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Abstract: We study the relation between chiral and U,(1) symmetries in the quark-meson model. Although quarks
and mesons are described in mean field approximation, the topological susceptibility characterizing the U4 (1) break-
ing comprises two components: one controlled by the condensate and the other by the meson fluctuation. The Uyx(1)

restoration is governed by the competition of these components. In a hot medium, the condensates melt. However,
the fluctuation is enhanced. Therefore, the Uy (1) symmetry cannot be solely restored via the temperature effect.
Nevertheless, the baryon density reduces the condensates and fluctuation, and thereby, the U4 (1) symmetry can only

be restored in a dense or dense and hot medium. The strange condensate plays a weak role in the susceptibility, and
the chiral and U, (1) symmetry restorations occur almost at the same critical point.
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I. INTRODUCTION

In quantum chromodynamics (QCD), which referes to
the theory for strong interaction, the chiral symmetry is
broken at the (classical) mean field level [1], and the
U4(1) symmetry is broken at the (quantum) loop level
due to the nontrivial topology of the principle bundle of
the gauge field [2—4]. It is widely accepted that a strongly
interacting system should be in a symmetric state when
the temperature of the system is sufficiently high. Hence,
the chiral symmetry [5] and Uy (1) symmetry [6] are ex-
pected to be restored in a hot medium. However, based
on lattice simulations, while the chiral symmetry is
smoothly restored at the critical temperature T, ~ 155
MeV [7], the Us(1) symmetry is only partially restored
by the temperature effect but still broken at temperatures
above T,, even in the chiral limit [8—11]. Many model
calculations [12—31] at finite temperature with 2 or 2+1
flavors and experimental measurements in high energy
nuclear collisions [32] support the lattice results. Hence, a
natural question is then raised: can the Ux(l) symmetry
be restored? If yes, what is the condition?

Unlike the temperature effect that gradually alters
chiral symmetry, baryon density results in a first-order
chiral phase transition, both in the chiral limit and in the
real world [33]. The density effect for a fermion system is
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a pure quantum effect induced by the Pauli exclusion
principle [34]. The abrupt shift of the chiral condensate,
from a nonzero value to zero in the chiral limit or from a
higher to a lower value in the real world, is driven by the
system's pronounced Fermi surface. We expect that this
jump can aid in restoring the U, (1) symmetry at high ba-
ryon density. The insights on U4(1) breaking at finite ba-
ryon density are relatively rare. Considering the nuclear
collisions on plan, which can create high baryon density
[35], relevant study on the change in Ux(1) symmetry at
finite baryon chemical potential g is required. The goal
of this study is to examine the relation between chiral
symmetry and Us(1) symmetry in a hot and dense medi-
um.

Blocked by the sign problem, lattice QCD simulation
loses its efficacy at large up [36], and we have to con-
sider an effective model to account for the non-perturbat-
ive calculations. There are two types of models that ef-
fectively describe the chiral and Uu(1) symmetries. One
approach operates at the quark level, as exemplified by
the Nambu—Jona-Lasinio (NJL) model [37, 38], while the
other functions at the hadron level, akin to the quark-
meson model [39—41]. In the NJL model, quarks are ele-
mentary particles, and hadrons are treated as quantum
fluctuations above the mean field via random phase ap-
proximation [42]. In the quark-meson model, quarks and
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hadrons are elementary degrees of freedom, which
largely simplify the derivation of mesonic correlation
functions in the calculation of topological susceptibility
for the study of U, (1) symmetry.

The paper is organized as follows. In Sec. II, we
briefly review the (2+1)-flavor quark-meson model, de-
rive the topological susceptibility y, which is the order
parameter for the phase transition from Uy(1) symmetry
breaking to its restoration, and diagrammatically analyze
the condition for the U,(l) restoration in the quark-
meson and NJL models. In Sec. III, we analytically and
numerically calculate the susceptibility and mass split-
ting between # and 1’ mesons at finite temperature and
baryon density, wherein the latter is often used to meas-
ure the degree of Ux(1) breaking. Finally, we summarize
the paper in Sec. IV.

II. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility y is the order paramet-
er of a quantum phase transition. Based on the QCD Lag-
rangian density with a -term [43, 44]:

1 v .
Lz—zevF’a‘ +zp(1y“DH—m)lﬁ+9Q~ (1)

With the gluon field tensor Fj, in both Dirac and color
spaces (u,v=0,1,2,3; a=0,1,2,---,8), we consider the
covariant derivative D,. The quark mass matrix, denoted
as m = diag(mg,mq,my), is defined in flavor space with
light quarks ¢ =u,d and strange quark s. We also ac-
count for vacuum angle 6 and topological charge density
0O, which can be defined as

2
g a oV
Q) =5 F i (OFG (), @

the vacuum energy density of QCD is the path integral of
the action of the system,

e= —‘l/ln f DA, DIDyel £ 3)

in four dimensional space volume V, and the susceptibil-
ity y can be formally defined as

e 4
X = fd T [O(x)Q0)eonnecteds 4

" 002 lo=0 ~

where 7~ denotes the time-ordering operator, (---) de-
notes ensemble average, and only connected diagrams
contribute to the susceptibility.

The topological charge Q corresponds to an infinite
small Ux(1) transformation for the quark field,

W — e?Toy — g —i0ysy/ V6, where T, denotes the Gell-
Mann matrices with the unit matrix Ty = v1/6, normaliz-
ation Tr(T,Tp) = 64/2, equations {T,,Tp}=dup.T¢ and
[Ta,Tp]l =ifapcT¢, and symmetric and anti-symmetric
structure constants du. and fype (dapo = V2/36, and
fap0 =0). Under this transformation, the axial current
J3 = dryuysi is not conserved:

&I = 2Ny Q +2imysy. (5)

We now derive the hadronic version of the susceptib-
ility (4) in the SU3; xSU; quark-meson model, following
Ref. [25]. The model is defined as [39—41]:

Low=Lo+Ly (6)

with the meson section

Ly =Tr(0,0'0"¢) - 1*Tr(¢"0) - A, (Tr(¢T¢))2

~ATe(¢70) + Tr(H@' + ) +c(det(@) + det(@))
(7

and quark section
Lo =0 |iy* (0, —1E260) - eT (Ga+iysma) |y (8)
0= Y \Ou 3 %u g a t1ysmy) | Y.

In the meson part, ¢ denotes a complex 3 x3 matrix
composed of scalar and pseudoscalar nonets o, and =,
¢ =T, =T o,+in,), A is the mass parameter, and the
coupling constants A; and A, characterize the interaction
among the mesons. Given that we do not have strict chir-
al symmetry in the real world, the explicit symmetry
breaking enters the model by introducing two external
sources hy and hg via H = diag(ho,ho,hs). We are con-
cerned with U,(1) symmetry, which is explicitly broken
by the determinant term with an anomaly parameter c.

In the quark part,  is the quark field with three fla-
vors Ny =3 and three colors N, =3, ug(up/3) denotes the
baryon (quark) chemical potential, and g denotes the
quark-meson coupling constant in scalar and pseudoscal-
ar channels.

To obtain the hadronic version of the topological
charge O and susceptibility y, we consider Us(1) trans-
formation for the mesons in scalar and pseudoscalar
channels, gy — gy —2600iysy/ V6 and Jiysy — diysy+
200/ V6, which lead to the transformation for the meson
matrix ¢ — (1+2i0/ V6)¢ and det(¢) — (1 + V6if)det(s).
By calculating the variation of the Lagrangian density
and using the Noether's theorem, the conservation law in
the quark-meson model becomes [25]:
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#J; = —12cIm[det(¢)] + 2iTr[H(¢ — ¢")]. )

The second term is due to the explicit chiral symmetry
breaking at meson level in the model. Based on the com-
parison of the first terms in (5) for QCD and (9) for
quark-meson model, the topological charge density in the
model is as follows:

O(x) = —2cIm[det(¢(x))]. (10)

It contains all possible products of three meson fields.

We now separate the meson field into a condensate
part and fluctuation part ¢, = (¢,) +¢,,. The former char-
acterizes the spontaneous breaking of the symmetries of
the system, and the latter is the particle fluctuation above
the mean field. Using Wick ’s theorem, the topological
susceptibility (4) consists of the contributions with one,
two, and three meson propagators between the space-time
points 0 and x. The diagram with only condensates is not
connected and then neglected. To clearly understand the
relation between the chiral symmetry and Ux(l) sym-
metry, we divide y into a sector with chiral condensates
and sector with only meson propagators:

