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Abstract: We investigate the behaviors of the scalar operator and holographic entanglement entropy in the

metal/superconductor phase transition with Power-Maxwell electrodynamics in a higher dimensional background

away from the probe limit. We observe that the larger parameters b and g make the condensation of the scalar operat-

or more difficult, and the critical temperature decreases more slowly as the factors increase. In the belt geometry, the

value of the entanglement entropy in the metal and superconductor phases is not only related to the the strength of

the Power-Maxwell field but also to the width of the strip geometry. At the phase transition point, the discontinuous
slope of entanglement entropy is universal for different model factors. It turns out that holographic entanglement en-
tropy is a powerful tool to probe the properties of the phase transition in this holographic superconductor model.
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I. INTRODUCTION

As a strong-weak duality, the anti-de Sitter/conform
field theory (AdS/CFT) correspondence reveals that cer-
tain strongly coupled theories can be described by an ex-
tra-dimensional dual theory that contains weak gravita-
tional interactions [1—4]. In recent years, this correspond-
ence has been proven to be an extremely useful approach
to holographically study the properties of the phase trans-
ition in high temperature superconductors [5—8]. The
physical picture considers an Einstein-Maxwell-scalar
field theory with a negative cosmological constant. A Re-
issner-Norstrom-AdS (RN-AdS) black hole will become
unstable to form scalar "hair" as the temperature of the
black hole decreases. This condensation of the "hair" in-
duces spontaneous U(1) symmetry breaking [6], which
leads to a finite vacuum expectation value of the dual op-
erator on the field theory side.

On the other hand, entanglement entropy is expected
to be a key quantity to characterize difficult phases and
the associated phase transition in quantum many-body
physics [9, 10]. Nevertheless, the investigation of entan-
glement entropy is extremely difficult, except for the case
in 1+1 dimensions. According to the AdS/CFT corres-

pondence, Refs. [11, 12] present a holographic proposal
for computing the entanglement entropy of a strongly in-
teracting system from a weekly coupled gravity dual.
Specifically, considering a subsystem A of the total
boundary system, the entanglement entropy of A with its
complement can be calculated from the minimal area sur-
face y4 in the bulk with the same boundary A of A
[13, 14].

_ Area(ya)

Sa= 4G%+l > (1)

where y, is the d—1 dimensional static minimal surface in
AdS, + 1, whose boundary is given by dA, and G9! is
the d+ 1 dimensional Newton constant in Einstein grav-
ity in the AdS space. In this novel way, holographic en-
tanglement entropy has been widely applied to explore
the properties of phase transition in various aspects of
holographic superconductor models with a linear Max-
well gauge field [15—28].

Generalized to nonlinear electrodynamics, we first
studied holographic entanglement entropy in the insulat-
or/superconductor phase transition with Born-Infeld elec-
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trodynamics [29] and found that the the critical width of
confinement/deconfinement is dependent on the Born-In-
feld parameter. Interestingly, in the metal/superconduct-
or phase transition, holographic entanglement entropy
with respect to the Born-Infeld factor is not monotonic in
the superconductor phase [30]. In this paper, we focus on
holographic entanglement entropy with Power-Maxwell
electrodynamics. The Lagrangian of the Power-Maxwell
field is (—F,,F*")?. Interestingly, this Lagrangian is un-
der the conformal transformation g, —Q%g, and
A, — A,. Another attractive property of Power-Maxwell
electrodynamics is its conformal invariance in d-dimen-
sional space-time as the power of the Power-Maxwell
field g = d/4. In the context of the AdS/CFT correspond-
ence, the Power-Maxwell field has been considered as
electrodynamics sours in various holographic supercon-
ductor models [31-36].

Motivated by string theory, which contains gravity
and requires more than four dimensions [37], the authors
in Ref. [38] considered the case in a higher dimensional
AdS black hole background and found that the slope of
holographic entanglement entropy at the phase transition
point is discontinuous and corresponds to the second or-
der transition. The aim of this paper is to extend the ex-
ploration of holographic entanglement entropy with
Power-Maxwell electrodynamics in a higher dimensional
AdS black hole background and observe how the Power-
Maxwell field affects the properties of the phase trans-
ition in this study.

