼ O(ξ3+n), n ≥ d ≥ 0, (21)

ξ→∞ e−S → 1
ϵin+ pin

ξ ≥ 0 ϵout+ pout
ξ ≥ 0

e−S

e−S

which  ensures  that  the  Weyl  curvature  is  finite.  When
,  the  asymptotic  flatness  demands .

Moreover,  the  conditions  and 
provide  exactly  the  same  differential  inequality  as  Eq.
(17),  from which  we  find  that  is  a  convex  function.
Nevertheless,  the  combination  of  the  convexity  and
boundness of  leads to a contradiction with the asymp-
totic  relation  of  Eq.  (21).  Therefore,  our  statement  is
proved. 

B.    Astronomical counterparts of ARBHs with unit
speed of sound

On  the  premise  that  the  speed  of  sound  is  set  to  be
unity,  we  proposed  [30]  a  general  method  to  construct
ARBHs in a fluid, where the metrics are similar to those
of  conformally  related  BHs  [53].  However,  as  we  noted

in Ref. [30], the astronomical counterparts of ARBHs un-
der  a  certain  parameterization  violate  the  DEC;  i.e.,  the
ARBHs we constructed hardly have any physical counter-
part  in  the  universe.  Thus,  it  is  natural  to  ask  if  we  can
find a  way  that  the  DEC  for  the  astronomical  counter-
parts of the ARBHs can be repaired and consequently the
astronomical counterparts of the ARBHs can be detected
in the universe.

gµν
The present  case  differs  from  that  in  the  above  sub-

section,  as  the  unregularized  metric  has no  singular-
ity. Moreover,  the  ARBHs  are  different  from  the  con-
formally related BHs because their conformal factors are
proportional to the energy density of fluids and not con-
strained by any dynamical equations.

We  discuss  this  in  detail  by  following  the  strategy
used in Ref. [30], which is opposite to that of Sec. IV.A.
We express [30] the metric of acoustic RBHs with spher-
ical symmetry: 

g̃µν = ρdiag
{
− f , f −1, r2, r2 sin2 θ

}
, f = 1− v2, (22)

v = A/(ρr2)

ρr2

where r is  the  radial  coordinate  in fluids,1) ρ represents
the  mass  density,  and v represents  the  radial  velocity  of
fluids.  The  density  and  velocity  are  related  [30]  by

, where A is a positive constant. The radial ve-
locity v is supposed to be positive; otherwise, the density
will  be negative.  Moreover,  because we set  the speed of
sound to be unity, v is dimensionless and A has the same
dimension as .

ρ := eS (r)
By  considering  the  similarity  between  Eqs.  (13)  and

(22)  and  dealing  with ρ as  a  scale  factor,  i.e., ,
we can express the Weyl curvature as 

W =
4A4e−6S

3r12

(
2r2S ′2− r2S ′′+10rS ′+15

)2
, (23)

r = 0
where the prime denotes the derivative with respect to r.
The regularity at  demands 

e−S ∼ O(rn), n ≥ 2. (24)

ρ ∝ r−n

r→ 0

ρ→ 1 v ∼ O(r−2) r→
∞

Namely, ρ diverges because , and v converges
to  a  constant  [30]  in  order  to  make  sure  that  the  Weyl
curvature  is  finite  when .  As  mentioned  in  the
second  paragraph  of  this  subsection,  if ρ was  removed
from Eq. (22),  the remaining metric would still  give rise
to finite curvature invariants everywhere, which is differ-
ent  from  the  situation  in  Sec.  IV.A.  In  addition,  the
asymptotic  flatness  requires  or  as 

; i.e., v is a monotonically decreasing function at infin-
ity.

Chen Lan, Yan-Gang Miao, Yi-Xiong Zang Chin. Phys. C 47, 052001 (2023)
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Gt
t =Gr

r
S (r) = c4−2ln(r+2c3) c3

c4

c3 = 0
1−A2c2

4

ϵin+ pin
r ≥ 0 ϵout+ pout

r ≥ 0

Similar  to  the  discussion  in  Sec.  IV.A,  we  suppose
that the acoustic metric Eq. (22) directly corresponds to a
spacetime metric. Thus, the energy density and pressures
corresponding to  the  astronomical  matter  generating  as-
tronomical  BHs  must  be  defined  inside  and  outside  the
horizon separately; otherwise, the equation  gives
a false solution, i.e., , where  and

 are  integration constants.  If  this  solution is  consistent
with the regularity Eq. (24), we have , which leads
to the result that f degenerates to a constant, i.e., ,
such  that  the  corresponding  metric  is  no  longer  a  BH
solution.  We  then  deduce  that  the  forms  of  density  and
pressure  inside  the  horizon must  be  different  from those
outside.  Next,  following  the  proof  process  in  Sec.  IV.A,
we  derive  the  inequality  from  two  similar  inequalities,
i.e.,  and :
 

(S ′)2−2S ′′ ≥ 0, r ∈ {r|r > 0, v , 1}, (25)

e−S/2 r ∈ {r|r > 0,
v , 1}

g̃µν/ρ

g̃µν

which is similar to Eq. (17). Therefore, we conclude that
 is  a  convex  function  in  the  region  of 
, which contradicts the regular condition of Eq. (24)

and asymptotic  flatness.  In  other  words,  even if  is
regular  in  the  sense  of  finite  curvatures,  the  regularized
metric  cannot satisfy the DEC. That is, the DEC is vi-
olated  in  the  astronomical  counterparts  of  the  ARBHs
with the unit speed of sound. 

V.  SIMULATION OF REALISTIC
RBHS IN FLUIDS

Now, we discuss the simulation of realistic RBHs in a
fluid.  Our  aim  is  to  construct  the  spacetime  of  realistic
RBHs with spherical symmetry using acoustic waves and
verify the conditions under which the realistic RBHs can
be simulated in the fluid, i.e., find the equations of state.
Our result  may  have  guiding  significance  for  experi-
ments.

We start with the general stationary acoustic metric [25] 

ds2 =
ρ

c

ï
−(c2− v2)dτ2+

Å
δi j+

viv j

c2− v2

ã
dxidx j

ò
, (26)

vi

c :=
√
|∂p/∂ρ|

where ρ and  represent the mass density and velocity of
fluids,  respectively,  represents  the  local
speed  of  sound,  and p represents  the  pressure.  We  shall
use Eq. (26) to simulate realistic RBHs by providing the
equations of state.

vi = {vr(r),0,0}

First, we suppose that the fluid is spherically symmet-
ric and its velocity contains only a radial component, i.e.,

; thus, Eq. (26) is reduced to the following
form in spherical coordinates: 

ds2 = ρc

ñ
−
Å

1− v2
r

c2

ã
dτ2+

Å
1− v2

r

c2

ã−1 dr2

c2 +
r2

c2 dΩ2

ô
,

(27)

dΩ2 := dθ2+ sin2 θdϕ2where . By using the solution of the
continuity equation 

ρ =
A

r2vr
, (28)

vrto replace  and defining a new variable 

ξ2 :=
r2ρ

c
, (29)

we rewrite the acoustic metric as 

ds2 = −Fdτ2+Hdξ2+ ξ2dΩ2, (30)

which is supposed to equal the astronomical metric form-
ally, where F and H are defined as follows: 

F := cρ− A2

r4cρ
, H :=

4r4c4ρ4(
r4c2ρ2−A2

)[
rρc′− c (rρ′+2ρ)

]2 .

(31)

Here,  the  prime denotes  the  derivative  with  respect  to r.
Note that our F and H are slightly different from those in
Ref. [31], where they were represented in terms of ξ and
v.  The  purpose  of  our  expression  is  to  derive  analytical
expressions for the density ρ and pressure p of the fluid.

