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Abstract: Based on the current measurement of the neutron distribution radius (R,,) of *%Ppb from the PREX-2 data,
we revisited the recently developed G3 and IOPB-I force parameters by fine-tuning some specific couplings within
the relativistic mean-field (RMF) model. The @ —p-mesons coupling A, and the p-meson coupling g, are con-
strained to the experimental neutron radius of **pb without compromising the bulk properties of finite nuclei and in-
finite nuclear matter observables. The modified parameter sets are applied to calculate the gross properties of finite
nuclei such as binding energies, charge distributions, nuclear radii, pairing gaps, and single-particle energies. The
root-mean-square deviations in binding energy and charge radius are estimated with respect to the available experi-
mental data for 195 even—even nuclei, and the results compare favourably with the well-calibrated effective interac-
tions of Skyrme, Gogny and other relativistic mean-field parametrizations. The pairing gap estimations for modified
G3 and IOPB-I for Sn isotopes are also compared with the Hartree—Fock—Bogoliubov calculation with the Gogny
(D1S) interaction. The isotopic shift and single-particle energy spacing are also calculated and compared with the ex-
perimental data for both original and modified versions of the G3 and IOPB-I parameter sets. Subsequently, both the
modified parameter sets are used to obtain the various infinite nuclear matter observables at saturation. In addition to
these, the force parameters are adopted to calculate the properties of a high isospin asymmetry dense system such as
neutron star matter and tested for validation using the constraint from GW170817 binary neutron star merger events.
The tuned forces predict relatively good results for finite and infinite nuclear matter systems and the current limita-
tion on the neutron radius from PREX-2. A systematic analysis using these two refitted parameter sets over the nuc-
lear chart will be communicated shortly.
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I. INTRODUCTION

The physics of low-mass neutron star (NS), the super-
novae explosion, and the formation of new elements are
governed by the same set of parameters, which predict
the properties of finite nuclei, especially the neutron-skin
thickness (AR,,) [1, 2]. Since the proton is a charged
particle, precise measurement of its radius R, is possible.
However, an accurate determination of the neutron distri-
bution inside a finite nucleus suffers significant uncer-
tainties [3—5]. The exact measurement of neutron radius
R, and/or neutron-skin thickness AR,, =R,—R,, is help-
ful to calibrate many theoretical models in terms of the

quantity directly related to isospin asymmetry. The sym-
metry energy J and its slope parameter L are crucial entit-
ies to understand the equation of state (EoS). A lot of at-
tempts have been initiated to fix their values and their
correlations with other physical quantities [6—11]. For ex-
ample, the strong correlations of neutron-skin thickness

in **Pb nucleus with various neutron star properties with-
in the relativistic mean-field (RMF) models have been
described either in terms of the coupling of the
isovector—vector p- meson with the nucleons [12] and/or
the cross-coupling of isoscalar—vector w- with the isov-
ector—vector p- mesons [13—15].

The pressure of the neutron-rich matter normally
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drives the surface tension in the atomic nucleus and plays
the same role against gravity in a neutron star. Even
though their magnitudes differ on a large scale, they share
a common origin, which is sensitive to the equation of
state (EoS). Precise measurement of the neutron radius R,
is supposed to be possible using the parity-violating weak
neutral interaction at Thomas Jefferson National Acceler-
ator Facility (JLab) termed as the Lead Radius Experi-
ment (PREX) [16, 17] Based on this principle, the
PREX-I result for R, of *®Pb is reported in Ref. [4] with
R,=578*01% fm and a neutron-skin thickness of
AR,, =R,—R, =0.33*31¢ fm. To reduce the uncertainty
further, the PREX 2 result was published with the neut-
ron-skin thickness as AR,, =0.283+0.071 fm [1] and the
point neutron distribution radius R, =5.727+0.071 fm
(knowing the precise value of the point proton distribu-
tion radius as R, = 5.444 fm [18, 19] with the correspond-
ing charge radius R.;, =5.501 fm [20]). The hadron scat-
tering data by Ktos ef al. [21] and Zenihiro et al. [22] are
also in competition with the recent PREX-2 range. Also,
recently, a new method has been introduced by Kuras-
awa et al. [23] and Naito et al. [24] to extract the neutron
distribution radius R, even using the normal electron
scattering data, while its feasibility is still under discus-
sion. All these recent precise measurements of R, (or
AR,;,) allow the refitting of the relevant parameters with
the theoretical models to reproduce the properties of fi-
nite nuclei and in parallel to describe the properties of the
neutron star.