This paper is organized as follows. In the next sec-
tion, we introduce the basic field equations and boundary
conditions of the Power-Maxwell holographic supercon-
ductor in n-dimension AdS black hole spacetime. In Sec.
III. we study the condensation of the scalar operator and
the temperature of the phase transition in the full back-re-
action system. In Sec. IV, we explore the behaviors of en-
tanglement entropy via the holographic approach. The fi-
nal section is devoted to the conclusion.

II. EQUATIONS OF MOTION AND BOUNDARY
CONDITIONS
The action of the holographic superconductor model

with Power-Maxwell electrodynamics in d-dimensional
AdS spacetime reads as

el (e 4222)

~ IVt =AY —m? |y +b(—F,”Ff”)q} )
where g and Gy are the determinant of the metric and the

gravitational constant, respectively, R is the Ricci scalar
curvature, —(d — 1)(d —2)/2L? is the negative cosmologic-

al constant of d-dimensional AdS spacetime, where L is
the AdS radius, which will be scaled to unity in our ex-
ploration, y represents a scalar field with mass m, A, is
the electromagnetic four-potential in general relativity,
and F,, =d,A,—-0,A,. The factor b is a coupling factor
and q is the power parameter of the Power-Maxwell field.
In the case where b — 1/4 and g — 1, the Power-Max-
well Lagrangian will reduce to the Maxwell case.

Taking the full backreaction into consideration, the
metric ansatz for the d-dimensional planar black hole is

dr? ",
ds? = —f(r)e¥dr* + f(irr) +r2hijdx'dx, 3)

where f(r) is the metric function and asymptotically be-
comes the metric of the AdS space, y(r) is the backreac-
tion effect, and h;;dx'dx’ is the line element of the (d-2)-
dimensional hypersurface. Then, the Hawking temperat-
ure of the black hole is

f’(r+)e_X(’+)/2

4r ’ @

Ty

where r. is the horizon of the black hole, satisfying
f(ry) =0. For the purpose of obtaining the equations of
motion of the Power-Maxwell holographic superconduct-
or model in d-dimensional AdS black hole spacetime, we
consider the matter fields in the forms [5]

Ale‘xﬂ = ¢(r)dt» l// = 'J’(’”)a (5)

Based on the above ansatz of the gravitational field g,
scalar field y, and gauge field A, the field equations can
be written as

v (2 Yy L (S Yo

2 f N f
(6)
" d-2 X'\ ., (=2)1ex179 y2p220
¢ +(r(2q—1)+5)¢_ bq(1-2¢) 7 ¢=0,
(7)
’ 2r 72 6X¢21!/2 _
X+d—2(¢’ e )—0’ (8)
d-3
2.2
+f (w’z + exfczw ) +b(=2)7(1 —2q)e%¢’2q} =0, (9

where a prime denotes the derivative with respect to 7,
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and 162G =1 is used, imposing the boundary conditions
below [39]. At the horizon r,, one must have

$(r) = G1(r=r) + da(r—r) +.., (10)
Y(r) = Yo+ (r—ro) +yalr—ri) +.., (11)
X() =x0+x10r=r) +xar=re) + ..., (12)
F) = filr=r)+ falr=r)’ +.... (13)

At the asymptotic AdS boundary (r — ), the asymptot-
ic behaviors of the solutions are

pl/2a-1 - . 'R

2
X0, o $vu- o Y A
(14)

with
A= %[(d— D+ /(d—172+4m?], (15)

where u and p are interpreted as the chemical potential
and charge density in the dual field theory. According to
AdS/CFT duality, y_ =<O- >, ¥, =< O, > correspond to
the vacuum expectation values of the dual operator O.
Taking the Breitenlohner-Freedman bound [40] into con-
sideration, the mass of the scalar field must be restricted
as m?> > —(d—1)>/4. On the other hand, requiring a finite
value for the gauge field at the asymptotic boundary, the
range for the factor should be 1/2 <g<(d-1)/2 .