FH = 1Second,  we  impose  the  condition ,  i.e.,  the
simulated  metric  has  only  one  shape  function,  which
leads to the differential equation 

4c3ρ3 =
[
rρc′− c

(
rρ′+2ρ

)]2
. (32)

Now, we solve c using the first equation of Eq. (31): 

c =
β

ρ
, β :=

F
2
+

 Å
F
2

ã2

+
A2

r4 , (33)

c = β/ρ
where  the  negative  root  has  been  ignored  owing  to  the
positive c and ρ. By substituting  into Eq. (32), we
obtain 

ρ′

ρ
= −1

r
+
β′

2β
±
√
β

r
, (34)

where there are no rules for selecting any one of the two
solutions  at  this  moment.  Then,  we  derive  the  density
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052001-7



analytically: 

ρ± = ρ0

√
β

r
exp
Å
±
∫ √

β

r
dr
ã
. (35)

ρ0where  is  an  integration  constant.  In  addition,  using
Eqs.  (33)  and  (35)  together  with  the  definition  of c,  we
compute the pressure: 

p± = p0−
β2

ρ±
+2

∫
ββ′

ρ±
dr, (36)

p0where  is  an  integration  constant.  Eqs.  (35)  and  (36)
give the equation of state for the fluid.

In  practice, F as  a  function  of ξ corresponds  to  the
shape function of the realistic RBH that we will to simu-
late  in  the  fluid.  The  relationship  between ξ and r,  i.e.,
Eq. (29), can be represented [31] by the nonlinear differ-
ential equation 

A2[ξ(r)]4+F[ξ(r)]r6[ξ(r)]2[ξ′(r)]2− r8[ξ′(r)]4 = 0, (37)

or equivalently by 

A2ξ4
ï

dr(ξ)
dξ

ò4

+F(ξ)ξ2[r(ξ)]6
ï

dr(ξ)
dξ

ò2

− [r(ξ)]8 = 0, (38)

which does not have analytical solutions generally.1) Fur-
thermore,  the  variables  associated  with  the  fluid  can  be
written in terms of the following functions of r: 

c =
r2ξ′

ξ2
, v =

A
r2ξ′
, ρ = ξ′, p′ = ξ′′

Å
r2ξ′

ξ2

ã2

.

(39)

rc
ξ′′(rc) = 0 ρ′ p′

ξ′′

We note from Eq. (39) that there exists a special posi-
tion  that is a stationary point of both ρ and p, and this
point  is  determined  by  because  and  are
proportional to . Detailed numerical analyses with con-
crete examples are presented below.

r→ 0 r→∞

Before  studying  specific  models,  we  perform  an
asymptotic  analysis  for  Eq.  (38)  and  provide  general
properties of solutions at  and .

r→ 0For the simulated RBH at , we obtain an asymp-
totic F with the help of Ref. [33], i.e., 

F ∼ 1− R(0)
12
ξ2, (40)

R(0)
ξ = 0

ξ(r)|r=0 = 0

when ξ approaches 0. Here  is the limit of Ricci scal-
ars at . Using the dominant balance [57, 58] and the
boundary  condition ,  we  find  the  asymptotic
solution of Eq. (38) when ξ approaches 0 (see App. E for
details): 

ξ ∼ c6 exp

Ç
−
√

A
r

å
, (41)

c6where  is an integration constant. From Eqs. (33), (40),
and (41) we derive the asymptotic forms of β, the density,
and the pressure, respectively: 

β ∼ A
r2 , ρ± ∼ ρ0

√
Ae∓

√
A/r

r2 , p± ∼ −
A3/2e±

√
A/r

r2ρ0
,

(42)

c6

c6 = ρ0

+

+

which do not depend on specific RBH models at the lead-
ing order. However, if we substitute Eq. (41) directly in-
to Eq. (39), we are able to fix  and rule out the redund-
ant  root  through  comparison  with  Eq.  (42).  As  a  result,
we  obtain  and know  that  the  solution  with  sub-
script  " ''  is  physical;  see  App.  E  for  details.  Thus,  we
omit the subscript " '' in ρ and p for simplifying the nota-
tion in the following.

r→ 0
We observe from Eq.  (42) that  the pressure of  fluids

at  must  be  divergent,  while  the  density  converges
to  zero.  Furthermore,  according  to  the  first  equation  of
Eq. (39), we obtain the speed of sound: 

c ∼
√

Ae
√

A/r, (43)

r→ 0
r0

which is divergent at . In other words, if the maxim-
um speed of sound exists [59], there must be a cutoff ,
such that  the  speed of  sound is  regularized.  This  will  be
particularly important in the numerical calculation later.

Combining  the  density  and  pressure  in  Eq.  (42),  we
give the equation of state around the BH center: 

p = −16
ρ

ñ
W0

Ç
−

4
√

A
2

…
ρ

ρ0

åô4

, (44)

W0(·)

ρ→ 0

where  is the Lambert W function. To make Eq. (44)
more intuitive, we perform the asymptotic expansion and
give the leading order for : 

p = −Aρ
ρ2

0
. (45)

Chen Lan, Yan-Gang Miao, Yi-Xiong Zang Chin. Phys. C 47, 052001 (2023)

1) We note that Eq. (37) is more suitable for the numerical analysis for specific models in Sec. V.A and Sec. V.B, while Eq. (38) is more suitable for the asymptotic
analysis made below.
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r = 0Here, the relation between ρ and p around  is linear.
r→∞

F ∼ 1−2M/ξn 0 < n ≤ 1
ξ = c7r c7

β ∼ 1−2M/(c7 r)n

In contrast, for the simulated RBH at , we have
,  from Eq. (31), and the asymptot-

ic  solution ,  where  is  constant  (see  App.  E).
Thus,  we  obtain  using  Eq.  (33).  The
density and pressure can be solved via Eqs. (35) and (36)
with the plus subscript: 

ρ ∼ ρ0 eM/[n(c7 r)n], p ∼ p0−
(1−4n)
ρ0

e−M/[n(c7 r)n], (46)

n , 1/4 ρ→ ρ0
p→ p0− (1−4n)/ρ0

where we have kept the leading term of p valid by adding
. The limits of the density and pressure are 

and ,  respectively.  In  particular,  the
approximate equation of state at infinity reads 

p = p0−
1−4n
ρ
, (47)

n = 1/4
p = p0−1/(2ρ)

which is polytropic; more precisely, it describes a thermal
process  similar  to  that  of  the  Chaplygin  gas  [60].  If

,  the  equation  of  state  becomes  approximately
.

Thus far, the discussions in this section have focused
on the simulation of the RBHs given by Eq. (1) in terms
of  acoustic  analogy.  In  Secs.  V.A and V.B,  we simulate
two  realistic  RBHs  whose  DEC  is  valid.  Details  can  be
found in Sec. III for the first model and Ref. [20] for the
second one. 

A.    Remedied Bardeen model

µ = 3/2 M = 1 q = 1

ξ(0.2) = 0.2

We  simulate  the  remedied  Bardeen  BH  by  taking
, , and  in Eq. (6). The solution of Eq.

(37)  obtained  numerically  with  the  boundary  condition
 is  shown  in Fig.  1,  where  the  two  horizons

r− ≈ 0.35 r+ ≈ 1.39 ξ− ≈ 1.69
ξ+ ≈ 14.34 r0 = 0.2
0

σ′′(ξ∗) = 0

ξ∗ = 22/3 ≈ 1.59 < ξ−

are  and  or  equivalently  and
. The initial point starting at  instead of

 is based on the possibility of the existence of the max-
imum speed of sound, and such a setting can avoid deal-
ing  with  the  divergent  speed  of  sound,  velocity  of  fluid,
and  pressure  in  numerical  calculations.  Furthermore,  the
critical  point  that  separates  the  spacetime  into  different
types of interactions is determined by ; see Eq.
(4)  and  the  following  discussions  about  the  SEC,  i.e.,

, which is located inside the inner ho-
rizon.