The PREX-2 measurements of the neutron-skin thick-
ness of ***Pb [1] with ~1% uncertainty allows us to revis-
it the isospin-dependent interaction terms of the existing
nuclear models. In this direction, Reed et al [2] em-
ployed the property of strong correlation of neutron-skin
thickness AR,, with the slope parameter of symmetry en-
ergy L and constrained its value to L =106+37 MeV [9,
10, 25, 26]. Also, the symmetry energy J is fixed to be in
the range J = 38.1+4.7 MeV by using specific sets of re-
lativistic mean-field (RMF) parametrizations. These val-
ues of L and J are surely larger than the presently settled
values obtained either from theoretical models or from
various experimental measurements [27—34]. The precise

&(r) = Z sol(r){

measurement of the neutron-skin thickness of “*’Pb by
Adhikari ef al. [1] and the new constraint on nuclear mat-
ter observables from Reed et al. [2] motivate us to revisit
the recent RMF parameter sets, namely, G3 and IOPB-I,
by tuning the essential couplings that (rarely) affect the
global properties of infinite nuclear matter and finite nuc-
lei. These two forces are reasonably good at reproducing
the experimental data for finite nuclei, including super-
heavy nuclei and highly isospin-asymmetric systems in-
cluding neutron stars. These forces are also able to gener-
ate the constraint associated with the gravitational waves
strain in binary neutron star merger GW170817 events
[35-37] and references therein. Here we have focused on
two couplings of the RMF Lagrangian, namely, A, and

8, and tuned to reproduce the recent experimental R, for

*®*pb without affecting the other bulk properties of finite

nuclei and infinite nuclear matter. The detailed procedure
is highlighted in the subsequent sections.

The paper is arranged as follows: after a brief intro-
duction in Section I, a short description of the relativistic
mean-field formalism is given in Section II. Since RMF
is already a standard theory, we only outline the essential
ingredients needed for these discussions. Section III de-
scribes the fitting procedure of the parameter sets. In Sec-
tion IV, we discuss our results and compare them with the
empirical and/or experimental data. Finally, concluding
remarks are given in Section V.

II. RELATIVISTIC MEAN FIELD (RMF) MODEL

The nonlinear relativistic mean-field Lagrangian
density is constructed by the interaction of nucleons with
the well-known o—, w—, p—, — and photon fields, gen-
erated by o—, w—, p—, d—mesons and protons, respect-
ively. The self and cross-couplings among the mesons are
also included in the extended relativistic mean-field (E-
RMF) theory, which has evolved in the framework of ef-
fective field theory motivated by naive dimensional ana-
lysis (NDA) and the naturalness concept. Taking into ac-
count this E-RMF, NDA, and naturalness criteria, the G3
and IOPB-I force parameters are designed, and the E-
RMF Lagrangian density is written as [36—41]:

lﬁ (waW(r)+ f,,‘r3VR(r)+/lVA)
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Here ® = g0, W=g,w, R = g,p0 and D = gs6 are the re-
defined fields, with their coupling constants g,, g., &
and g; and their masses m,, m,,, m, and ms, respectively,
for o, w, p, and & mesons, and % is the photon coupling
constant. By including the self and cross-couplings in the
model, it behaves as a flexible model to produce the vari-
ous properties associated with the finite nuclei as well as
neutron stars. It is also known that the cross-couplings
regulate the systematic behaviour of the equation of state
of pure neutron matter. The effects of various self and
cross-couplings are explained further in Section III. From
the effective-RMF energy density [Eq. (1)], a set of
coupled differential equations for finite nuclei (equation
of motion) and the expression for pressure and energy
(equation of state) for infinite nuclear matter are obtained
using the Euler—Lagrange equation and the energy—mo-
mentum tensor, respectively [37]. The scalar and vector
densities are

ps(r) = ) b (Ba(r), @)

pu(r) = ) b (par), 3)

respectively. A detailed numerical evaluation is available
in Refs. [13, 35, 37, 42]. The terms having g,, 4, B, and
B. in Eq. (1) are responsible for the effects associated to
the electromagnetic structure of the pion and nucleon
[39].To replicate the magnetic moments of the nuclei, we
must obtain the constant A which is defined by

1 1
A= z/lp(1+‘r3)+§/l,,(l—73) 4)

with 2, =1.793 and A, = —1.913 the anomalous magnetic
moments for the proton and neutron, respectively [39].
The parameters B, and B,, as well as f,, were then
chosen to match the nucleon's observed charge radii.

A. Pairing correlation

In open-shell nuclei, the pairing correlation plays a
crucial role [43, 44]. When the pairing interaction vy, in-
cludes non-zero matrix elements, the nucleons pairs are
invariant under time reversal symmetry:

(@il ar) = -G, (5)

where « = |nljm) and @ = |nlj—m) (with G > 0 and m > 0)
are the quantum states. Here a constant force method is
used within the BCS approach [45—47], where a constant
value of G for pairings of the active pair shell, the senior-
ity type interaction is employed. The constant force G is

connected with the pairing energy Ep,r as:

2
Epair =-G [Z M,'Vl] > (6)

i>0
where ; and v; are termed the occupation probabilities:
ul =1-v7. (7)

The variation with respect to the occupation numbers
v? provides the BCS equation

26UV — A(u? - v,-z) =0, ®

with A=G Y .ou;v;. This is the well known BCS equa-
tion and the densities are contained within the occupation
number n;,

2 1 E,'—/l

n=vi=-|1- ——
’ 2[ Vie- D7+ A2

where A is the chemical potential and ¢ is the single-
particle energy of the nucleus. The values of G (G, for
neutron and G, for proton) are fixed by reoproducing the
binding energies and charge radius of ’Sn and "’Sn
within the one harmonic oscillator shell above and below
the Fermi level. Further details can be found in refer-
ences [13, 42, 48].