III. CONDENSATION OF THE SCALAR
OPERATOR

In this section, our aim is to study the condensation of
the scalar operator < O, > with the Power-Maxwell field
in higher dimensional spacetime. Substituting the above
boundary conditions (Egs. (10)—(15)) into the field equa-
tions (Egs. (6)—(9)), we can obtain the solution of the
holographic superconductor using the shooting method.
For concreteness, we focus on the case of d=35,
m?* = —15/4. To obtain a stable theory, we set <O_ >=0
and use the scalar operator < O, > to describe the proper-
ties of phase transitions in the dual CFT. A typical solu-
tion with nonvanishing scalar hair for different values of
the parameters b and g is presented in Fig. 1. As shown in
the figure, both b and ¢ have an influence on the scalar
field y(z), static electric potential ¢(z), and metric func-
tion f(z). The parameter b has a stronger effect on the

functions ¥(z) and ¢(z) than parameter b. However, the
effect of factor b on the function f(z) is weaker than that
of factor g. Therefore, it is of interest to study the effect
of the factors b and ¢ on the phase transition in this sys-
tem.

In Fig. 2, we plot the property of phase transition for
this physical system with different factor b values in the
dimensionless quantities <O, >3 /p'/3 and T/p'/3.
From the left panel, we observe that when the temperat-
ure is below a critical value T, for a given factor b, con-
densation of the operator emerges, which can be identi-
fied as a superconductor phase. However, when T > T,
the scalar field is vanishing, which indicates the metal
phase. The behavior of the scalar operator < O, > at the
phase transition point 7. is <O, >« (1-T/T.)"/?, which
shows that the phase transition is second order. It is worth
noting that the condensate tends to a constant as 7 — 0,
which is similar to BCS theory, and this behavior is also
present for different parameter b values. Furthermore, the
effect of the factor b on the critical temperature 7. of the
phase transition is shown in the right panel. With the in-
crease in the factor b, the critical temperature decreases,
which indicates that a larger parameter » makes condens-
ation more difficult. Interestingly, the critical temperat-
ure decreases more slowly as the factor b increases.

The behavior of the condensation for this physical
system with different factor ¢ values is depicted in Fig. 3.
We find that the behavior of the operator < O, > with re-
spect to the temperature T for each ¢ is similar to that of
the parameter b, and the phase transition is a second-or-
der phase transition, which is shown on the left side of
Fig. 3. In the right plot, it is interesting to note that in-
creasing ¢ decreases the critical temperature 7., and the
critical temperature decreases more slowly. More import-
antly, compared with the influence of parameter » on the
critical temperature, we find that parameter ¢ has less in-
fluence on the critical temperature of the phase transition.

IV. HOLOGRAPHIC ENTANGLEMENT
ENTROPY

In this section, we further investigate the properties of
the phase transition via holographic entanglement en-
tropy in the physical holographic model. We consider a
straight geometry A with a finite width ¢ along the x dir-
ection and infinitely extending in the y and t directions.
The holographic dual surface y4 is defined as a three-di-
mensional surface,

R R W W
t=0, x=x(r), ) <y<§(R—>00), ~5 <T< ?(W—WO),

(16)

and the holographic surface y# in this direction starts

from x = 2 at r = —, extends into the bulk until it reaches
€
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(color online) Effects of the factors b and ¢ on the functions ¥(z), ¢(z), and f(z).
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(color online) Operator (O.) as a function of the temperature T for different b (left plot). The right plot presents the behavior

of the critical temperature 7, as a function of the factor 4. The lines from top to bottom correspond to » =0.25 (black), b =0.30 (red),

and b =0.35 (green).
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(color online) Operator (O.) as a function of the temperature T for different ¢ (left plot). The right plot presents the behavior

of the critical temperature 7. as a function of the factor ¢. The lines from top to bottom correspond to ¢ = 1.0 (black), ¢ = 1.1 (red), and

g = 1.2 (green).

r=r., then returns back to the AdS boundary r= 1 at
€

¢ . . .
x=-z. The induced metric on the hypersurface y4 is

2
%) > dr? + rzdy2 +r2d7.

