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Abstract: Using the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, we study the holographic
Schwinger effect in an anisotropic background with the Gauss-Bonnet term. As the background geometry is aniso-
tropic, we consider both cases of the test particle pair and the electric field perpendicular to and parallel to the aniso-

tropic direction. It is shown that the Schwinger effect is enhanced in the perpendicular case when anisotropy rises. In

the parallel case, this effect is reversed. Additionally, the potential barrier and the critical electric field in the parallel

case are more significantly modified by anisotropy compared to the perpendicular case. We also find that the pres-

ence of the Gauss-Bonnet coupling tends to increase the Schwinger effect.
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I. INTRODUCTION

In quantum electrodynamics, the Schwinger effect, a
striking manifestation of the nontrivial structure of the
quantum vacuum, materializes virtual electron-positron
pairs into real particles under the influence of a potent ex-
ternal electromagnetic field. Schwinger conducted a de-
tailed study on this phenomenon in 1951, wherein he cal-
culated the production rate I under the condition of a
weak coupling and weak field [1]. Affleck-Alvarez-Man-
ton (AAM) subsequently calculated it just using a weak-
field approximation [2], obtaining the following result
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Here, the created particles’ mass and charge are denoted
by m and e, respectively. E is the external electric field.
Far from being unique to QED, the Schwinger effect is a
pervasive phenomenon for various quantum field theor-
ies coupled to an abelian gauge field. Nevertheless, the
Schwinger effect is typically non-perturbative because it
requires an extremely strong electric field to be signific-
ant, making it challenging to evaluate within the frame-
work of quantum field theory. To address this challenge,
the use of holography, specifically the AdS/CFT corres-
pondence — a potent link between quantum gravity in a

higher-dimensional anti-de Sitter space and conformal
field theory on its boundary — presents a promising altern-
ative approach, making the evaluation of the Schwinger
effect within this framework particularly compelling
[3—5]. Semenoff and Zarembo studied the pair creation in
the N =4 supersymmetric Yang-Mills (SYM) theory,
which is dual to a probe D3-brane placed at an intermedi-
ate position in the bulk and found [6]
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where the value of the critical field E. is consistent with
the DBI results. Inspired by Semenoff and Zarambo ’s
work, numerous efforts have been made in this direction
to study the Schwinger effect. In Ref. [7], the universal
aspects of a holographic Schwinger effect were con-
sidered in general backgrounds. The holographic
Schwinger effect in some AdS/QCD models was studied
[8, 9]. The pair production in a confining D3-brane back-
ground with chemical potential was investigated in [10].
The potential analysis of the holographic Schwinger ef-
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fect in a magnetized background was conducted in [11].
Other important works can be found in [12—20].

Anisotropy refers to the distinct characteristics exhib-
ited by certain directions or dimensions in a medium or
spacetime, which can arise from diverse sources includ-
ing magnetic fields, rotation, deformation, or phase trans-
itions. It plays a crucial role in various systems, ranging
from condensed matter physics to cosmology, and it is
important when capturing the behavior of realistic sys-
tems such as quark-gluon plasma (QGP) or condensed
matter systems that deviate from isotropy or homogen-
eity. One motivation for this work comes from the experi-
ments showing that the QGP created in an ultra relativist-
ic heavy ion collision is locally anisotropic in its early
stages as the system expands predominantly in the direc-
tion of the collision axis [21, 22]. Mateos and Trancanel-
li have made significant progress in the study of aniso-
tropy by developing a IIB supergravity solution dual to a
spatially anisotropic N =4 SYM plasma [23, 24]. In
Refs. [25—27], the static potential, the drag force, and the
jet quenching parameter in anisotropic plasma were dis-
cussed. Further research in this area can be found in
[28—32]. In RHIC and LHC experiments, heavy ion colli-
sions produce strong electromagnetic fields as well as an-
isotropy; therefore, it is interesting to study the impact of
this anisotropy on the Schwinger effect, with promising
prospects for its observation in the future.

In addition to anisotropy, given the close connection
between the holographic Schwinger effect and string the-
ory, we seek to investigate the Schwinger effect with
higher curvature corrections, which naturally arise in the
low-energy effective action of heterotic string theory.
Here, we focus on the Gauss-Bonnet term, a leading cor-
rection to Einstein gravity that preserves the ghost-free
property of the field equations [33]. In Refs. [19, 20], the
authors studied the holographic Schwinger effect with the
Gauss-Bonnet term. Extending prior work, we investig-
ate the influence of both anisotropy and the Gauss-Bon-
net coupling on the Schwinger effect, as their combined
influence is yet to be studied.