, )

III. CHOSEN PARAMETERS

The inception of the relativistic mean-field model was
in 1955 when it was proposed as a classical field theory
with the relativistic formulation of nuclear force [49, 50].
Later on, a proper mathematical formulation was given to
the model by Miller and Green [51] and Brockmann [52],
assuming a scalar and vector interaction potential. Fi-
nally, Walecka [53], Serot and collaborators [54, 55] ex-
tended the formalism to the various domains of finite and
infinite nuclear systems. Each extension in the model
shows that every interaction corresponds to a particular
property of the nuclear potential. For example, the
o—meson is mainly responsible for the strong attraction
at the intermediate range of the nuclear force, but the self-
interaction of this scalar meson produces a weak repul-
sion at long-range [56, 57]. Furthermore, the self-interac-
tion of the o—meson allows the constraint of the incom-
pressibility of nuclear matter at nuclear saturation to the
updated empirical range K., =240+20 MeV [58- 60].
The w—meson is responsible for the strong hard-core re-
pulsion of the nuclear potential and its self-interaction
generates attraction at a concise range and makes the nuc-
lear equation of state (EoS) softer [45, 61, 62]. Detailed
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discussion on the influence of various interactions can be
found in Refs. [42, 57].

At present, it is clear that each interaction in the Lag-
rangian density leads to a physical property, of either the
finite nuclear and/or infinite nuclear matter system. Thus,
effective field theory with the NDA and naturalness ap-
proach added to E-RMF formalism parallels all possible
self- and cross-couplings in the interactions. In this way,
the G1 and G2 parameter sets are proposed in Refs. [38,
39]. In the GI1 parameter set [39], the considered Lag-
rangian density has only the contributions of the isoscal-
ar—isovector cross-coupling, which has a greater implica-
tion for the neutron radius and equation of state (EoS) of
asymmetric nuclear matter. Similarly, the G2 parameter
set [39], based on the (E-RMF) approach, is very success-
ful in reproducing the NM properties including the struc-
ture of NS as well as of finite nuclei. However, the
6—meson and cross-coupling of w and p— are not con-
sidered here, which support the study of nuclear and neut-
ron matter properties including neutron stars. More de-
tails can be found in Ref. [15]. Further, the effects of the
é—meson on the nuclear potential are realised in [63, 64].
The 6—meson interaction along with the couplings of G1
and G2 is the product of the G3 set [36]. Another version
of the parameter set known as IOPB-I is designed spe-
cially to successfully describe the nuclear matter proper-
ties at sub- and supra-saturation density [37].

The fitting of parameters for the nuclear energy func-
tional is a delicate procedure because of the resultant of
the kinetic and potential energies and the vector and scal-
ar fields. There are various correlations between the dif-
ferent parameters and various observable for finite and
infinite nuclear matter systems. Thus, one assumes that it
is impossible to find a physically meaningful fit by keep-
ing nearly all the parameters fixed and changing only a
few of them. However, this is not the case in the present
context. This is because we are providing the readjust-
ment and/or reconstruction of the recently developed
parameter sets by adopting the recent constraint from
PREX-2 measurements. In other words, we are only fine-
tuning the parameter sets, which were not properly tuned
for the neutron radius of the finite nucleus due to inad-
equate information while designing.

Currently, the PREX-2 results with precise measure-
ment of the neutron radius of ***Pb allow us to revisit our
successfully fitted parameters, namely, G3 and IOPB-I. It
is well-known that the ex1stence of strong correlations of
neutron-skin thickness in the “*Pb nucleus with various
isospin-dependent properties of infinite nuclear matter
and neutron stars build upon the isovector—vector p- and
isoscalar —vector w-meson within the relativistic mean-
field (RMF) models [12-15, 63, 64]. In other words, the
isospin-dependent quantities of finite and/or infinite nuc-
lear matter, including neutron stars will be described
either in terms of the coupling of the isovector—vector p-

meson with nucleons [12, 63, 64] and/or the cross-coup-
ling of isoscalar —vector w- with isovector —vector p-
mesons [13—15]. It has also been verified that the changes
in the cross-coupling of w- with p- meson hardly affect
the bulk nuclear properties of finite nuclei except for the
isospin-dependent quantities, for example, neutron radius.
Hence, it is crucial and also interesting to constrain the
recently developed G3 and IOPB-I parameter sets with
the PREX-2 data for neutron-skin thickness AR,,. In oth-
er words, the G3 and IOPB-I parameter sets are readjus-
ted by considering the PREX-2 data and applying these
modified parameterizations for the structural analysis of
finite nuclei and the properties of infinite nuclear matter,
including neutron stars.