M := v/c
M∈ [0.8,1.2]

c2− v2

Figure  2 shows  the  speed  of  sound  and  velocity  of
fluid  and  highlights  their  difference  by  using  the  Mach
number, i.e., . We note that the Mach number is
located  in  the  range  of  between  the  inner
and  outer  horizons,  which  indicates  that  the  transonic
phenomenon occurs.  A  similar  phenomenon  was  ob-
served [31] for SBHs. As a matter of fact, the existence of
horizons  for  the  acoustic  model  described  by  Eq.  (27)
separates  the  spacetime  into  different  regions  according
to the signs of .  For the simulated RBHs with one
horizon, the fluid inside the horizon flows with the tran-

 

ξ(r)Fig. 1.    (color online) .

v(r) c(r) M(r)Fig. 2.    (color online)  and . The two curves are almost overlapped. For details, see the inset graph of .
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sonic phenomenon. For the simulated RBHs with two ho-
rizons, the transonic flow is sandwiched between the two
horizons.

Generally,  the  Mach  number  can  be  computed  with
the help of Eq. (39):
 

M = Aξ2

r4(ξ′)2 =
1

z+
√

1+ z2
, z := ξ2F(ξ)/(2A). (48)

F(ξ) < 0 ξ ∈ (ξ−, ξ+) z < 0Because  as long as , we have 
between  the  two  horizons;  meanwhile,  we  find  that  the
Mach  number  is  constrained  by  the  following
inequality:1)
 

1 <M < 1

zmin+
»

1+ z2
min

. (49)

zmin ≈ −0.033
A = M = q = 1 ρ0 = 1 p0 = 0

For the remedied Bardeen model,  the minimum of z can
be  calculated  numerically,  i.e., ,  under  our
settings,  i.e., , ,  and ,  and  this

r ≈ 0.773

1 <M < 1.034

minimum  corresponds  to ,  which  is  located
between  the  two horizons.  Thus,  the  Mach  number  is  in
the range .

rc = 0.489

ρ ≈ 0.509
p ≈ 49240.914

500

We  also  provide  the  numerical  calculations  of  Eqs.
(33), (35), and (36) with subscript "+" for the density and
pressure in Figs. 3(a) and 3(b), respectively, and the EoS
in Fig. 3(c). In Figs. 3(a) and 3(b), there are a global max-
imum of ρ and  a  global  maximum of p located  between
the two horizons,  i.e., . This point  plays a spe-
cial role in Fig. 3(c) because it shows a sharp discontinu-
ity of  the EoS. In addition,  the curve of  the EoS ends at
the green dot, where its values of ρ and p,  i.e., 
and , are estimated numerically when r ap-
proaches  as the infinity of our numerical calculations.
 

B.    RBHs associated with nonlinear

electromagnetic fields
Now, we turn to the model associated with nonlinear

electromagnetic fields [20], whose σ is a rational and sig-
moid function:
 

A = M = q = 1 ρ0 = 1 p0 = 0Fig. 3.    (color online) Numerical solutions for the remedied Bardeen model, where , , and .
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z2 +1 < 0 z = 01) The function  is positive and monotone decreasing because its derivative is negative, , and its limit at  equals one.
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σ =
ξ3

(ξ+q)3 with q ≥ 0, (50)

σ ≥ 0 σ′ = qξ2/(q+ ξ)2 ≥ 0
σ ≤ ξ3/q3 σ0 =

1/q3

σ′′(ξ∗) = 0 ξ∗ = q

where ξ denotes  the  radial  coordinate  in  the  RBH.  Note
that σ is non-negative and monotonically increasing in the
whole  region  of ξ,  i.e.,  and ;
meanwhile, σ is  bounded  by  because  of 

. The critical point of this model can be obtained by
solving , which gives . Moreover, the ex-

q ≤ 4ξSch/27
ξ∗ 4ξSch/27 ξSch = 2M

istence of horizons demands ; i.e.,  the critic-
al  point  is  not greater than ,  where 
is the Schwarzschild horizon radius.

M = 1/2 q = 0.1 A = 1
r = 0

r0 = 0.2

The  numerical  results  are  shown  in Fig.  4,  where
, ,  and  are set.  Because p and c are

divergent  at , see  Eqs.  (42)  and (43).  We have  per-
formed a cutoff for the lower boundary by setting 
as we did for the remedied Bardeen model.

Here are four points that need to be demonstrated.

q = 0.1 A = 1 ρ0 = 1
p0 = 0

Fig. 4.    (color online) Numerical solutions for the model associated with nonlinear electromagnetic fields, where , , ,
and  are set.
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● The oscillation of  Mach numbers  at  the  left  tail  in
Fig. 4(b) arises from our computational accuracy;
 

rc●  The  critical  point at  which ρ and p are maxim-
ized  is  no  longer  located  between  the  two  horizons  (see
Figs.  4(c)  and 4(d)),  which  is  different  from the  case  of
the remedied Bardeen model;
 

ρ ≈ 13.322 p ≈ 48416.215
●  The  green  dot  in Fig.  4(e)  denotes  the  end  of  the

EoS and corresponds to  and ;
 

M < 1.010
zmin = −0.010

r = 0.209

● The  upper  boundary  of  Mach  numbers  can  be  es-
timated via a formula similar to Eq. (49), i.e., ,
where z reaches  its  global  minimum  at

. 

VI.  POLYTROPIC EQUATIONS OF STATE

p = B̃ργ

B̃

Motivated by  the  polytropic  behaviors  of  the  equa-
tions of state in Sec. V, we try to determine whether the
fluid  with  polytropic  equations  of  state  can  be  used  to
simulate  realistic  RBHs.  For  this  purpose,  we  suppose
that  the fluid is  barotropic and has a polytropic equation
of state , where γ is a real and nonzero number. Its
valid region is determined below, and  is constant. The
local speed of sound can be calculated as 

c = Bρ(γ−1)/2, B := (B̃γ)1/2 > 0. (51)

Meanwhile,  the  fluid  should  satisfy  the  continuity
equation, which provides the same relationship between ρ
and v as  Eq.  (28).  Then,  by  substituting  Eqs.  (51)  and
(28) into Eq. (27), we give the metric in terms of ρ as fol-
lows: 

gµν =
ρ(3−γ)/2

B
{
−B2 fργ−1, f −1, r2, r2 sin2 θ

}
,

f = 1− A2

B2r4ργ+1 , (52)

where f is the shape function.
Now,  we  investigate  whether  the  above  metric  can

mimic the RHBs with the metric of Eq. (1). To this end,
we  use  the  new  variable ξ defined  by  Eq.  (29),  which
takes the following form when Eq. (51) is considered: 

ξ2 =
r2ρ(3−γ)/2

B
. (53)

When we replace r with ξ by using Eq. (53), the metric of
Eq. (52) becomes 

gµν = diag
ß
−B fρ(γ+1)/2,

f −1ρ(3−γ)/2

B(ξ′)2 , ξ2, ξ2 sin2 θ

™
, (54)

ξ′ := dξ/dr gttgξξ = −1where .  Therefore,  the  condition ,
leads to the following differential equation of ρ: 

[
(γ−3)rρ′−4ρ

]2
= 16Bρ(γ+5)/2, (55)

whose general solution is 

ρ−(γ+1)/4 = ±
√

B+ c8r(γ+1)/(3−γ), (56)

c8

ρ→ B−2/(γ+1) r→ 0
−1 < γ < 3 γ < −1∪γ > 3 ρ→

c−4/(γ+1)
8 r−4/(3−γ)

where  is an integration constant. Furthermore, we note
that the asymptotic behavior of ρ is  as 
if ,  while  for ,  it  is 

. Thus, the asymptotic behaviors of Weyl
curvatures for these two cases are 

W ∼ O(r−12), −1 < γ < 3; (57a)

 

W ∼ O
(
r−16(γ−1)/(γ−3)) , γ < −1∪γ > 3. (57b)

−1 < γ < 3

r = 0 γ < −1∪γ > 3
1 ≤ γ < 3 γ < −1∪γ > 3

The  asymptotic  relation  associated  with 
shows  that  the  Weyl  curvature  inevitably  has  a  singular
point at ; as for the case of , the regu-
larity requires , which contradicts .
As  a  result,  the  fluid  with  polytropic  equations  of  state
cannot simulate the RBHs with the metric of Eq. (1).