X=XCtXM (11)
with
Xc = X(cl) x4y D D
X = Z Aabede{BaX$p)I(Da) e,
abule
(2) Z BapealdaXdp)cJa,
abcd
/\,/(g) 4 Z Cabcd-’alb<¢c><¢d>a
abced
(4) Z Dapcal@a)lpe{da) (12)
abul
and
XM= Xﬁl} 1\,

X = ZEabLJ IpJe.

abc

@ _ g
Xm = 4 ZFathabc, (13)

abc

where A, B, C, D, E, and F denote the coefficients,
= [@*xGo(x,0), 1y = [d*xGo(x,00Gp(x,0) and Iy =
f d*xG4(x,0)Gp(x,0)G.(x,0) denote the integrated propag-

ator productions with G,(x,y) = (pa(X)pa(y)), and J, =
G,(0,0) = G,(x, x) denotes the closed propagator. For sim-
plicity in this expression and subsequent expressions, we
replaced the fluctuation field ¢’ by ¢. )((’) i=1,2,3,4)
and ,\((') (i=1,2) are diagrammatically shown in the left
panel of Fig. 1.

Before we analytically and numerically calculate the
susceptibility in the next section, we first qualitatively
analyze the relation between the chiral and Uy(1) sym-
metries in chiral limit. In chiral breaking phase at low
temperature and density, the chiral condensates and
meson degrees of freedom dominate the system wherein
the condensate sector yc¢ (X(Cl) ~ (o), X(Cz), X(c3)’ X(c4)

(%)2) and meson sector y,, are nonzero, and U, (1) sym-

metry is broken. With increasing temperature or baryon
chemical potential of the system, the light meson con-
densate disappears initially at 7. or uy. However, the
strange meson condensate is still nonzero due to the fact
that the strange quark is much heavier than the light
quarks my > m,. In this case, the Us(1) symmetry is still
broken as induced by the nonzero y¢ and y,,. When the
temperature or density increases further with 7> T, or
up > p, the strange meson condensate disappears in the
very hot or dense medium, condensate sector yc van-
ishes completely, and susceptibility is fully controlled by
the meson fluctuation part y,,. In finite-temperature field
theory, a Feynman diagram with a particle loop contrib-
utes a factor of particle number distribution n (Bose-Ein-
stein distributionng or Fermi-Dirac distribution ng).
Please refer to any textbook, such as Ref. [45], for more
details. Furthermore, detailed calculations are provided in
the next section. For the Feynman diagrams in y,, shown
in Fig. 1, a meson loop, corresponding to a gluon loop in
QCD, contrlbutes a Bose-Einstein distribution ng(e)) =
1/(e%/T —1) with meson energy €’ = \/m2 + p2. It should
be noted that the quark chemical potential (up/3)does not
enter the quark-antiquark pair distribution. At zero tem-
perature, there is no thermal excitation of mesons
(ng =0), and therefore the meson sector y, disappears.
This implies that, the Us(1) symmetry can be restored
strictly only by the density effect at zero temperature.

The aforementioned conclusion also applies to the
NJL model at quark level. In the three-flavor NJL model
[42], the U4(1) symmetry is broken by a six-quark inter-
action with a coupling constant K. Under the U, (1) trans-
formation, the topological charge can be directly derived
[12]:

Q(x) = 2KIm det [ (x)(1 = y5)y(x)] (14)

with all possible products of six quark fields at space-
time point x. The corresponding Feynman diagrams for
the condensate sector X(l) and meson sector X(l) of the
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Fig. 1.
ibility y in quark-meson model (left panel) and NJL model

Diagrammatic expression of the topological suscept-

(right panel). In the quark-meson model, dashed and solid
lines denote chiral condensates and meson propagators, re-
spectively. In the NJL model, the closed propagators at space-
time points 0 or x indicate chiral condensates, and the double
lines are meson propagators from 0 to x.

susceptibility y are shown in the right panel of Fig. 1. In
comparison with the left panel, the diagrams in the NJL
model are very similar to that in the quark-meson model:
the meson condensates (¢,)(dashed lines) now become
the quark-antiquark condensate (gg) and (5s) (closed
quark propagators at 0 or x), and the mesons (solid lines)
are constructed by quarks via random phase approxima-
tion [42] at order O(1/N,) (double lines). Given that the
susceptibilities in the two models have the same structure,
we again conclude that the U4 (1) symmetry breaking can
only be restored by pure baryon density effect. The de-
tailed calculation on the U4(1) symmetry at finite temper-
ature in the NJL-type model can be seen in Refs. [12-21,
23, 24, 30].