IV. RESULTS AND DISCUSSIONS

The cross-coupling of p-mesons with o—- and
w—mesons allows for varying neutron-skin thickness in a

heavy mass nucleus like “**Pb [14, 65, 66]. This coupling
A, also matters a lot for the giant resonances, like mono-
pole and quadrupole [67]. The density dependence of the
symmetry energy can be changed regularly by modifying
the w-p coupling A, without hampering the EoS of
symmetric matter. Higher values of A, represent the soft
nature density dependences of the symmetry energy and
vice versa. Again the excitation energy used in studying
the giant resonances is higher than the softness of sym-
metry energy [67]. The p-meson coupling takes care of
the neutron—proton asymmetry in the system. Therefore,
the apparent choice for the minimal tuning of parameters
is A, and g,. For example, the binding energy of an
asymmetric system increases with the A, coupling,
whereas g, decreases the binding energy. On the other
hand, the neutron distribution radius R, decreases with
the increase of A, while R, remains almost unchanged
with g,. Hence, the fine-tuning of these two parameters is
needed to constrain the neutron-skin thickness of “*Pb
using the recent PREX-2 observation data. It is worth
mentioning that here we have considered the recently fit-
ted parameters G3 and IOPB-I, which are constrained
based on various empirical nuclear matter values and ex-
perimental data for finite nuclei. This implies that the tun-
ing of these two parameters, namely, A, and g,, is ac-
ceptable for satisfying the experimental constraint on
neutron-skin thickness without substantial change in oth-
er bulk properties of finite nuclei. Table 1 lists the origin-
al (O) and modified (M) values of the G3 and IOPB-I
parameter sets. Note that only the values of A, and g,
are revised, and the effects on various properties of finite
and infinite nuclear systems are analysed.

The effects of A, and g, on binding energy and R,
with A, and g, are shown in Fig. 1. We calculate the
binding energy (BE) and radius R, with variation of A,
from 0.038 to 0.021 without changing g, for the G3 para-
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Table 1. Masses and coupling constants for original G3(O)
[36] and IOPB-I(O) [37] and their modified sets G3(M) and
IOPB-I(M). The mass of nucleon M is 939 MeV. The dimen-
sion of k3 is fm~!, and all other coupling constants are dimen-
sionless. (O) and (M) stand for original and modified paramet-
rizations, respectively.

Parameter G3(0) G3(M) IOPB-1(O) IOPB-I(M)
ms/M 0.559 0.559 0.533 0.533
mg, /M 0.832 0.832 0.833 0.833
my /M 0.820 0.820 0.812 0.812
mgs/M 1.043 1.043 0.0 0.0
8s/An 0.782 0.782 0.827 0.827
8w/4m 0.923 0.923 1.062 1.062
8pl4n 0.962 0.872 0.885 0.803
8s/4n 0.160 0.160 0.0 0.0

k3 2.606 2.606 1.496 1.496
ka 1.694 1.694 —2.932 -2.932
I} 1.010 1.010 3.103 3.103
m 0.424 0.424 0.0 0.0
mn 0.114 0.114 0.0 0.0
Tp 0.645 0.645 0.0 0.0
Ay 0.038 0.021 0.024 0.015
) 2.000 2.000 0.0 0.0
az —1.468 —1.468 0.0 0.0
Juwl4 0.220 0.220 0.0 0.0
fol4 1.239 1.239 0.0 0.0
Bo —0.087 —0.087 0.0 0.0
Bo —0.484 —0.484 0.0 0.0

meter set. As stated above, we find the increase of bind-
ing energy with A,. Then, we change the values of g,
from 12.094 to 10.961 to bring back the binding energy,
which is a standard procedure for tuning the parameter
sets. It is worth mentioning that the binding energy de-
creases with the increase of g,, without affecting R,. The
experimental binding energy (blue line) [68] is shown for
comparison. By fixing the experimental values of BE and
R,, we calibrate the A, and g, combination as 0.021 and
10.961, which is termed as G3(M) parameter set, as tabu-
lated in Table 1. We follow the same procedure for the
IOPB-I parameter set and found the modified values of
A, and g, are 0.014 and 10.090 respectively. The results
for binding energy and neutron distribution radius are
also shown in Fig. 1.