Let us investigate under what conditions the metric of
Eq. (52)  describes  an  RBH solution  in  the  whole  space-
time.  We  calculate  the  Weyl  curvature  of  the  metric  of
Eq. (52) directly, 

W =
ρ−γ−9

12B2r12

¶
2A2(γ+5)r2ρ′2+2A2rρ[(3γ+17)ρ′

−2rρ′′]+60A2ρ2

−B2 (γ2−4γ+3
)

r6ργ+1ρ′2

−2B2(γ−1)r5ργ+2 (rρ′′−ρ′
)©2
. (58)

ρ ∼ r−n r→ 0
To  give  the  conditions  just  mentioned,  we  make  an

asymptotic  ansatz  [1]  as ,  and  substitute  it
into Eq. (58), where n is a real and positive number. We
find  that  the  square  root  of  Weyl  curvatures  consists  of
the following two terms: 

r−(γ−3)n/2−2 and r(γ+5)n/2−6, (59)

r = 0
where we have omitted the relevant coefficients. The reg-
ularity at  provides two inequalities: 
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n ≥ 12
γ+5

, γ ∈ (−5,1]; (60a)

 

n ≥ − 4
γ−3

, γ ∈ (1,3). (60b)

On the other hand, the asymptotic flatness requires 

ρ→ B−2/(γ+1), (61)

r→∞when . In summary, we conclude that the metric of
Eq. (52) describes an RBH if Eqs. (60) and (61) are satis-
fied.

γ = −1
We  take  the  Chaplygin  gas  as  an  example,  where

 in Eq. (52) and the density has the form 

ρ = ρ0
l3

r3

 
1+

l2

r2 , (62)

where l is introduced for balancing the length dimension.
The corresponding Weyl curvature is 

W =
4r4

[
A2

(
4l2r2+ l4

)
+B2r4

(
8l2r2+8l4+3r4

)]2

3B2l12ρ4
0

(
l2+ r2

)6 , (63)

which has an asymptotic relation 

W ∼ 4A4r4

3B2l16ρ4
0
+O(r5), (64)

r→ 0

l ∈ R B , 0

when .  Thus,  the  Weyl  curvature  is  regular.
Moreover,  the  bracket  in  the  denominator  of  Eq.  (63)  is
an  algebraic  quadratic  function  of r,  but  it  has  no  real
roots because  and , which consequently indic-
ates that the Weyl curvature is finite on the non-negative
axis.

T t
t = T r

r

It  is  time  for  us  to  investigate  the  energy  conditions
for  the  astronomical  counterpart  of  the  metric  Eq.  (52).
We study the vacuum equation  to clarify wheth-
er we have to define the energy density and pressure in-
side  and  outside  the  horizon,  respectively.  The  vacuum
equation  leads  to  a  second-order  nonlinear  differential
equation of ρ: 

4ρ
[
2(γ−1)ρ′+ (γ−3)rρ′′

]
− r (γ−3)(γ+5)(ρ′)2 = 0, (65)

whose general solution is 

ρ = c10r(γ−3)/4 (3−γ−4c9r(γ+1)/(γ−3))−4/(γ+1)
, (66)

c9 c10
r→ 0

where  and  are  integration constants.  Furthermore,
the asymptotic analysis at  gives us two situations: 

ρ ∼ O(1), W ∼ O(r−12), for −1 < γ < 3; (67a)

 

ρ ∼ O(r4/(γ−3)), W ∼ O(r−16(γ−1)/(γ−3)), for γ < −1.

(67b)

r = 0
None of them can realize a regular Weyl curvature at
; i.e.,  we  have  to  discuss  the  energy  conditions  in-

side and outside a horizon separately.
ϵ

pr n

n+1

1
n ∈ 2N+1

The  definitions  of  the  energy  density  and  radial
pressure  depend on the number  of  horizons ; mean-
while,  the  horizons  separate  the  spacetime  into  re-
gions.  If  we  start  from  the  region  outside  the  outermost
horizon and denote that area as , then for the region with
odd  number ,  the  energy  density  and  radial
pressure are defined by 

ϵodd = −Gt
t

8π
, podd

r =
Gr

r

8π
; (68)

n ∈ 2Nwhile for even , they are defined by 

ϵeven = −Gr
r

8π
, peven

r =
Gt

t

8π
. (69)

ϵ ≥ |pr |
ϵ ≥ |pt |

It  can be verified that  the  model  of  Eq.  (62)  violates
the DEC because there is no intersection between 
and , regardless  of  whether  the  number  of  hori-
zons  is  odd  or  even.  Thus,  the  Chaplygin  gas  cannot  be
used to mimic an astronomical counterpart. In fact, the in-
verse problem, i.e., constructing ρ from the energy condi-
tions, is rather complicated because the DEC leads to four
second-order nonlinear differential inequalities, which are
difficult to deal with. Therefore, we stop searching for the
models  with  a  polytropic  EoS  and  leave  this  for  future
studies. 

VII.  CYLINDRICAL REGULAR BLACK HOLES
AND THEIR EQUATORIAL SECTIONS

In  this  section,  we  study  the  RBHs  with  cylindrical
symmetry. The metric can be cast as follows: 

ds2 = − f dt2+ f −1dξ2+ ξ2dϕ2+ e2ζ(ξ)dz2,

f = 1−2Mσ/ξ, (70)

where ζ is  a  real  function  of ξ.  Instead  of  analyzing  the
Weyl  curvature,  we  analyze  the  Ricci  scalar  because  of
its simplicity: 
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R=
4Mζ′σ′

ξ
+

4Mσζ′2

ξ
+

4Mσζ′′

ξ
+

2Mσ′′

ξ
−2ζ′2− 2ζ′

ξ
−2ζ′′,

(71)

ξ = 0
σ ∼ O(ξm) ζ ∼ O(ξn) m ≥ 3

n ≥ 2 n = 0
σ ∼ O(ξm̃) m̃ < 1 ζ ∼ O(1)

where the prime denotes the derivative with respect to ξ.
The  Ricci  scalar  is  regular  at  if σ and ζ have  the
asymptotic  forms  and ,  where 
and  or . In contrast, the asymptotic flatness de-
mands  with  and .

ζ = 0 Gt
t =Gξξ

Now,  let  us  consider  the  energy  conditions  of  this
type  of  black  hole.  When ,  is  valid  in  the
regions inside and outside a horizon. The energy density
and pressures can be calculated only in terms of σ and its
derivatives: 

ϵ =
M

8πξ3
(
ξσ′−σ

)
, pξ =

M
8πξ3

(
σ− ξσ′

)
,

pϕ = −
M

8πξ3
[
ξ
(
ξσ′′−2σ′

)
+2σ

]
, pz = −

Mσ′′

8πξ
. (72)

Thus, the DEC is 

ξ
(
ξσ′′−σ′

)
= σ, ξ

(
ξσ′′+σ′

)
≥ σ. (73)

ϵ ≥ pϕ∩ pz ≥ −ϵ
σ = c11ξ+ c12ξ ln(ξ)

c11 c12

R = 2c12M/ξ2

c12 = 0
ζ = 0

Note  that  the  equality  comes  from 
and can be used to fix σ,  i.e., ,  where

 and  are integration  constants.  However,  the  cor-
responding Ricci scalar, i.e., , is singular un-
less the metric is trivial, . In other words, the met-
ric  Eq.  (70)  with  can  never  represent  a  realistic
RBH.