III. ANALYTIC AND NUMERICAL
CALCULATIONS

In this section, we analytically and numerically calcu-
late the topological susceptibility in the quark-meson
model at finite baryon density. We will address calcula-
tions in the real world that involve explicit chiral sym-
metry breaking. Given that the susceptibility is depend-
ent on the condensates, as well as meson and quark
masses, we will first provide a brief overview of the con-
densates and masses using the mean field approximation.
Detailed calculations can be sourced from existing literat-
ure [41].

A. Condensates and masses

After the separation of the meson field into a con-
densate part and fluctuation part ¢ = (¢) +¢’, a meson po-
tential Vy,({¢)) [40, 41] appears in the Lagrangian £,,. At
mean field level, it is the thermodynamic potential of the
system Qs = V). Considering the thermodynamics from
the free constituent quarks with mass:

ngTa(<0—a>+i75<7Ta>)s (15)

the thermodynamic potential of the quark-meson system
becomes

Q=Qy+Qp (16)

with

3
Q =2NCTZf: f (‘217:)?3 [In(1=np(e))) +In(1 - r(e))].
(17)

where np =1/ & /3T +1) and 7ip = 1/(e& /3T 1 1)
denote the Fermi-Dirac distributions for constituent

quarks and anti-quarks, and e;’ = ‘/m%+p2 denotes the

quark energy with flavor f.

The physical condensates as functions of temperature
and baryon chemical potential {¢,)(T,up) are determined
by minimizing the thermodynamic potential:

Q ’Q
0 0 0

=0, ———>0.
by oo

(18)

In the mean field approximation, the meson masses
can be directly derived from the quadratic term in the
Lagrangian in2 = 8° £/8¢>|4=0, which is equivalent to the
second coefficient of the Taylor expansion of Qu({(¢))
around the physical condensate determined by the gap
equation (18), 2 = 3*Qy/0(¢,)*. To contain the contri-
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bution from quark thermodynamics to meson masses, one
phenomenological approach to go beyond the mean field
is to extend the second order derivative from Q,; to the
total potential Q2 [41],

a_ 0, #Q
Ay " e

=m

(19)

Given that we focus on the chiral symmetry and
U4 (1) symmetry in this study, we introduce only the chir-
al condensates (o) and (og) in the following. Consider-
ing the mixing between ¢y and ¢g, normally a rotation in
this subspace is considered. The two condensates are
changed to the chiral condensate (o). =1/ V3( V2{oo)+
(og)) and strange condensate (o), = 1/ ‘/§(<0'o> - \/§<0'8>),
which leads to the constituent mass m, = g(o)./2 for light
quarks and my = g(o)s/ V2 for strange quarks. In the
pseudoscalar channel, 7y and 7g are rotated to the experi-
mentally measured mesons # and 7’ via mp = cosf,n’ —
sinf,n and 73 = sind,n" +cosb,n with the rotation angle
0.

With the choice of condensates and under the rota-
tion, the four independent pseudoscalar meson masses in
mean field approximation, m? for a=1,2,3, mk for
a=4,5,6,7, m,7 and m,], can be explicitly expressed in
terms of the chiral and strange condensates,

A
A (@ (@) + Sl - %«m,
g = 2+ 4 (@2 +()?)

+ 2 ()2 = VEI0)s + 209) = S

n~1,2] = mg, cos? 8, + mgg sin* 6, + 2mg, sinf, cos b,
% = ml, sin® 6, + mig cos® 6, — 2mdg sinf, cosb,  (20)
with

24 (@ @R+ 2 (0 + )
% (V2(0)e +¢o)y),

myg = A2+ A1 ((0)2 +(0)3) + % (¢ +4o3)
V2e
- 2V~ (o)),
2/1

mpg = —— ()2 = 2}) - i («e= V2Ua)s) @D)

and the mixing angle tan26, = 2mg,/(m3, —mg,). Simil-
arly, we can obtain the scalar meson masses [41]

m2 mzm andm

ay’

The model parameters A%, 11,15,k hs,c, and g, and
condensates (o). and (o), in vacuum should to be fixed
by fitting the meson properties in vacuum. By choosing
the pseudoscalar meson masses m, = 135 MeV, mg = 496
MeV, m, =539 MeV, and m,, =963 MeV and the decay
constants f; =92.4 MeV and fx = 113 MeV [46], we can
determine six of them, namely the meson coupling con-
stant A,