In this study, we focus on the holographic Schwinger
effect in the 5-dimensional AdS-axion-dilaton system
with a Gauss-Bonnet term and anisotropy adopted using
an axion field. Our goal is to investigate how anisotropy
and the Gauss-Bonnet coupling affect the Schwinger ef-
fect at a qualitative level. Our paper is organized as fol-
lows. In the next section, we introduce the 5-dimensional
AdS-axion-dilaton system with a Gauss-Bonnet term,
which was proposed in [34]. In Sec. III, we perform a po-
tential analysis considering the anisotropic background
metric and focus on the effects of anisotropy. In Sec. IV,
we analyze the impact of the Gauss-Bonnet coupling on

the Schwinger effect and the critical electric field. A sum-
mary and discussion are presented in the final section.

II. BACKGROUND GEOMETRY

The 5-dimensional AdS-axion-dilaton gravity action
with a Gauss-Bonnet term is given by [34]
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where ¢ and y are the dilaton and axion scalar fields, re-
spectively. Agp is the Gauss-Bonnet coupling and

Lo = R2 - 4Rmann + RmnrsRm”” (5)

is the Gauss-Bonnet term. The range of Agp is

7 9 .
~36 < Ags £ —, where the lower bound ensures a posit-
ive-definite boundary energy density and the upper bound

prevents causality violation at the boundary [35].  is a
parameter with dimensions of length, and we set it to one.
To have a well-defined variational problem, we include a
surface term denoted by Sgu. As discussed in [36], the
metric of the black brane solution takes the form

ds? =G, dx"dx" = 12 ( — F(u)B(u)ds* + dx*
u

d 2
+dy? + H(u)dz* + %) , (6)
with
x=az, ¢=¢@), (7

where u is the radial coordinate describing the 5th dimen-
sion. u = uy 1s the event horizon and u =0 is the bound-
ary. The axion field introduces spatial anisotropy in the z-
direction controlled by the anisotropy parameter a. Here,
the axion field with the form y = az is dual to the SYM
theory deformed by a f-parameter, 6 = 2nnz, z denotes the
spatial coordinate, and » is the number density of D7
number per unit length with dimensions of energy; this
deformation breaks isotropy and acts as an anisotropic
external source [24]. Limited to cases with small aniso-
tropy, we are able to obtain analytical solutions to the
dilaton field ¢ and the metric components F, B, and H at
order O (a?), as described in [36]
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Then, the temperature can be given as
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III. POTENTIAL ANALYSIS WITH
ANISOTROPY

As the background geometry is anisotropic, it is reas-
onable to consider the test particle pair to be perpendicu-
lar (denoted by “_L”) to and parallel (denoted by “||”) to
the direction of anisotropy.

First, we study the test particle pair along the direc-
tion transversal to the anisotropy. In this case, the co-
ordinates are parameterized by

t=1, x=o0, y:z:(), u:u(o’) (14)

The classical string action can reduce to the Nambu-

Goto action
S = TF/do-d‘rlZ: TF/da'd'r,/deth , (15)

| . . . .
where Tr = ~— 1is the string tension and gup is the in-

Y04
duced metric on the string world sheet embedded in the
target space. Then, the lagrangian density is found to be

L= /detg,s = % /' Fu)B(u) + B(u)i2. (16)

Note that the action does not depend on o explicitly;
therefore, the corresponding Hamiltonian is a constant,
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that is

H:L—Euz Constant . (17)
ot

Considering the boundary condition

d
=—u=0, u=uc(uy < u. <up), (18)
do

where the probe D3-brane is located at an intermediate
position (u = uy) between the horizon and the boundary.
The configuration of the string world sheet is depicted in
Fig. 1. Then, a differential equation is derived

o du _ NFw) V/—B(uc)F(uo)u* + Bu)F (wyu? (19)
"o T 12 Bl F(ue) '

By integrating this expression, the separation length x, of
the particle pair when perpendicular to the anisotropy can
be written as

z/u( du u2 VB(”C)F(MC)
w  NFW) \/=Buc)F(u)u* + Bu)F (uyu?’

(20)

The sum of potential energy (PE) and static energy (SE)
of the string is given by

e Bw)u \NF(u)
Vi =2T, / du < .
S = 2 =Bl Fugu® + Ba F

21)

The next task is to calculate the test particle pair parallel
to the anisotropy. The coordinates are parameterized by

x=y=0, u=u(o). (22)

By repeating the previous calculation, the separation
length x; of the particle pair when parallel to the aniso-

Probe Boundary
|
I
|
! -~
[ i T
1
v |
U U Uo 0
Fig. 1. String configuration.