By omitting  the  flow along  the z direction, i.e.,  con-
sidering  only  the  equatorial  section  (ES),  we  reduce  the
DEC to 

ϵ ≥ pξ ≥ −ϵ, ϵ ≥ pϕ ≥ −ϵ, ϵ ≥ 0, (74)

pzwhere the contribution from  is ignored. Therefore, we
have the following three differential inequalities: 

ξ2σ′′+σ ≥ ξσ′, ξ2σ′′+3σ ≤ 3ξσ′, ξσ′ ≥ σ. (75)

We  take  the  modified  Hayward  BH  as  an  example
(see Eq. (5)) but discuss its cylindrical counterpart: 

σ =
Mα−3ξ3

qα+ ξα
. (76)

By substituting Eq. (76) into Eq. (75), we obtain 

2qα ≥ (α−2)ξα, (α+2)qα ≥ (α−2)ξα,[
2qα+ (α−2)ξα

]2 ≥ [α(α+8)−16]qαξα, (77)

ξ ∈ [0,∞) −4(
√

2+1) ≤ α ≤ 4(
√

2−1)which hold for  if .

α = 3/2
To simulate the equatorial sections of cylindrical reg-

ular  black  holes,  we  take  in  Eq.  (76).  Then,  we
can  obtain  the  nonlinear  differential  equation  (see  Eq.
(12) of Ref. [31]) that describes the relationship between
the  radial  coordinate  of  black  holes  (ξ)  and  that  of  the
simulation in fluids (r): 

(ξ′)4− f (ξ)ξ2(ξ′)2−A2ξ6 = 0, f (ξ) = 1− 2M−1/2ξ2

q3/2+ ξ3/2
, (78)

where the prime denotes the derivative with respect to r.
From Eq. (78), we can obtain the asymptotic relations of
ξ and r: 

ξ± ∼ c13e±r, as ξ→ 0, (79)

and 

ξ± ∼ 4
(
√

Ar± c14)2
, as ξ→∞, (80)

c13 c14where  and  are  integration  constants.  Meanwhile,
because the physical  variables of  fluids can be represen-
ted by ξ and its derivatives, see Eq. (39), 

c=
ξ′

ξ2
, v=

Aξ
ξ′
, ρ=

ξ′

ξ
, p′ =

(ξ′)2

ξ6
[
ξξ′′− (ξ′)2] ,

(81)

their  asymptotic  behaviors  for  the  case  of  the  positive
sign are 

c+→ e−r

c13
, v+→ A, ρ+→ 1, p′+→ 0, (82)

r→ 0when  and 

c+→−
√

A
2

Ä√
Ar+ c14

ä
,

v+→−
√

A
2

Ä√
Ar+ c14

ä
,

ρ+→− 2
√

A√
Ar+ c14

,

p′+→ A2

2
, (83)
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r→∞

M→ 1

M = 1/2 q = 1/2 A = 1
rH = 0 ξ(0) ≈ −3.837

M≤ 1.124
r ≈ 0.796

when . The phenomenon of transonic flows occurs
outside the horizon, and the Mach number converges to 1,
i.e., ,  as r approaches infinity.  The corresponding
numerical analysis is shown in Fig. 5, where we have ad-
opted the settings , , and  and chosen

,  which  corresponds  to .  The  upper
boundary of  the  Mach  numbers  is  determined  numeric-
ally,  i.e., ,  and  the  maximum  is  reached  at

.
ζ , 0 Gt

t =GξξFor  the  case  of ,  the  vacuum  equation 
gives rise to 

ζ′2+ ζ′′ = 0, (84)

ξ ∈ [0,∞)
ζ = ln(ξ− c15)+ c16 c15 c16

pout
ξ ≥ −ϵout pin

ξ ≥ −ϵin

which  is  valid  for  an  arbitrary .  The  solution
, where  and  are integration con-

stants,  does  not  satisfy  the  regular  condition.  Thus,  we
have to separate the discussion for the inside of the hori-
zon  from  that  for  the  outside  of  the  horizon.  However,

 and  provide the same inequality
 

ζ′2+ ζ′′ ≤ 0, (85)

M = q = 0.5 A = 1
rc ≈ −1.352 r0 ≈ −3.675 ξ(r0) = 0 r∞ ≈ 1.684

Fig. 5.    (color online) Numerical solutions for the ES of repaired cylindrical Hayward-like models with  and , where
 and , which is determined by , and , which is determined by a very large value of ξ in the nu-

merical calculation.
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exp(ζ)which can be solved by multiplying both sides by : 

d2

dξ2
exp(ζ) ≤ 0. (86)

exp(ζ)
ξ ∈ [0, ξH)∪ (ξH,∞)

ζ′′ (ζ′)2

2

2

This  inequality  indicates  that  is  a  concave
function in ; thus, ζ is a concave func-
tion, because  the  logarithm  of  a  non-negative  and  con-
cave  function  is  concave.1) This  can  also  be  seen  from
Eq. (85);  is  nonpositive because  is  nonnegative.
Nevertheless, ζ is bounded to  satisfy  the condition of  fi-
nite  curvatures,  which  contradicts  the  concavity  of ζ.  In
other words, the metric Eq. (70) can in no way represent a
realistic  RBH.  In  contrast,  the D BHs  with  polar  sym-
metry can be regarded as cylindrical BHs with the z dir-
ection being suppressed. In the following section, we in-
vestigate the D polar-symmetric RBHs and their simula-
tions in fluids. 

VIII.  SIMULATIONS OF LOWER DIMENSION-
AL REGULAR BLACK HOLES

(2+1)
(3+1)

(2+1)

(2+1)

(2+1)

The D  simulation  is  rather  different  from  the
D case discussed in the previous section. First, the

Weyl  curvature  tensor  vanishes  identically  for  any
D spacetime,  thus  the  Weyl  scalar  is  no longer  an

appropriate candidate  for  analyzing  the  curvature  diver-
gence. Second, the regularity condition is closely related
to  the  dimension  of  spacetime.  When  one  studies  the
RBHs in a D spacetime, the criteria for shape func-
tions will change, see App. D. Thirdly, the form of acous-
tic line elements also depends on dimension, in particular
the prefactor  [25].  Moreover,  the D analogue BHs
in  a  fluid  are  rather  interesting  and  relatively  easy  to  be
realized in a laboratory.

Let us start considering a circularly symmetric BH, 

ḡi j = diag{− f , f −1, ξ2}, f = 1−µσ(ξ), (87)

σ ∼ O(ξn) n ≥ 2 ξ→ 0 σ→ 0
ξ→∞

where μ is  mass-like  parameter.  According  to  App.  D,
such  a  metric  is  curvature  regular  at  the  BH  center  if

, ,  as ,  and  asymptotic  flat  if 
as .  In order to construct an example that satisfies
these conditions, we make an ansatz, 

σ(ξ) =
ξα

ξβ+qβ
with α, β ≥ 0, (88)

α ≥ 2 β > α

and  substitute  it  into  Kretschmann  scalars.  We  find  that
the  Kretschmann  scalar  is  regular  at  the  BH  center  if

 and that the asymptotic flatness is satisfied if .

α = 2
Next,  given  a  particular α we  are  going  to  fix β by  the
DEC.  For  instance,  taking ,  we  reduce  the  DEC to
the two inequalities, 

(β+2)qβ ≥ (β−2)ξβ, 4q2β+ (β−2)2ξ2β ≥ [β(β+4)−8]qβξβ.

(89)

0 < β ≤ 2
√

3−2 ≈ 1.46

α ≥ 2 ϵ ≥ 0 α ≥ β
ξ ∈ [0,∞) β > α

Because the left hand sides of the two inequalities are
positive,  the  two  inequalities  hold  for  all  non-negative ξ
and q if  their  right  hand  sides  are  non-positive,  i.e.,  the
DEC  is  satisfied  in  the  whole  spacetime.  Following  this
idea, we find . However, this result
contradicts to the asymptotic flatness. In fact, for the case
of ,  the positive energy density  leads to 
in , while the asymptotic flatness requires .
No intersections exist.