A. Properties of finite nuclei

After constraining the values of A, and g, to the re-
cent PREX-2 data of R, and the binding energy for *pp,
we calculate the bulk properties of even—even spherical

1640
2 1630
% Expt.
. G3(0)
g 1620 iy
- 10PB-1(0)
|
5.8
‘= 575
£
=
Mos57
5.65 ! | ! | ! | |
0.02 0.03 0.04 0.8 0.85 0.9 0.95
® P
Fig. 1. (color online) Binding energy (upper panels) in MeV

and neutron distribution radius R, (lower panels) in fm with
original G3(0O) (dashed red) and G3(M) (solid red) parameter
sets for "*Pb as a function of w—p field coupling constant A,,.
Similarly, for p-meson coupling g,, IOPB-I(O) and IOPB-
I(M) are in dashed green and solid green lines, respectively.
The changes of BE (circle) and R, (square) correspond to both
G3(M) (solid) and IOPB-I(M) (empty), respectively. The ex-
perimental data with error bars [1,68] are given for comparis-
on. The single arrow is for the better visibility of R,.

nuclei. The calculated binding energy, root-mean-square
(rms) neutron and charge radius for a few well-known
nuclei are listed in Table 2 along with the experimental
data [1, 22, 68—74]. Here we have used the traditional for-

\JR%+0.64 as the G3 and IOPB-I forces have

already included the spin—orbit interaction self-consist-
ently [55, 75-77]. In both original and modified G3 and
IOPB-I, the constants 8, and 8, as well as f,, are re-
sponsible for the determination of charge radii (see Sec.
II). Also, the spin—orbit interaction contributes to charge
radius without coupling as explained in Ref. [78]. This
originates from the magnetic form factors of nucleons.
Here the charge radius of the nucleus (R.,) comes from
the electromagnetic size of the nucleon and can be ex-

mula R, =

pressed as R., = R} +r3, where R, is the point proton
radius and r, represents the charge radius of a single pro-
ton [78]. At the time of construction of the original G3
and IOPB-I parameters [36, 37], we have taken the avail-
able value of R,, however a more precise value has aris-
en recently by the Parity violating experiment by the
PREX collaboration, which needs to be included by
modifying the original G3 and IOPB-I forces. Although
the original G3 and IOPB-I forces produce the neutron
distribution radius R, within the range of error bars, we
are considering G3(M) and IOPB-I(M) taking the more
precise value of R,. However in some cases, there are
some uncertainties; for example, in the case of '161328n,
the value situates outside the precise range. Hence it is
crucial to test the whole nuclear chart using these modi-
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Table 2. Binding energy (BE in MeV) and neutron distribution radius (R, in fm) for selected spherical nuclei with G3(M) and IOPB-
I(M) parameter sets. The predictions for G3(O) and IOPB-I(O) are listed for comparison.The charge radius R, is obtained by adopting

the finite size effect of the nucleon, i.e., Ry = /R5+0.64 fm. Experimental data are taken from Refs. [1, 22, 69—73] and references

therein. See text for more details.

Nucleus Force BE R, R, Ry
0 G3(M) 128.59 2.706 2613 2.641
G3(0) 128.59 2.706 2.612 2.641
IOPB-I(M) 127.63 2.704 2.575 2.602
I0PB-1(0) 127.63 2.705 2.575 2.602
Expt. 127.62 2.699 — 2.577
“Ca G3(M) 342.46 3.458 3.351 3.401
G3(0) 342.46 3.458 3.351 3.401
I0PB-I(M) 343.07 3.457 3322 3371
I0PB-1(0) 343.07 3.458 3.321 3371
Expt. 342.05 3.477 3306093 [69,72] 3383
*Ca G3(M) 416.99 3.461 3.621 3.434
G3(0) 416.18 3.466 3.613 3.439
IOPB-I(M) 415.04 3.436 3.593 3377
I0PB-1(0) 414.62 3.441 3.583 3.381
Expt. 415.96 3.477 3499700569721 3383
"z G3(M) 783.25 4271 4319 4239
G3(0) 782.91 4275 4312 4243
[OPB-I(M) 782.25 4249 4297 4.194
I0PB-1(0) 782.23 4253 4289 4.197
Expt. 783.81 4269 428309260 72] 4.193
"'sn G3(M) 985.67 4.630 4715 4587
G3(0) 985.67 4.634 4704 4591
IOPB-I(M) 986.65 4615 4701 4547
I0PB-1(0) 986.85 4.621 4.688 4552
Expt. 988.66 4625 4.6922003[70] 4555
Sn G3(M) 1105.43 4725 4.970 4,699
G3(0) 1103.54 4731 4.948 4705
IOPB-I(M) 1103.06 4.699 4.965 4.648
I0PB-1(0) 1102.42 4705 4.941 4.654
Expt. 1102.72 4709 4.880°00470] 4.641
*pb G3(M) 1636.43 5.567 5.717 5510
G3(0) 1635.51 5.541 5.694 5514
I0PB-I(M) 1636.42 5.516 5.721 5.470
I0PB-1(0) 1636.87 5.521 5.696 5.474
Expt. 1636.43 5.501 5727800 1] 5.444
120 G3(M) 2131.41 6.336 6.487 6313
G3(0) 2131.02 6.338 6.460 6.314
[OPB-I(M) 213437 6.327 6.507 6.286
I0PB-1(0) 2135.71 6.329 6.478 6.287

Expt. — — — —
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fied parameter sets.