(17)

o 1
ds® = hydx'dx/ = | — +77 (
Y (f(r)

According to the RT formula, Eq. (1), the entanglement
entropy in the strip geometry can be obtained as

RW [,

1
26s A r*  —— +r2(dx/dr)dr,

Sl o)

(18)

1. .
where r = — is the UV cutoff. Noting that the above ex-
€

pression can be treated as a Lagrangian with the x direc-
tion thought of as time, the equation of motion for the
minimal surface from Eq. (18) is given by

r*(dx/dr) VF(r) _ 0
V12 f()dx/dr? "

(19)

Considering that the surface is smooth at r=r,,
dx/dr|,=, = 0. Using the variable z = 1/r, the width of the
belt geometry ¢ in terms of z is

g Z Z3
— = dz——————, 20
2 / B2 (20)

and the holographic entanglement entropy in the z-co-
ordinate can be rewritten as

g _RW “ d z 1 RW ( L, )
= — —_—_,— — — —_— KY .
AT2Gs ) 2 V@ -5)2f(z) 4Gs \€

@1
Note that the divergent part of S 4, known as the area
law, will not change because this part is only sensitive to
UV quantities [11, 12]. The second term s is independent
of the cutoff and is finite; hence, it is a physical quantity.
Notice that the result in Eq. (21) does not include a sub-
leading divergent term. This is because the subsystem A
has straight belt geometry [12]. In this study, we focus on
the holographic entanglement entropy s in the holograph-
ic superconductor model and explore its dependence on
the temperature 7, coupling parameter b, Power-Maxwell
factor b, and belt width ¢.

The behaviors of s with respect to the temperature for
various factors b and q with the dimensionless quantities
s/pi, Lp:, T/p: are presented in Fig. 4. From the left-
hand plot, we observe that the values of the critical point
T. at the phase transition for different b, represented by
vertical dashed lines, are the same as the values obtained
by the scalar operator. The entanglement entropy at the
phase transition point is continuous, but its slope has a
jump, which means that the phase transition here is of the
second order. With the increase in the parameter b, the
entanglement entropy at 7, increases. Note that the entan-
glement entropy in the superconductor phase, represen-
ted by solid lines in the figure, is smaller than that in the
metal phase, which is represented by dotted solid lines.
This implies some type of new degree of freedom similar
to that a Cooper pair would form after the phase trans-
ition. As shown on the right of Fig. 4, the influence of the
factor ¢ on the holographic entanglement entropy s is
similar to the case of the factor b. Interestingly, the effect
of the factor ¢ on the holographic entanglement entropy is
weaker than that of the parameter b.

By comparing the critical temperature of the scalar
operator with that of holographic entanglement entropy in
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Table 1.
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Fig. 5. (color online) Holographic entanglement entropy s as
a function of the temperature 7 for different factors ¢. The

lines from top to bottom correspond to ¢£=1.1 (green), £=1.0
(red), and ¢ =0.9 (black).

Table 1, we find that the values of the critical temperat-
ure 7, calculated from the condensation of the scalar op-
erators are equal to the results obtained from the behavi-
ors of holographic entanglement entropy. In other words,
entanglement entropy is a good probe for studying the
phase transition point.

dimensional AdS black hole spacetime using the scalar
operator and entanglement entropy. According to the be-
havior of the scalar operator in this physical model, the
scalar operator condensates at the critical temperature
pointT,, which indicates that phase transition occurs. Fur-
thermore, the phase transition is of a second order. With
the increase in the factors b and g, the critical temperat-
ure decreases. In other words, larger values of the para-
meters b and ¢ make the phase transition more difficult.
We also find that the critical temperature decreases more
slowly as the parameters increase. From the holographic
study of entanglement entropy, we note that entangle-
ment entropy at the critical point is continuous, but its
slope is discontinuous for various factors, and the value
of the critical point is consistent with the phase transition
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temperature obtained by the scalar operator. In other
words, entanglement entropy is a powerful tool to search
for the phase transition point and the order of phase trans-
ition. Considering the effect of the coupling parameter b,

Power-Maxwell factor ¢, and belt width ¢ on entangle-
ment entropy, both in the superconductor and metal
phases, the entanglement entropy increases as the para-
meters increase.