R = 0
If relaxing the asymptotic flatness, we replace it with

the Ricci flatness, , at infinity. Then substituting the
ansatz Eq. (88) into the Ricci scalar, we obtain 

R
µ
=

(β−3)(β−2)ξ2β+ [12−β(β+5)]qβξβ+6q2β(
ξβ+qβ

)3 . (90)

α = 2

Since β is non-negative, the power of ξ in the denom-
inator  is  larger  than  that  in  the  numerator,  thus R van-
ishes  as ξ approaches  infinity.  In  other  words,  if ,
the metric with Eq. (88) automatically satisfies the condi-
tion of Ricci flatness. As a result, the model Eq. (88) to-
gether  with  the  Ricci  flatness  is  regular  and satisfies  the
DEC, that is, it is a realistic RBH.

(2+1)

α = 2 0 < β ≤ 2
√

3−2 ≈ 1.46

(2+1)

Furthermore,  before  we  focus  on  the  analogue  in  a
fluid, we make a note on the toy model we just construc-
ted,  see  Eqs.  (87)  and  (88).  The  causal  structure  of  the

D RBH with Eq. (88) is exotic. Since the power of
ξ in the numerator of σ is larger than that of the denomin-
ator,  i.e.,  and , σ is an  in-
creasing function with respect to ξ. Thus, the shape func-
tion f is greater than zero inside the horizon but less than
zero outside the horizon. This indicates that this D
RBH has  an  opposite  structure  of  lightcones  when com-
pared with that of usual BHs, like the Schwarzschild BH.

Now let us turn to the simulation. From Eq. (37), we
obtain [31] the relation between ξ and r, 

(ξ′)4− f (ξ)ξ2(ξ′)2−A2ξ6 = 0. (91)

α = 2 β = 1 σ = ξ2/(ξ+q)For  a  specific  case,  and ,  i.e., ,
we find the asymptotic solutions, 

ξ±0 (r) ∼ c17e±r, as ξ→ 0, (92)
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and 

ξ±∞(r) ∼ 4
(∓kr+ c18)2 , as ξ→∞, (93)

k :=
»

(
√

4A2+µ2−µ)/2 c17 c18

ξ →∞
ξ+∞(r) r∞ r∞

ξ+∞(0)
r∞ ξ+∞(0) = ξH

c18 = 2
√√

2−1

r∞ = 2
»

(
√

2−1)/(
√

4A2+µ2−µ) ξH

where ,  and  and  are in-
tegration  constants.  Since  the  situation  with  the  positive
sign corresponds to the positive correlation between ξ and
r, we would like to select it as the candidate for the simu-
lation.  Meanwhile,  we note  from Eq.  (93)  that  there  is  a
movable singularity in the asymptotic solution as .
In  other  words,  diverges  at  a  finite ,  where 
depends on the choice of . To estimate the value of

,  we apply the  condition  which determines
the  integration  constant  and

.  Here  denotes  the
horizon  radius  of  the  astronomical  counterpart  depicted
by Eq. (87).

r = 0

Similarly, by applying Eq. (81) we find the asymptot-
ic  behaviors  for  the  situation  with  the  positive  sign
around , 

c+0 →
e−r

c17
, v+0 → A, ρ+0 → 1, p′+0 → 0, (94)

r→∞and in the limit of , 

c+∞→−
1
2

k(kr+ c17), v+∞→−
A(kr+ c17)

2k
,

ρ+∞→−
2k

kr+ c17
, p′+∞ →

k4

2
. (95)

M→ A/k2

A = 1 q = 1/2 µ = 1/2
ξ+(0) = 1+

√
2

M≤ (1+
√

17)/4

The  phenomenon  of  transonic  flows  occurs  outside
the horizon  and  the  Mach  number  converges  to  a  con-
stant  as r approaches  infinity.  The  numerical
analysis  is  shown  in Fig.  6,  where  we  have  adopted  the
setting , , and , together with the con-
dition . The upper boundary of Mach num-
bers is determined numerically, . 

IX.  CONCLUSIONS AND OUTLOOKS

As  an  extension  of  our  previous  work  [30], we  ana-
lyze two specific questions on RBHs in the present paper:
The  first  is  how  to  remedy  astronomical  RBHs  whose
DEC is invalid; and the second is how to simulate realist-
ic RBHs through acoustic gravity. We emphasize that the
research strategies of the previous and present works are
completely opposite.  In the previous work [30], we con-
struct an acoustic metric which is regular at first, then we
investigate  the  energy  conditions  of  the  astronomical
counterpart of the acoustic RBH. In the present work, we
remedy an astronomical  RBH to ensure the DEC and fi-

nite curvatures at first, and then we simulate it in a fluid.
The DEC  of  astronomical  RBHs  occupies  a  funda-

mental  and decisive position in the research of  RBHs.  It
determines whether an RBH is observable in the universe
or  is  only  theoretical.  On  the  premise  of  the  DEC,  we
have remedied several widely known RBHs whose DEC
was  broken  [24].  In  other  words,  the  dominant  energy
condition, which is violated in the regular black holes lis-
ted in Ref. [24], can be recovered using our strategy giv-
en in Sec. III. Thus, these regular black holes revert back
to the realistic. The procedure we proposed in the present
paper  works  for  a  broad  class  of  RBHs  with  the  broken
DEC, in  particular,  for  those  models  whose  shape  func-
tions are rational fraction functions of the radial coordin-
ate.  In addition,  we have demonstrated that  two types of
conformally related  RBHs  can  never  meet  the  four  en-
ergy conditions by proving a no-go theorem.

(3+1)
(2+1)

Although the analogue gravity is widely regarded as a
tool of gaining insight into general relativity [25], the first
simulation  of  Schwarzschild  and  Reissner-Nordström
black holes was not realized until 2021 [31]. Prior to this
simulation, the  acoustic  counterparts  could  not  distin-
guish  [61] those  astronomical  BHs  that  differ  by  a  con-
formal  factor,  where  the  differences  would  be  shown  in
the investigations of desired phenomena from the present
point  of  view.  For  instance,  the  quasinormal  modes
(QNMs)  of  BHs  would  be  affected  [62]  by  conformal
factors. We hope such an analogue made in a fluid would
mimic those astronomic BHs just mentioned. To this end,
starting  with  realistic  RBHs,  we  have  constructed  their
counterparts in acoustic gravity. Our ultimate goals focus
on the guidance on simulation of realistic RBHs in a flu-
id  and  the  possibility  to  distinguish  RBHs  from  SBHs.
Our  guidance  on  simulation  has  been  illustrated  by  the
equations  of  state,  see Figs.  3(c), 4(e),  and 6(e),  and  by
the speed of sound and velocity of flow, see Figs. 2, 4(b),
and 6(b).  Moreover,  the  similarities  and  differences  are
listed  below  when  we  compare  our  RBHs  with  the  RN
BH [31]  in  the  aspects  of  velocities  and  Mach numbers,
and in the aspects of densities and pressures for D
models,  their  equatorial  sections,  and D models as
follows.
 

● Velocity and Mach number in (3+1)D models
r = 0

r→∞
r→ 0

r→∞
r = 0 r→∞

r = 0
r→∞

The velocity of flow is divergent at  and tends to
zero  as  for  the  RBHs  considered  in  Sec.  V,  thus
the  Mach  number  converges  to  unity  as  and van-
ishes as . For the RN BH [31], the velocity of flow
is  finite  at  and  converges  to  a  constant  as ,
thus the Mach number vanishes at  and becomes a fi-
nite number as .
 

● Density and pressure in (3+1)D models
ρ(r) p(r) and  for our  RBHs  in  Sec.  V have  maxim-

ums at the same value of r, which is related to the roots of
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ξ′′(r) = 0

r = 0

.  This  property  leads  to  a  sharp discontinuity  in
the  plot  of  EoS,  which  does  not  occur  for  the  RN  BH.
Meanwhile, the pressures of our RBHs are negatively in-
finite  at ,  while  they  are  positively  infinite  at  this
point for the RN BH.
 