3Qfx = fomy = (213 + fu)m2 =2 (m2+m2 ) (fx = o)

|32 + 81 (fx = £ | (fic = fo)
=46.4881, (22)

2=

parameter ¢ controlling U, (1) symmetry breaking,

fK fﬂ

2 m2

Cc =

— L Qfx—f)=480724 MeV,  (23)

parameters k. and h; governing chiral symmetry break-
ing,
he = fm? = (120.729 MeV)?,

fﬂmzzr 3
N =(336.406 MeV)”, (24)

hg = V2 fimy —

and chiral condensates (o). and {(o),:
(e = fr =924 MeV,

1
(o) = % Q2fx

— f) =94.48 MeV. (25)
To determine the other meson coupling A; and mass para-
meter A%, scalar mesons are required. Considering
my =550 MeV, we obtain A2 = (393.945 MeV)? and A, =
—0.771779. The quark-meson coupling g and strange
quark mass m are further associated with the non-strange
quark mass m,. By choosing m, =300 MeV, we obtain
g =6.4 and m; = 433 MeV.

As the 1/N, realization of the t’Hooft instanton mech-
anism, the Witten—Veneziano (WV) formula [47, 48] is
as follows:

2 2 2
m:+m;, —2m 1
K
Xpure = ~ 1 27\/]" f;rz"'O(Nc)' (26)

This can be applied to estimate the Ua(1)symmetry
breaking in vacuum through the pseudoscalar meson
masses and pion decay constant (It should be noted that
the susceptibility in the WV formula is for the pure Yang-
Mills theory). The formula is confirmed by effective
methods [12, 13] and lattice QCD calculations [49—51].
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In our calculation, the above used parameters leads to
x = (191.033 MeV)*, which is in good agreement with the
lattice result y = (191 +5MeV)* in continuum limit [49].
However, it is claimed that the WV formula cannot be ex-
tended to finite temperature, especially near the QCD
critical point [52, 53].

With the known parameters, we now numerically cal-
culate the density and temperature dependence of the two
scalar condensates, and the result is shown in Fig. 2. Gov-
erned by the Fermi surface at zero temperature, the chiral
condensate retains its vacuum value at low densities and
then abruptly drops to a significantly lower value upon
reaching the critical chemical potential uj =0.91 GeV,
and then decreases smoothly. For the strange condensate,
there is also a jump at ug, but it is still large in the chiral
restoration phase. As the temperature increases, the ab-
rupt changes in the two condensates gradually diminish,
transitioning the chiral phase from a distinct jump to a
crossover. In sufficiently hot conditions, this crossover
occurs at zero baryon density.

The density and temperature dependence of the
pseudoscalar meson masses is shown in Fig. 3. At zero
temperature, all the masses consistently retain their vacu-