References

(1]
(2]
(3]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231-252
(1998), arXiv:hep-th/9711200

S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.
Lett. B 428, 105-114 (1998), arXiv:hep-th/9802109

E. Witten, Adv. Theor. Math. Phys. 2, 253-291 (1998),
arXiv:hep-th/9802150

O. Aharony, S. S. Gubser, J. M. Maldacena et al., Phys.
Rept. 323, 183 (2000), arXiv:hep-th/9905111

S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys.
Rev. Lett. 101, 031601 (2008), arXiv:hep-th/9905111

S. S. Gubser, Phys. Rev. D 78, 065034 (2008),
arXiv:0801.2977

S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, JHEP 12,
015 (2008), arXiv:0810.1563

R. G. Cai, L. Li, Li-Fang Li ef al., Sci. Chin. Phys. Mech.
Astron. 58, 060401 (2015), arXiv:1502.00437

R yu, S., Hatsugai, Y., Phys. Rev. B 73, 245115 (2006),
arXiv:cond-mat/0601237

L. Amico, R. Fazio, A. Osterloh et al., Rev. Mod. Phys. 80,
517 (2008), arXiv:quant-ph/0703044[QUANT-PH]

S. Ryu and T. Takayanagi,, Phys. Rev. Lett. 96, 181602
(2006), arXiv:hep-th/0603001

S. Ryu and T. Takayanagi, JHEP 0608, 045 (2006),
arXiv:hep-th/0605073

T. Nishioka, S. Ryu, and T. Takayanagi, J. Phys. A 42,
504008 (2009), arXiv:0905.0932[hep-th]

T. Takayanagi, Class. Quant. Grav. 29, 153001 (2012),
arXiv:1204.2450[ gr-qc]

T. Albash and C. V. Johnson, JHEP 1202, 095 (2012),
arXiv:1110.1074[hep-th]

R. C. Myers and A. Singh, JHEP 04, 122 (2012), arXiv:hep-
th

J. de Boer, M. Kulaxizi, and A. Parnachev, JHEP 1107, 109
(2011), arXiv:1101.5781[hep-th]

L. -Y. Hung, R. C. Myers and M. Smolkin, JHEP 1104, 025
(2011), arXiv:1101.5813[hep-th]

T. Nishioka and T. Takayanagi, JHEP 0701, 090 (2007),
arXiv:hep-th/0611035

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]
[32]

(33]
[34]

[35]
[36]
[37]

[38]
[39]

[40]

115108-7

I. R. Klebanov, D. Kutasov, and A. Murugan, Nucl. Phys. B
769, 274 (2008), arXiv:0709.2140[hep-th]

A. Pakman and A. Parnachev, Nucl. Phys. B 769, 097
(2008), arXiv:0805.1891[hep-th]

N. Ogawa and T. Takayanagi, JHEP 1110, 147 (2011),
arXiv:1107.4363[hep-th]

R.-G. Cai, S. He, L. Li et al., JHEP 2012, 88 (2012),
arXiv:1203.6620

Y. Peng and Q.
arXiv:1403.1393[hep-th]
Y. Ling, P. Liu, C. Niu et al, JHEP 04, 114 (2016),
arXiv:1502.03661[hep-th]
Y. Peng, Phys. Lett.
arXiv:1507.07399[hep-th]
X.-X. Zeng, H. Zhang, and L.-F. Li, Phys. Lett. B 756, 170
(2016), arXiv:1511.00383[gr-qc]