As expected, the BE and R, remain unchanged for
symmetric nuclei where the number of neutrons is equal
'lcg) the nu%ber of protons, i.e., N = Z nuclei, for example,

O and "Ca. The neutron distribution radius changes
moderately for all other nuclei, with a minute influence
on the binding energy. To examine the applicability of
these two modified parameters within the relativistic
mean-field approach, we calculate the binding energies
and charge radii of 195 even—even nuclei within the range
8 <Z< 92 with 14 <A < 232. The differences between
the calculated values and the experimental data for bind-
ing energy AE as a function of mass number is displayed
in Fig. 2. The red and green colours are assigned for the
G3(M) and IOPB-I(M) parameter sets, respectively. From
the figure, one notices the deviations in binding energies
for most of the considered nuclei are broadly reproduced
within +3 MeV, barring a few exceptions. The overall
rms deviation in binding energy AE = BEq.—
BE., for G3(M), and IOPB-I(M) are 3.751973 and
3.5698173 MeV, respectively. These values are consist-
ent with the original version of the parameter sets and a
little overestimate the corresponding rms deviations ob-
tained with well-calibrated non-relativistic effective inter-
actions [79-83]. To avoid similarity we have not given
the figure with original sets, which can be found in Fig. 1
of Ref. [36]. This is because the region of preference and
the numbers of nuclei considered in the present studies
are in the intermediate-mass region of the nuclear chart,
where the nuclei are deformed in their ground state and
our present calculation is limited to spherical coordinates.

b
L o G3(M)
oL+ T0PB-IOV) |
% @O ° 0 [

. o qo %0, y o
- o 2 NS £H T
g 8 em Y 00

~ oe [} ° 0%;0 OW .qo

= o @0 q&f 06&%0(’)'03 oo ?02

S o ON'] m % % o0 e

RO = ot — e = G — - - — - — —

m (9*.0.6&) d. 0 ° (] po

1 [] o [

2| B wor T %

5 Sk N . .

m L]

A
10k 4
S,{ AP R I R

50 100 150 200 250
A
Fig. 2. (color online) Binding energy difference

(BEexp. — BEca. of 195 even—even nuclei plotted against their
mass number for the modified G3(M) (red open circle) and
IOPB-I(M) (green closed circle) parameter sets. Experimental
data taken from Refs. [68, 74].

For describing the ground-state properties of open-shell
nuclei, in these calculations, the pairing correlations are
treated at the quasi-BCS level, which is a well-known
procedure adopted in various studies [13, 36, 37, 42].
Similarly, the rms deviation (6r) for charge radii for these
nuclei are calculated for the available experimental data
and found to be 0.023278 for G3(M) and 0.021237 for
IOPB-I (M).

The radial dependence of the density distributions for
protons and neutrons for “Ca and *"Pb are displayed in
the left and right panels of Fig. 3, respectively. The red
and green colours are assigned for G3 and IOPB-I forces
respectively. The choice of the density distributions of
asymmetric nuclei is due to analysis of the effect of coup-
ling constants A, and g,, which are crucial for the
isospin asymmetry of the system. The corresponding ex-
perimental charge density [84] is displayed for comparis-
on. From the figure, one notices that the agreement
between the calculation and the charge density from ex-
periments is reasonably good and exactly overlap at the
surface. In the interior of the nucleus, the quantal oscilla-
tions shown by the proton densities are, in general, well
averaged, which may further be correlated with the shell
effect.

In the preceding paragraph, we have given predic-
tions of G3(M) and IOPB-I(M) within relativistic mean-
field theory for the ground-state energies and radii which
agree well with experimental values. Hence, it is interest-
ing to examine the isotopic shift in Pb-nuclei. The isotop-
ic shift of charge radii is defined as AR? =R? (“Pb)-
R%,(*®Pb). The calculated isotopic shift for G3(M), and
IOPB-I(M) are displayed in Fig. 4 along with the original
G3(0) and IOPB-I(O) predictions. The comparison is
also made for the semi-realistic effective interaction
M3Y-P6a parameter set [85]. From the figure, both para-
meter sets lie quite close to the experimental values [86]

Bca | ®pp

o p(G30)

o n(G3(0)
°  p(G3OM)
= n(G3M)

0,098

o p(IOPB-I0)
— A n(IOPB-I(0))
i +  p(OPB-I(M)
A n@op-Iv) _| .
£ 006 -y
=
—_
St
e
a