tropy is

X 22/ Ldu
Uy

5 u? VB(ue)F (ue)H ()
VE@HW) \/~B(ue)F(u) H(u)u*+ Bu) F () H(uyut
(23)
The sum of PE and SE in the parallel case is
Vier+seyy =2TF / du
o B(u)u? VF(u)H(u)
u? \/=B(ue)F (ue)H(u)u* + Bu)F (u)H(uyu?”
(24)

Next, we calculate the critical electric field E.. The DBI
action is given by

SDBI__TD3/d4 xy/—det (G +Fuy), Tps=

gs (27r)3
(25)

where Tp; is the D3-brane tension. First, we consider the
electric field perpendicular to the anisotropic direction.
We can then find

_ Ba)F(w)

5 2n’E, O 0
" 1
—ZFCY/EL - 0 0
G/,lV + 7_71\/ = u 1 s
0 0 - 0
H
0 o o HW
u
(26)
which leads to
( )

det (G + Fo) = —2 (~B@)F(u) +4E2 2u*a®).  (27)

Plugging (27) into (25) and making the probe D3-brane
located at u = ugy, we get

_H(u 0)
up

(=B(uo)F (uo) +4E2 n2uga?).
(28)

SpBI = _TD3/d4x

The quantity under the square root of (28) should be non-
negative. Thus, we require
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H
- b(;é") (=Buo)F(up) + 4E> n2ula®) > 0. (29)
As a result, the critical field is obtained by
B(ug)F
Eoy=Tr W (30)
0

Using the same method, the critical field when the elec-
tric field is parallel to the anisotropy can be found

B(”O)F(MO)H(”O).

)
Uy

Eqy=Tr (31)

For convenience, we introduce a dimensionless para-
meter

Sl

(32)

When the particle pair and the electric field are perpen-
dicular to the anisotropy, the total potential Vi) of the
pair can be written as

Vioww) = Vicp+syw) —Erxy

= VicP+SEy L) — @E )Xy . (33)

When the pair and the electric field are parallel to the an-
isotropy, the total potential Vi) of the pair will be

Viotany = Vicr+sexay — Ejx

= Vier+sey) — @Ec(X.- (34)

In this section, we mainly focus on the effect of the
anisotropy on the separation length, the total potential,
and the critical field. We now discuss the numerical res-
ults. Fig. 2 shows the correlation between the separation
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Fig. 2.
Right: The pair is parallel to the anisotropy.

length x and u,. for different anisotropy parameters. The
results of Fig. 2 reveal that the presence of anisotropy de-
creases the maximum value of the separation length. Fur-
thermore, it seems that the separation length varies more
markedly in the direction of the pair parallel to the aniso-
tropy compared to the transverse case.

In Fig. 3, we plot the total potential Vi as a function
of the separation length x for different values of a when
T =0.1 GeV, a=0.03GeV, and Agg = 0.01. In both cases,
we can find that when a < 1 (E < E,), the potential barri-
er is present and the Schwinger effect can be explained as
a tunneling process. When a =1 (E = E,), the potential
barrier vanishes and there is no suppression of the
Schwinger effect. When a > 1 (E > E,), the pair produc-
tion is catastrophic and the vacuum becomes unstable.
The results of above analysis are consistent with those re-
ported in [37].

To demonstrate the effect of anisotropy on the poten-
tial barrier, in Fig. 4 we fix @ = 0.6 and plot the total po-
tential Vi, versus x when the particle pair and the electric
field are perpendicular to the anisotropy as well as when
they are parallel to the anisotropy. From the left panel of
Fig. 4, we can see that for a fixed a, an increase in the an-
isotropy parameter a leads to a decrease in the height and
width of the barrier. It is known that a higher potential
barrier makes it more difficult for the produced pair to es-
cape to infinity. Therefore, the presence of anisotropy
tends to increase the Schwinger effect when the particle
pair and the electric field are perpendicular to the aniso-
tropy. From the right panel of Fig. 4, we can find that the
anisotropy increases the height and width of the potential
barrier, which weakens the Schwinger effect when the
pair and the electric field are parallel to the anisotropy.
The above results are in qualitative agreement with the
findings of [31, 32]. It should be noted that the potential
barrier is more visibly affected by the anisotropy in the
parallel case because the anisotropy parameter has a
greater influence on the anisotropic direction.