um values below the critical chemical potential.
0.100 p————————————
0075 F|T=0 ERRIN
\
‘\
0.050 | 3
0.025 | -
\\-—
0.000 } } } } 0.100
—
S 0.075
[0)
&)
~ 0.050
A
o)
\ 0.025
0.100 0.000
----<o>
0.075 | G
~~~~~~~~~ ) <o'>C
0.050 |- Tteell i
0.025 | =
0.000 1 1
0.0 0.3 0.6 0.9 1.2 1.5
tp (GeV)
Fig. 2.  (color online) Chiral and strange condensates (o).

(solid lines) and (o), (dashed lines) as functions of baryon
chemical potential up at temperature 7=0 (upper panel), 0.1
(middle panel), and 0.2 (lower panel) GeV.
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Fig. 3. (color online) Pseudoscalar meson masses m, (solid

lines), mg (dashed lines), my,(dotted lines), and m, (dot-
dashed lines) as functions of baryon chemical potential up at
temperature 7=0 (upper panel), 0.1 (middle panel), and 0.2
(lower panel) GeV.

However, they abruptly increase or decrease at the chiral
phase transition point u} and change continuously after-
wards. The strange meson K is heavier than the pseudo-
Goldstone particle z in the chiral breaking phase at low
density. However, the two masses approach each other in
the chiral restoration phase when the chemical potential is
larger than the strange quark mass. The large mass split-
ting between s and 7’ at low density is induced by the
Ua(1) breaking. At the critical point, m, experiences an
upward shift while m, decreases, and the disparity
between them decreases as density increases. When the
temperature effect is included, all the jumps will gradu-
ally be replaced by continuous changes.

B. Susceptibility

The susceptibility y varies based on density and tem-
perature, influenced by the condensates, meson masses,
and the loop induced Bose-Einstein distribution ng. We
first calculate the four independent meson constituents
shown in Fig. 1, namely the closed meson propagator J,,
meson propagator with zero momentum I,, meson loop
constructed by two mesons 1,,, and double meson loops
by three mesons I .,
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&p np(e)

) e
lo= #
L= d*p 1 [ng(ea) ﬂB(EII:)} ’
Qry¥ml-mi| e €
Tabe = Ty + - 27)

The term I, contains two four-momentum integrations
(two Matsubara frequency summations and two three-
momentum integrations), and each frequency summation
contributes a constant and meson distribution np. After
considering a renormalization to remove the divergence
appeared in the ng-independent integration [54], e 1S
separated into a part I‘(llb)c with one meson distribution and

a part Iﬁ)c with two distributions,

1 m2 1 m2
19 = —+14—1—C—fd —
abe <4n>22{ v+ In(am) n(;ﬂ) o T m2

{abc}

&Bp np(el)
Qn? &

m
+(1 —a)— —a(l —a)]}

c

@22y f &p &g pansle)ns(€)
(

abe 3 3 P
b 2m)° (2m) €€,

2 2 2 2
(ch+e) ~() (€€ -a) (<)

2 —\2 2 —a\2
(el () (&t (&)

xIn ., (28)

where yr denotes the Euler constant, the renormalization
scale u is considered to be 0.3 GeV in the calculation, and
the sum is defined as 3 (.p¢ Xave = Xave + Xpea + Xean -

With the mixing angels 6, and 6, in the scalar and
pseudiscalar channels, we define the diagonalization
coefficients as follows:

C]Z\/1/3(COS95— \/Esin95>, =
c3=+1/3 (cosHP— \/Esint%), c4=

1/3 (sin@s + \/zcos 95) >

1/3 (sinep + \/Ecosep),
(29)

the vertexes of the Feynman diagrams in Fig. 1 can then
be expressed as

= V2/3(2 V2sin(8, + ;) + cos(6, +6)),

Cno(o).

V2/3(2V2cos(6, +65) - sin(6), + 6,)),

Cnfyto)e =

Crroo). = ~Cnfiko)es

Cn filode = Cnoodes

Cnoor), = ‘5/6(3 sin(6, — ;) =2 V2cos(6, + )
+sin(g, +6)),

Cnpiiorr, = — V2/6(3008(8, — 0;) — 2 V2sin(, + ;)

—cos(f, + GX)),

- (Cnfo<a>. + \5008(917 - 03)),

Cno(o), =

V2sin(6, - 6;) (30)

Cry fiko)s = Cnoo), —
for the vertexes with one condensate leg, and

oy = =1/ ‘/§C§C4,
Copy = 1/ \/E(cg —2@03),
Copy =1/ \/5(20304 —ci),
crppy =1/ V2e33,
Cpoo =1/ \/§(cos«9p(sin2 0,+1/ \/Esinzes)
+ V2sind,(cos® 6, — 1/2sin” b)),
Cpof, = 1/ \/g(cose,,(sinws + \/ECOSZQS)
-3/ \/Esinep sin 29S),
confo =1/ \/g(cosﬁp(cosz 6,—1/ \/zsin205)
2sin 6’1,(sin2 6;—1/2cos’ GA.)),