0.03

4 6

r (fm)
Fig. 3. (color online) Proton (p) and neutron (n) density dis-
tributions of **Ca and *"Pb for the original G3(0) and IOPB-
I(O) and modified G3(M) and IOPB-I(M) parameter sets,
compared with experimental data [84].
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Pb-isotopes
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Fig. 4. (color online) Isotopic shift AR?, in charge radius Re
for Pb-isotopes for G3(M) and IOPB-I(M) compared with the
G3(0) and IOPB-I(O) predictions, the experimental data [86],
and the predictions from the semi-realistic effective interac-
tion M3Y-P6a parameter set [85].

and the shift at N = 126 is reasonably well reproduced.
Comparing both parameter sets with the experimental
data, one can find that G3 (original and modified) has a
relatively better match to experimental data than IOPB-I.
Furthermore, comparing the original and modified para-
meter sets for both G3 and IOPB-I cases, we did not find
any substantial difference in the isotopic shift of Pb nuc-
lei. As the odd—even staggering effect is taken into ac-
count by H. Nakada et al., the predictions with M3Y-P6a
parameter data follows a slightly zig-zag pattern, which is
absent in the case of original and modified versions of the
G3 and IOPB-I sets. Here in the Pb- isotopic series, in the
case of odd-N nuclei, the neutron pairing density is re-
duced, which directly affects the proton density and as
result, the charge radius decreases [87]. More informa-
tion regarding the isotopic shift can be found in our previ-
ous work Ref. [88] and in the works of Perera et al. [89].
The development of this shift for a magic neutron over an
isotopic chain can be correlated with the occupation of
the neutron single-particle energy levels [90, 91] and is
discussed in the subsequent paragraph.

The pairing is important and also crucial to a certain
extent for the open-shell nuclei. To gain more insight in-
to the pairing properties, we have calculated the average
pairing gap for the isotopic chain of Sn-nuclei. The res-
ults are shown in Fig. 5 for both original (O) and modi-
fied (M) G3 and IOPB-I parameter sets and compared
with Gogny-D1S HFB prediction, along with the SIII®
and SkP interactions [92]. From the figure, we found that
the RMF with G3(M) and IOPB-I(M) are following the
pattern of Gogny-D1S Hartree—Fock—Bogoliubov (HFB)
predictions [92]. The strength of the gap obtained for G3
and IOPB-I (both original and modified) are in agree-
ment with the SIIT® and SkP interactions, while underes-
timated by the Gogny-D1S HFB values. The reason is, in
both the G3 and IOPB-I parameter sets, we have used the

35 T T T T T T T
I GC—O G3(0) 1
- G- —O G3M) -
3 Sn-Isotopes 45— opB1o)
r &+ +O TOPB-IM)
25 p HFB (Gogny-D1S) -
> oy, Y R
—— SkP
9 2+ ' ‘ » "5} -
@ > > > >
s [ » > 3
< LS| > 'Y > .
I >//_ - > phe .
1 // ‘0 .
'
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oLp | | > | L |
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N
Fig. 5.  (color online) Average pairing gap A (in MeV) for

Sn-isotopes for modified G3(M) and IOPB-I(M), along with
G3(0) and IOPB-I(O) values. The HFB prediction for Gogny
(D1S) and Skyrme SIII® and SKP interactions [92] are given
for comparison.

BCS pairing method and here we have compared it with
the Bogoliubov pairing approach. The simple BCS ap-
proach is an appropriate formalism for nuclei near the sta-
bility line. It is also known that, when we are moving
away from the 8- stability line, towards the drip line re-
gion, the Bogoliubov pairing approach is producing the
pairing energy reasonably compared to the BCS ap-
proach. Again, if we compare the G3 and IOPB-I (both
original and modified) data with the SIII° and SkP inter-
actions, one can notice the magnitudes of the pairing gaps
are nearly equal. The uncertainties at these neutron num-
bers N = 58, 62, 112 indicate the correlation with the
shell/sub-shell closure, which is force-dependent. A sim-
ilar trend is also found for N = 62 for SIII’ in Ref. [92].
More systematic studies by choosing different pairing
forces may provide the answer to these uncertainities at
different neutron numbers within mean-field models [12,
92, 93].

The ordering of the particle and hole levels for neut-
rons in “"Pb from the RMF approach for both original
and modified G3 and IOPB-I parameter sets are shown in
Fig. 6, along with the experimental data [94, 95]. From
the figure, notice that the single-particle levels are con-
sistent with the experimental data except for the neutron
2fs;2 level, which lies below the 3p;/,, level. A similar
case is also found for 2g9,,. However, this is a common
fact in many mean-field models [96—98]. The magnitude
of level spacing from RMF for all the parameter sets is
larger than the experimental data, which is another issue
in mean-field models [99]. The difference may be im-
proved by modifying the effective mass and adopting
particle vibration into the Lagrangian. At present, this is
beyond the scope of the relativistic mean-field model. As
mentioned above, the single-particle spacing and the oc-
cupancies play a crucial role in the isotopic shift at neut-
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Fig. 6. Single-particle energy levels of neutrons in *"Pb for
the original G3(O) and IOPB-I(O) and modified G3(M) and
IOPB-I(M) parameter sets. The experimental data [94, 95] are
shown for comparison.