(3+1)
●  Velocity,  Mach  number,  density,  and  pressure  in

the equatorial sections of D models

(3+1)
The velocity, Mach number, density, and pressure for

the equatorial section of the D RBH constructed in
Sec.  VII  exhibit  similar  configurations  to  those  of  a  RN
BH [31],  which  implies  that  the  regularity  of  our  model
does  not  appear  in  the  simulation  of  equatorial  sections.
Note that we have applied the method [31] to turn a non-
compact dimension  into  a  compact  one  in  the  construc-

tion of the relation between ξ and r.
 

(2+1)● Velocity and Mach number in D models
(2+1)

(2+1)

(2+1)

The velocity and Mach number of our D RBH
constructed  in  Sec.  VIII  differ  greatly  from those  of  the

D  RN  BH.  At  first,  our  RBH  may  have  only  one
horizon; then, the transonic flow of our RBH occurs out-
side the horizon. For the D RN BH, it has two hori-
zons and its transonic flow occurs between the inner and
outer horizons.
 

(2+1)● Density and pressure in D models
(2+1)

(2+1)
(2+1) ρ(r)

The differences between our D RBH construc-
ted in Sec. VIII and the D RN BH [31] are obvious
in  the  density  and  pressure.  For  our D  RBH, 

(2+1) µ = q = 0.5 A = 1 r0 ≈ −2.203
ξ(r0) = 0 r∞ ≈ 1.030

Fig.  6.    (color online) Numerical  solutions  for  the D  repaired  Hayward  model  with  and ,  where 
which is determined by , and  which is determined by a very large value of ξ.
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p(r) r = 0

(2+1)
(3+1)

and  are no longer divergent at  and the EoS be-
comes  smooth  in  the  whole  region  of r,  see Figs.  6(c),
6(d), and 6(e). Meanwhile, the behaviors of the two vari-
ables in the D RBH differ from those in the equat-
orial sections of D models, despite the fact that we
use the identical compactification in both situations. This
difference  indicates  that  the  dimensions  of  RBHs  affect
the properties of flow simulations.

Finally,  we  summarize  that  the  EoS  of  fluid  can  be
used  to  simulate  realistic  RBHs.  Meanwhile,  we  show
that the acoustic analogues of RBHs have apparently dif-
ferent features from those of SBHs, such as the RN BH,
and that  the  differences  are  indeed  caused  by  singularit-
ies. In other words, the acoustic gravity can be applied as
a tool to study astronomic RBHs, which also offers a the-
oretical basis  to  investigate  more  phenomena  of  astro-
nomic RBHs in a fluid. 

APPENDIX A: THE DIFFERENTIAL
INEQUALITIES

ξσ′′ ≤ 2σ′

σ(0) = 0 = σ′(0)

Here we solve the differential inequalities appeared in
this paper, in particular, in Sec. II. We start with solving
the  differential  inequality, ,  with  the  boundary
conditions, . It can be rewritten as 

d
dξ

(
3σ− ξσ′

)
≥ 0. (A1)

3σ− ξσ′ ≥ 0 ξ−4
After considering the boundary conditions, we obtain

. Next,  multiplying  on its both sides, we
derive 

3ξ−4σ− ξ−3σ′ =
d
dξ

(
−ξ−3σ

)
≥ 0. (A2)

σ0 := limξ→0σ/ξ
3If we define , we arrive at the solution, 

σ ≤ σ0ξ
3, (A3)

which  can  also  be  obtained  when  one  directly  uses  the
differential form of the Grönwall-Bellman lemma [41].

σ ≥ 0 σ′ ≥ 0
σ(0) = 0

Similarly, we can obtain  from  when the
boundary condition, , is considered.

We emphasize  that  the  differential  inequalities'  solu-
tions provide the necessary condition for an RBH to meet
the energy conditions, but not the sufficient one. For ex-
ample, taking a bell-shaped function, 

σ =
1Å

ξ− 1
2ξ

ã4

+1
,

σ ≥ 0we  can  see  that  the  inequality's  solution, , is  satis-

σ′ ≱ 0 σ ≥ 0

0 ≤ σ ≤ σ0ξ
3

fied  but  the  WEC  and  DEC  are  violated  because  of
.  However,  if  is  broken,  then  the  WEC  and

DEC  must  be  violated.  In  addition,  the  Hayward  BH
gives us another example, that is, it satisfies ,
but breaks the DEC. The reason comes from the charac-
teristics of  differential  inequalities,  i.e.,  a  differential  in-
equality signifies  that  all  functions  satisfying  this  differ-
ential  inequality  must  be  bounded  by  its  solution,  while
the functions bounded by the solution may not necessar-
ily meet the original differential inequality. 

APPENDIX B: LOCAL PROPERTIES OF THE
DIFFERENTIAL INEQUALITIES

Now we give  an  explanation  from the  energy condi-
tions by analyzing the local properties of a realistic RBH
at  its  center,  that  is,  why  a  realistic  RBH cannot  have  a
flat or an AdS core around its center. The similar discus-
sion can be found in Ref. [24].

Summarizing the energy conditions Eq.  (4),  we have
four differential inequalities in total, 

σ′ ≥ 0, 2σ′− ξσ′′ ≥ 0, 2σ′+ ξσ′′ ≥ 0, σ′′ ≤ 0. (B1)

ξ≪ 1Supposing ,  we  expand σ by  an  asymptotic
series, 

σ = ξ3
∞∑

n=0

anξ
n, (B2)

|anξ
n| ≫ |an+1ξ

n+1|meanwhile, we have the property, , as ξ
approaches 0. Then substituting the above series into Eq.
(B1), we obtain 

σ′ ≥ 0 :
∞∑

n=0

(n+3)anξ
n+2 ≥ 0, (B3)

 

2σ′ ≥ ξσ′′ :
∞∑

n=1

n(n+3)anξ
n+2 ≤ 0, (B4)

 

−2σ′ ≤ ξσ′′ :
∞∑

n=0

(n+3)(n+4)anξ
n+2 ≥ 0, (B5)

 

σ′′ ≤ 0 :
∞∑

n=0

(n+2)(n+3)anξ
n+1 ≤ 0. (B6)

a0 , 0 a1 , 0
a0 > 0

a1 < 0
a0 = 0

If  and ,  the  leading  terms  of  Eqs.  (B3)
and  (B5)  lead  to ,  which  inevitably  violates  Eq.
(B6),  and  the  leading  term  of  Eq.  (B4)  gives .  If

,  the  DEC  must  be  broken  because  Eq.  (B3)  and
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a0 , 0 a1 = 0
am < 0 m > 1

Eq. (B4) lead to the results that are contradictory to each
other.  If  and ,  the  leading  term of  Eq.  (B4)
gives , , where m is the ordinal number of the
first non-zero term.

In contrast, based on Ref. [33] we know 

σ = ξ3
∞∑

n=0

ξnR(n)(0)
2M(n+3)(n+4)n!

∼ ξ
3R(0)
24M

+
ξ4R′(0)

40M
+O(ξ5),

(B7)

a0 > 0 a1 < 0as ξ approaches 0. Thus the case of  and  im-
plies 

R(0) > 0 and R′(0) < 0. (B8)

a1 = 0 a2 , 0 R(0) > 0 R′′(0) < 0
ξ = 0

R(0) = 0
R(0) < 0

For  but ,  we  obtain  and ,
i.e.  is  a  local  maximum.  Moreover,  if  an  RBH  is
Ricci  flat  at  its  center, ,  or  it  has  an  AdS  core,

,  its  energy  conditions  must  be  violated  around
the center. 