Y. Ling, P. Liu, and J.-P. Wu, Phys. Rev. D 93, 126004
(2016), arXiv:1604.04857[hep-th]

W. Yao and J. Jing, JHEP 05, 058
arXiv:1401.6505[gr-qc]

W. Yao and J. Jing, Nucl. Phys. B 889, 109 (2014),
arXiv:1408.1171[gr-qc]

J. Jing, Q. Pan, and S. Chen, JHEP 1111, 045 (2011)

J. Jing, L. Jiang, and Q. Pan, Class. Quantum Grav. 33,
025001 (2016)

D. Roychowdhury, Phys. Lett. B 718, 1089 (2013)

A. Sheykhi, H. R. Salahi, and A. Montakhab, JHEP 04, 058
(2016)

H. R. Salahi, A. Sheykhi, and A. Montakhab, Eur. Phys. J.
C 76,575 (2016)

A. Sheykhi, F. Shamsi, and S. Davatolhagh, Can. J. Phys.
95, 450 (2017)

A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996),
arXiv:hep-th/9601029

W. Yao, W. Zha, and J. Jing, Eur. Phys. J. C79, 148 (2019)
Y. Peng, Q. Pan, and B. Wang, Phys. Lett. B 699, 383-387
(2011)

P. Breitenlohner and D. Z. Freedman, Annals Phys. 144,
249 (1982)

Pan, JHEP 06, 011 (2014),

B 750, 420-426 (2015),

(2014),


https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/9802150
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/9905111
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/9905111
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevD.78.065034
https://arxiv.org/abs/0801.2977
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1126-6708/2008/12/015
https://arxiv.org/abs/0810.1563
https://doi.org/10.1007/s11433-015-5676-5
https://doi.org/10.1007/s11433-015-5676-5
https://doi.org/10.1007/s11433-015-5676-5
https://doi.org/10.1007/s11433-015-5676-5
https://arxiv.org/abs/1502.00437
https://doi.org/10.1103/PhysRevB.73.245115
https://doi.org/10.1103/PhysRevB.73.245115
https://doi.org/10.1103/PhysRevB.73.245115
https://arxiv.org/abs/0601237
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://arxiv.org/abs/0703044
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/0605073
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://arxiv.org/abs/0905.0932
https://doi.org/10.1088/0264-9381/29/15/153001
https://doi.org/10.1088/0264-9381/29/15/153001
https://doi.org/10.1088/0264-9381/29/15/153001
https://arxiv.org/abs/1204.2450
https://doi.org/10.1007/JHEP02%282012%29095
https://doi.org/10.1007/JHEP02%282012%29095
https://doi.org/10.1007/JHEP02%282012%29095
https://arxiv.org/abs/1110.1074
https://doi.org/10.1007/JHEP04(2012)122
https://doi.org/10.1007/JHEP04(2012)122
https://doi.org/10.1007/JHEP04(2012)122
https://arxiv.org/abs/hep-th
https://arxiv.org/abs/hep-th
https://doi.org/10.1007/JHEP07%282011%29109
https://doi.org/10.1007/JHEP07%282011%29109
https://doi.org/10.1007/JHEP07%282011%29109
https://doi.org/10.1007/JHEP07%282011%29109
https://arxiv.org/abs/1101.5781
https://doi.org/10.1007/JHEP04%282011%29025
https://doi.org/10.1007/JHEP04%282011%29025
https://doi.org/10.1007/JHEP04%282011%29025
https://doi.org/10.1007/JHEP04%282011%29025
https://arxiv.org/abs/1101.5813
https://doi.org/10.1088/1126-6708/2007/01/090
https://doi.org/10.1088/1126-6708/2007/01/090
https://doi.org/10.1088/1126-6708/2007/01/090
https://arxiv.org/abs/0611035
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://arxiv.org/abs/0709.2140
https://doi.org/10.1088/1126-6708/2008/07/097
https://doi.org/10.1088/1126-6708/2008/07/097