Croo =1/ V3(sing,(sin® 6, + 1/ V2sin26;)
2c0s6,(cos? s — 1/2sin’ GS)),
Cpof, =1/ \/§( sind),(sin26; + V2cos 26,)
+3/V2cos 0, sin 29_;),
cphf =1/ \/5( sin91,(cos2 6,—1/ \/Esin292)
2c0s6,(sin” 6, — 1/2cos” b)) 31)

for the vertexes without condensate legs. Finally, we
define two new condensates

(03) = 1/ V6(o)e(( V2086, +sin,)(o)e
+2(V2sin6, - cos6,)();),

(0% =1/ V6(or)e(( V2sinb, — cos B, ).
=2(V2cos 6, +sin6,)()s), (32)

and explicitly write the different susceptibility terms.
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2
C
xXe' = Z [+ .

2
C
X2 = 7 (TN 6cmdn + 2o Ty + 2enoado + 2ens s, + 43T = Tk) + 3 V2ea (T = Ju) )y

(T p W 6Chyn Ty + 2eamy Ty + 20yae o+ 20y 14T, + 3 V203(Ja, = ) +dea(Te = Ty |,

3 2
A0 =22,

“)
C

+ (4 (Ve + Cp 140 (V) Dy + KV D + 6€0) e g, |

for the condensate controlled part y¢, and

2
C
= Z [(6170'(0')( <o->c + C?]a’(0'>\.<o->s)21170' + (Cnfn(0'>(<o->c + Cnfb(cr)\ <o->s)2117f0 + (CU'D'<O')L <0->c + Cr]’[r(a')\ <O->s)21n’0'

(33)

2
C
x4 = T {1 [3cym(3emmdy + 2enyy Ty +3 V2ealn = Ja) + 43 = Jk) + 2cnaodo + gy T 1))y

+ o (Comy Ty + 20T + 265,10, + 3 V204 (U = Ja,) + 4¢3 (T = Ti) ) Iy

+ oo (CpooTo + 2nf, 1. T4 + 3 V20a(Tr = Ja) + 4¢3 (e = TO W + gy (Cnpip 1y +3 V2eaUn = o) + 43— Ti)) I,

+3/263(3Ja,Jay + 3Jndn + 20 di = 600 a,) + 3 (8T Tk + Ted = 8Tk T ) + 6 N2esea(Ja, Tk = Ja, T = Tudk + T2y )|

+ Ly 3w (Beqmn Ty + 26y +3V2e3(Ja, = Jx) + 4ea( = Tk) + 2ot + 11T 1) )y

+ Comy (2o o+ 20y 1,1, +3V2e3(Ja, = Jx) +Acallic= TK) + oy Ty ) Iy

+ yao(Croate+ 2 114 +3 V2030, = Jn) +4calle= T o + oy pof (e T 1 +3 V263U, = Jn) +4calTe = T,

+ 63(4.][(][( +3JJ— 8JKJK) + 9/ZC§<J¢10J¢4” +Jxdn— 2‘17'(‘][10) +6 \/§c3c4<JﬂJK —JrJi— JaoJK - JdoJK)]}’

@ _

2
C
2 2 2 2 2 2
T [61,,,(,( + 6L+ 120 ke + 63 Iy + 2600 Ly + 6 Ly + 260 Loy + 203 g by + 2601 Ly o

2 2 2 2 2 2 2 2 2
+ C;,fo-fﬂln’aﬁ) + Cno-ﬁ,IUO'fu + 207]0.0.1,]0-0- + Zcqﬁ)folﬂfoﬁ» +6¢7Iona, + 651 f7a, + 4 ki + 45 ki + 3¢5y aya,

2 2 2 2 2 2 2
+ 3¢50y an +2¢4 Ly kg + 3¢y + 3¢ Tpaga, + 3¢ ynn + 23 Lk + 3C3I,7KK]

for the meson fluctuation controlled part y .

The topological susceptibility y and its two compon-
ents yc and yyin dense and hot quark-meson matter are
shown in Fig. 4. To clearly observe the U (1) symmetry
in the chiral restoration phase, we firstly analyze the sus-
ceptibility in chiral limit and at zero temperature. In this
case, the disappeared chiral condensate (o). =0 leads to
(07)= (o) =0 and in turn

1 2 3
K@= = =0,

(35)
and the disappeared thermal excitation of mesons np =0
results in J, = I, = I, = 0 and in turn

2 3 4 1 2
x& =x =x& =xy =xjy =0.

(36)
This indicates that the strange condensate (o), does not
affect Us(1) symmetry, and the two broken symmetries,
chiral symmetry and Ux(l) symmetry, are simultan-

(34

eously restored at the critical chemical potential uS. In
the real world, with explicit chiral symmetry breaking at
zero temperature, the nonzero chiral and strange condens-
ates (o). and (o), lead to y = )((Cl) # 0 in the chiral restor-
ation phase. However, from our numerical calculation,
the value is very small, and U4(1) symmetry is almost re-
stored, as shown in the panel with 7 =0 in Fig. 4.

Considering the significant mass splittings among the
four independent mesons depicted in Fig. 3 during the
chiral restoration phase, the susceptibility calculation (26)
via meson masses at the mean field level appears more
problematic at finite density. It has been suggested that
this approach should not be extended to finite temperat-
ure [52, 53].

As the temperature increases and the condensate part
xc gradually melts, the meson fluctuation part y is en-
hanced by the thermal motion. As a result of the competi-
tion, the total susceptibility decreases to the low temper-
ature region, where the condensates are strong and
thermal fluctuation is weak. Subsequently, it increases to
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125 F =0
10.0 F
75| lz1
5ok ===zl
25F e 12|
0.0 Fessncacnncacnacasansansnsansacensasenss e