Moreover, to investigate the effect of anisotropy on
the critical electric field, we plot E. as a function of the

2576 F
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(color online) Separation length x versus u, when T =0.1 GeV and Agg = 0.01. Left: The pair is perpendicular to the anisotropy.
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Fig. 3. (color online) Total potential Vi, as a function of the separation length x for different values of o when 7T =0.1 GeV,

a=0.03GeV, and Agg =0.01. Left: The pair and the electric field are perpendicular to the anisotropy. Right: The pair and the electric

field are parallel to the anisotropy.
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Fig. 4. (color online) Total potential Vi, as a function of the separation length x when T =0.1 GeV, Agp =0.01, and @ = 0.6. Left: The

pair and the electric field are perpendicular to the anisotropy. Right: The pair and the electric field are parallel to the anisotropy.
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(color online) E. versus the anisotropy parameter a when T = 0.1 GeV and Agg = 0.01. Left: The the electric field is perpendic-

ular to the anisotropy. Right: The electric field is parallel to the anisotropy.

anisotropy parameter @ when T = 0.1 GeV and Agg = 0.01
in Fig. 5. We can see that E. shows a slight decrease with
an increase in a inthe perpendicular case, which sug-
gests that increasing the anisotropy strengthens the
Schwinger effect. In contrast, E, significantly rises with a
in the parallel case, thus reducing the Schwinger effect.
This result is consistent with the findings shown in Fig. 4.

IV. POTENTIAL ANALYSIS WITH GAUSS-
BONNET COUPLING
In Fig. 6, we plot the total potential V. against x for
@=03,06, 1.0 , and 1.3, when T =0.1 GeV, a=0.03

GeV, and Agg =0.05. We can see that when a < 1, the
potential barrier exists and Vi, decreases as the electric
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X X
Fig. 6. (color online) Total potential Vi, as a function of the separation length x for different values of o when 7 =0.1 GeV,

a=0.03GeV, and Agp = 0.05. Left: The pair and the electric field are perpendicular to the anisotropy. Right: The pair and the electric

field are parallel to the anisotropy.

field becomes greater. When « > 1, the production of the
particle pairs is simpler.

In order to determine how the Gauss-Bonnet coup-
ling modifies the Schwinger effect, we plot the potential
Viot Versus x with a = 0.3 for different values of Agg in
Fig. 7. From the figure, we can see that in both cases, the
height and width of Vi, decrease as Agp increases for a
fixed a. Therefore, one might infer that the existence of

the Gauss-Bonnet coupling reduces the potential barrier,
thus enhancing the Schwinger effect, which is in agree-
ment with the calculations of [19, 20].

Further, to understand how the Gauss-Bonnet coup-
ling influences the critical electric field, we plot E.
against Agp in Fig. 8. It is found that E. decreases when
Acp increases; thus, the Schwinger effect is more likely
to occur when the Gauss-Bonnet coupling exists, which is

15F 15F

1.0 1.0

S osf < osf
0.0 0.0

-05F \ -0.5F

00 05 0 5 20 25 00 05 0 I 20 25
X X
Fig. 7. (color online) Total potential Vi as a function of the separation length x when 7 =0.1 GeV, a=0.03 GeV, and « =0.3. Left:

The pair and the electric field are perpendicular to the anisotropy. Right: The pair and the electric field are parallel to the anisotropy.

6.24906
6.24904 |
6.24902

3

& 624000
6.24898

6.24896 |

" " " " "
-0.04 -0.02 0.00 0.02 0.04

Acs

Fig. 8.
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(color online) E, against the Gauss-Bonnet coupling parameter igg when 7'=0.1 GeV and a=0.03 GeV. Left: The electric

field is perpendicular to the anisotropy. Right: The electric field is parallel to the anisotropy.
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in line with the previous potential analysis.

V. DISCUSSION AND CONCLUSION

In this study, we investigated the effect of anisotropy
and the Gauss-Bonnet coupling on the holographic
Schwinger effect by considering a 5-dimensional AdS-
axion-dilaton system with a Gauss-Bonnet term. By util-
izing the AdS/CFT correspondence, we analyzed the total
potential of the particle pair in an external electric field
and calculated the critical value for the electric field via
DBI action. The results indicate that the anisotropy and
Gauss-Bonnet coupling can modify the total potential and
the critical electric field in different ways, hence affect-
ing the Schwinger effect.

When the particle pair and the electric field are per-
pendicular to the anisotropy, the potential barrier will be
reduced due to the effect of the anisotropy, thus enhan-
cing the Schwinger effect. Meanwhile, in the parallel
case, the anisotropy tends to increase the potential barrier,

thus weakening the Schwinger effect. The modification
of quark tension by anisotropy, which increases in the
parallel case and decreases in the perpendicular one, may
be an interpretation of this result [38]. Regarding the
Gauss-Bonnet coupling, in both the parallel and perpen-
dicular cases, the potential barrier decreases as the Gauss-
Bonnet coupling increases, thus favoring the Schwinger
effect. Moreover, we note that the results of the potential
analysis and the calculations of the critical electric field
from the DBI action are in agreement.

Finally, it will be interesting to study the Schwinger
effect in a spatially-dependent or time-dependent aniso-
tropy background, which we will leave for further re-
search.
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