https://doi.org/10.1088/1126-6708/2008/07/097
https://doi.org/10.1088/1126-6708/2008/07/097
https://arxiv.org/abs/0805.1891
https://doi.org/10.1007/JHEP10%282011%29147
https://doi.org/10.1007/JHEP10%282011%29147
https://doi.org/10.1007/JHEP10%282011%29147
https://arxiv.org/abs/1107.4363
https://doi.org/10.1007/JHEP07%282012%29088
https://doi.org/10.1007/JHEP07%282012%29088
https://doi.org/10.1007/JHEP07%282012%29088
https://arxiv.org/abs/1203.6620
https://doi.org/10.1007/JHEP04%282014%29185
https://doi.org/10.1007/JHEP04%282014%29185
https://doi.org/10.1007/JHEP04%282014%29185
https://arxiv.org/abs/1403.1393
https://doi.org/10.1007/JHEP04%282016%29114
https://doi.org/10.1007/JHEP04%282016%29114
https://doi.org/10.1007/JHEP04%282016%29114
https://arxiv.org/abs/1502.03661
https://doi.org/10.1016/j.physletb.2015.09.052
https://doi.org/10.1016/j.physletb.2015.09.052
https://doi.org/10.1016/j.physletb.2015.09.052
https://arxiv.org/abs/1507.07399
https://doi.org/10.1016/j.physletb.2016.03.013
https://doi.org/10.1016/j.physletb.2016.03.013
https://doi.org/10.1016/j.physletb.2016.03.013
https://doi.org/10.1016/j.physletb.2016.03.013
https://arxiv.org/abs/1511.00383
https://doi.org/10.1103/PhysRevD.93.126004
https://doi.org/10.1103/PhysRevD.93.126004
https://doi.org/10.1103/PhysRevD.93.126004
https://doi.org/10.1103/PhysRevD.93.126004
https://arxiv.org/abs/1604.04857
https://doi.org/10.1007/JHEP05%282014%29058
https://doi.org/10.1007/JHEP05%282014%29058
https://doi.org/10.1007/JHEP05%282014%29058
https://arxiv.org/abs/1401.6505
https://doi.org/10.1016/j.nuclphysb.2014.10.007
https://doi.org/10.1016/j.nuclphysb.2014.10.007
https://doi.org/10.1016/j.nuclphysb.2014.10.007
https://arxiv.org/abs/1408.1171
https://doi.org/10.1007/JHEP11(2011)045
https://doi.org/10.1007/JHEP11(2011)045
https://doi.org/10.1007/JHEP11(2011)045
https://doi.org/10.1088/0264-9381/33/2/025001
https://doi.org/10.1088/0264-9381/33/2/025001
https://doi.org/10.1088/0264-9381/33/2/025001
https://doi.org/10.1088/0264-9381/33/2/025001
https://doi.org/10.1016/j.physletb.2012.11.019
https://doi.org/10.1016/j.physletb.2012.11.019
https://doi.org/10.1016/j.physletb.2012.11.019
https://doi.org/10.1007/JHEP04(2016)058
https://doi.org/10.1007/JHEP04(2016)058
https://doi.org/10.1007/JHEP04(2016)058
https://doi.org/10.1007/JHEP04(2016)058
https://doi.org/10.1140/epjc/s10052-016-4441-x
https://doi.org/10.1140/epjc/s10052-016-4441-x
https://doi.org/10.1140/epjc/s10052-016-4441-x
https://doi.org/10.1140/epjc/s10052-016-4441-x
https://doi.org/10.1139/cjp-2016-0913
https://doi.org/10.1139/cjp-2016-0913
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/9601029
https://doi.org/10.1140/epjc/s10052-019-6643-5
https://doi.org/10.1140/epjc/s10052-019-6643-5
https://doi.org/10.1140/epjc/s10052-019-6643-5
https://doi.org/10.1016/j.physletb.2011.04.025
https://doi.org/10.1016/j.physletb.2011.04.025
https://doi.org/10.1016/j.physletb.2011.04.025
https://doi.org/10.1016/j.physletb.2011.04.025
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6

	I INTRODUCTION
	II EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
	III CONDENSATION OF THE SCALAROPERATOR
	IV HOLOGRAPHIC ENTANGLEMENTENTROPY
	V CONCLUSION
	REFERENCES