— -2.5____ } } } } E :;(5)
> ERREN 7=0.1GevV] 1,00
S) \ 375
S \ 5.0
X \ 25
X et B —— R 00
= 150 } } } } 25
T sk
100 E 7=0.2GeV
75k
50 F
2.5 pe T
0.0 A 0 s~ USSR
25 } } } } 15.0
4125
T=0.3GeV] 300
,,,,,,,,,,,,,,,,, 475
450
425
------------------------------- 0.0
1 1 1 1 25
0.0 0.3 0.6 0.9 1.2 15

#y (GeV)

Fig. 4. (color online) Absolute values of topological sus-
ceptibility y (solid lines) and its condensate component yc
(dashed lines) and meson component y, (dotted lines) as
functions of baryon chemical potential up at temperature
T =0, 0.1, 0.2, and 0.3 GeV.

the high temperature region, where the condensates be-
come weak and thermal fluctuation becomes strong. In
contrast to this non-monotonic temperature behavior, in-
creasing density at any fixed temperature reduces the
condensates and thermal fluctuation, the topological sus-
ceptibility is suddenly (at low temperature) or smoothly
(at high temperature) suppressed by the density effect,
and the U,(1) symmetry is restored at high baryon dens-
ity. In the temperature and density evolution of the sus-
ceptibility, the role of the strange condensate is always
weak, and the U,(1) restoration occurs at almost the same
critical point as the chiral restoration. These features are
clearly shown in Fig. 4.

IV. SUMMARY AND OUTLOOK

Considering the fact that chiral symmetry is broken at
the classical level and Us(l)symmetry is broken at the
quantum level, the mechanisms for the symmetry restora-
tions are expected to differ. In this study, we investigated
the relation between the two symmetries in the
SU(3)quark-meson model at finite temperature and bary-

on density. The topological susceptibility, which de-
scribes the degree of the Ujx(1)breaking, contains two
components: the meson condensate controlled compon-
ent and meson fluctuation component. As the temperat-
ure increases and condensates melt, the fluctuation be-
comes stronger. As a competition, the susceptibility be-
haves non-monotonically, and the U,(1) symmetry can-
not be solely restored by the temperature effect.
However, the density effect significantly differs. Spe-
cifically, it reduces both the condensates and fluctuation,
and therefore the broken U,(1) symmetry can be restored
only when the density effect is included. Although the
strange condensate is still strong after the chiral phase
transition and leads to large meson mass splittings at
mean field level, its effect on the susceptibility, which is
beyond the mean field, is very weak, and the two phase
transitions, the chiral restoration and Uy (1)restoration,
occur at almost the same critical point. Based on the com-
parison of the Feynman diagrams for the susceptibility
with the NJL model, the aforementioned qualitative con-
clusions appear to be independent of the model.

The Ux(1) symmetry appears challenging to be re-
stored in ultra-relativistic heavy ion collisions at the
Large Hadron Collider (LHC) because the created medi-
um is extremely hot but the baryon density can be neg-
lected. However, in intermediate energy nuclear colli-
sions and compact stars, where the baryon density of the
matter is high and the temperature is low, the Us(1) res-
toration can potentially be realized.

The calculations presented in this study involve cer-
tain approximations. Both quarks and mesons are ap-
proached using a mean field approximation, while the
susceptibility is computed beyond the mean field, incor-
porating thermal fluctuations. This type of perturbative
approach may introduce inconsistencies in the computa-
tion. Given that the meson propagators in the susceptibil-
ity remain at the mean field level, the baryon density ef-
fect manifests solely in the meson masses. Contributions
from the quark-loop to the meson propagators are over-
looked. Although thermal fluctuations are considered, the
vacuum fluctuations, anticipated to be significant in a
dense medium, are omitted from the analysis.
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