APPENDIX C: THE DERIVATION OF EQ. (8)

ξ ∈ [0,∞) q ∈ [0,∞)

In order to derive the conditions given by Eq. (8), we
substitute Eq. (7) into the DEC of Eq. (4). Since the DEC
holds for  and , we obtain 

3−µν ≥ 0, (µν−4)(µν−3) ≥ 0, 24−µ(µ+7)ν ≥ 0. (C1)

Meanwhile, the asymptotic flatness demands 

3−µν < 1. (C2)

Then, combining Eqs. (C1) and (C2) and considering the
positiveness of all parameters, we finally arrive at Eq. (8). 

D.  APPENDIX D: THE d-DIMENSIONAL
REGULAR BLACK HOLES

Now we derive  the  regularity  conditions  which  have
been  applied  in  Sec.  VIII.  We  write  down  the d-dimen-
sional metric with the spherical symmetry [63], 

ds2 = − f dt2+ f −1dξ2+ ξ2dΩ2
d−2, (D1)

f = 1−µσ(ξ)/ξd−3where f is  shape  function, ,  and μ is
mass-like parameter.  As we did in  Ref.  [33], we are  go-
ing to use the following three curvatures, 

R =
µ

ξd−2

(
2σ′+ ξσ′′

)
, (D2)

 

W =
(d−3)µ2

(d−1)ξ2d−2

î
(d−2)(d−1)σ

−2(d−2)ξσ′+ ξ2σ′′
ó2
, (D3)

 

E =
2µ2

dξ2d−4

[
(d−2)σ′− ξσ′′

]2
, (D4)

to represent σ and its derivatives. With the help of the re-
lations, 

W =K− 4R2

d−2
+

2R2

(d−1)(d−2)
, E =

4R2

d−2
− 4R2

d(d−2)
, (D5)

we arrive at 

σ =
ξd−1

(d−2)(d−1)dµ

ï
(d−2)R

+ s2(d−1)
√

2dE+ s1d

…
d−1
d−3

W
ò
, (D6)

 

σ′ =
ξd−2

2dµ

Ä
2R+ s2

√
2dE
ä
, (D7)

 

σ′′ =
ξd−3

dµ

î
(d−2)R− s2

√
2dE
ó
, (D8)

s1,2 = ±

σ ≲ O(ξd−1)

where  are two signs which are not much import-
ant  for  the  discussion  of  the  finiteness  of  curvatures.
Meanwhile,  it  is  not  difficult  to  see  that  the  metric  Eq.
(D1)  has  finite  curvatures  if σ has  asymptotic  relation

. 

APPENDIX E: ASYMPTOTIC SOLUTIONS OF
THE DIFFERENTIAL EQUATION

We  analyze  the  local  properties  of  the  differential
equation Eq. (38), 

A2ξ4r′(ξ)4+F(ξ)ξ2r(ξ)6r′(ξ)2− r(ξ)8 = 0, (E1)

ξ→ 0 ξ→∞
ξ ∈ [0,∞)

at the two boundaries,  and , by means of the
dominant  balance  [57, 58].  Here  is  the  radial
coordinate of RBHs, while r is radial coordinate of fluids
with the spherical symmetry.

ξ→ 0
First of all, we consider the asymptoticity of the shape

function as , 

F ∼ F0 := 1− R(0)
12
ξ2.

Chen Lan, Yan-Gang Miao, Yi-Xiong Zang Chin. Phys. C 47, 052001 (2023)

052001-20



According  to  the  dominant  balance,  we  can  separate
the discussions into three situations.

In the first case, we have 

A2ξ4r′(ξ)4 ∼ −F0ξ
2r(ξ)6r′(ξ)2, (E2)

 

A2ξ4r′(ξ)4≫ r(ξ)8, F0ξ
2r(ξ)6r′(ξ)2≫ r(ξ)8, (E3)

where Eq. (E2) gives the solution, 

r−2
± = −

2
A

…
−1+

R(0)
12
ξ2+

2
A

tan−1

ñ…
−1+

R(0)
12
ξ2

ô
−2c̃1,

(E4)

c̃1
ξ→ 0

r(ξ)

and  is  an  integration  constant.  This  solution  becomes
complex as , which contradicts the physical require-
ment that  must be real.

In the second case, the asymptotic relations become 

F0ξ
2r(ξ)6r′(ξ)2 ∼ r(ξ)8, (E5)

 

F0ξ
2r(ξ)6r′(ξ)2≫ A2ξ4r′(ξ)4, r(ξ)8≫ A2ξ4r′(ξ)4.

(E6)

The solution of Eq. (E5) is 

r± =
ξ
√

3R(0)

6±6
»

1− R(0)
12 ξ

2
. (E7)

r+
R(0) , 0

ξ→ 0

However,  is not  consistent  with  the  asymptotic  as-
sumption  depicted  by  Eq.  (E6).  For ,  we  have  a
divergent limit as , 

lim
ξ→0

A2ξ4r′+(ξ)4

F0ξ2r+(ξ)6r′+(ξ)2 →∞. (E8)

r− R(0) < 0As to , we note that it becomes complex if ,
thus this second case should also be ruled out.

In the third case, we suppose 

A2ξ4r′(ξ)4 ∼ r(ξ)8, (E9)

 

A2ξ4r′(ξ)4≫ F0ξ
2r(ξ)6r′(ξ)2, r(ξ)8≫ F0ξ

2r(ξ)6r′(ξ)2.

(E10)

Eq. (E9) provides the solution, 

r± = −
√

A
c̃2± ln(ξ)

, or ξ = c̃3 exp

Ç
∓
√

A
r±

å
, (E11)

c̃2 c̃3where  and  are integration constants. This solution is
consistent  with the the asymptotic  assumption Eq.  (E10)
because we have 

lim
ξ→0

F0ξ
2r(ξ)6r′(ξ)2

A2ξ4r′(ξ)4 = lim
ξ→0

1− R(0)
12 ξ

2[
c̃2± ln(ξ)

]2 = 0. (E12)

r−
r− < 0 ξ ∼ 0+
However,  we  exclude  from  physical  solutions  due  to

 when .
ξ→∞Next,  we  turn  to  the  asymptotic  solutions  as .

The shape function then becomes 

F ∼ F∞ := 1−2Mξ−n,

0 < n ≤ 1where . Similarly, the discussion can also be sep-
arated into three situations.

In the first case, we have 

ξ2F∞r(ξ)6r′(ξ)2 ∼ r(ξ)8, (E13)

 

ξ2F∞r(ξ)6r′(ξ)2≫ A2ξ4r′(ξ)4,

r(ξ)8≫ A2ξ4r′(ξ)4. (E14)

The asymptotic assumption Eq. (E13) gives two solu-
tions, 

r± = c̃4

Ä√
ξn/(2M)+

√
ξn/(2M)−1

ä±2/n
∼ c̃5ξ

±1, (E15)

c̃4 c̃5

r−
r+

where  and  are integration constants. It can be veri-
fied that  contradicts to the asymptotic assumption Eq.
(E14), while  does not.

In the second case, we suppose 

A2ξ4r′(ξ)4 ∼ r(ξ)8, (E16)

 

A2ξ4r′(ξ)4≫ξ2r(ξ)6F∞r′(ξ)2,

r(ξ)8≫ξ2r(ξ)6F∞r′(ξ)2.
(E17)

The first relation leads to 
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r± = −
√

A
c̃6± ln(ξ)

, (E18)

c̃6 r±
ξ→∞

ξ = 0 ξ =∞
r = 0

where  is  an  integration  constant.  We  can  see  that 
converge  to  zero  as . This  implies  that  the  trans-
formation between r and ξ is not injective, which is obvi-
ous because both  and  map to the single point

. As a result, we eliminate this case.
In the last case, the asymptotic assumption involves 

A2ξ4r′(ξ)4 ∼ −ξ2r(ξ)6F∞r′(ξ)2, (E19)

 

A2ξ4r′(ξ)4≫ r(ξ)8, ξ2r(ξ)6F∞r′(ξ)2≫ r(ξ)8,

(E20)

whose solutions are inevitably complex. Thus, this case is
not in our consideration.
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