ron shell/subshell closure over an isotopic chain. In this
context, here one can notice that the 1i;;,, level lies close
to 2g9,2, and the same happens for heavier Pb isotopes
(not shown here). Upon calculating the gap between 2g9,»
and 1i;;/» levels along the isotopic chain of Pb, the gap is
found to be about 1 MeV below N = 126 and suddenly
decreases to 0.6 MeV as soon as N = 126 is reached.
Therefore, one can expect a relatively large occupation of
the 1ij;, state in Pb isotopes with more than 126 neut-
rons, and as a result, an appearance of the kink/shift at
N =126 (see Fig. 4) [88].

B. Nuclear matter and neutron star properties

Nuclear matter quantities such as binding energy per
particle for symmetric nuclear matter (E/A), the isospin-
dependent observable symmetric energy J, slope paramet-
er L, surface symmetric energy coefficient Kym, skew-
ness parameter Qgm, and incompressibility K., have
been calculated using the modified G3(M) and 1OPB-
I(M) parameter sets. Furthermore, we can expand the
asymmetric nuclear matter (NM) incompressiblity K(¢)

in terms of asymmetry parameter (¢) = zlﬁ'; as,
K©) =K+ K& +0EY, (10)

where K is the incompressibility at the saturation density
and K. can be expressed as,

L
K. = Ky 61— 2, (11)

3

s . . .
where Qg =27p3ﬁ in symmetric NM at saturation

density [37]. The incompressibility of asymmetric nucle-
ar matter coefficient K,y , isospin asymmetric coefficient
K., central density py, incompressibility of second-order
at saturation density Ky and slope of incompressibility

M, are also calculated for the modified G3(M) and
IOPB-I(M) parameter sets. The calculated nuclear matter
(NM) properties along with neutron star (NS) properties
from the modified G3(M) and IOPB-I(M) are listed in
Table 3, along with the original G3(0O), and IOPB-1(O)
estimates. The experimental/empirical values are also lis-
ted with the ranges and/or error bars for comparison.
More details on the nuclear matter saturation properties,
symmetry energy, its coefficients, and their empirical/ex-
perimental ranges can be found in Refs. [58-60,
100-105].

Constraining the A, and g, parameters with respect
to the PREX-2 result of R,, we find the J and L values
roughly as per the limit of Reed et al [2], ie.,
33.063J34.831 MeV and 65.530L78.947 MeV. Compar-
ing J and L from G3(M) and IOPB-I(M), one can see that
the IOPB-I(M) set is a better fit with the prediction of
Ref. [2]. Further, smooth improvements can observed for
G3(M) and IOPB-I(M) for these nuclear matter observ-
ables. Upon the analysis of J, L and K., we find a signi-
ficant enhancement in the symmetric energy coefficient J
and the slope parameter L, while not affecting the nucle-
ar matter incompressibility. This is because the chosen
parameters A, and g, do not strike the symmetric nucle-
ar matter EoS. The symmetric energy coefficient is

1[d? .
defined as J(p) = = M , where e(p, ) is the en-
20 0 |,
ergy density obtained from the EoS and a= (pn_pp)’
Pn+Pp

with p, and p, the neutron and proton density distribu-
tions. Practically, the value of J at saturation density is
obtained from the energy difference between the pure
neutron matter (PNM) and the symmetric nuclear matter
(SNM). Although the EoS of SNM does not depend on
the p-meson coupling, it highly relies on the asymmetric
nuclear matter EoS.

In Fig. 7, we have shown the behaviour of nuclear
matter parameters J and L with the change of paramaters
A, and g,. In the process of tuning the G3(M) and IOPB-
I(M) from the original G3(O) and IOPB-I(O), here the
values of symmetry energy J decrease with the increase
of A, and increase with the increase of g,. Similar beha-
viour is found for slope parameter L with A,,, except the
trend with g,, which is decreasing with increasing values
of g,. Fig. 8 shows the variation of pressure with baryon
density for both original and modified G3 and IOPB-I
sets for symmetric nuclear matter (SNM). The empirical
flow data [113] is given for comparison. The G3 paramet-
er set has excellent agreement with the heavy-ion colli-
sions (HIC) data. Fig. 8 In comparison to G3(0O), IOPB-
I(O) has a stiffer EoS, although it still matches with the
empirical HIC data. Similarly, G3(M) and IOPB-I(M)
overlap exactly over the original G3(O) and IOPB-I(O)
parameters and exhibit the same nature.

The nuclear EoS plays a crucial role in studying neut-
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Table 3.

Nuclear matter (NM) properties (in MeV) at saturation density (pp in fm~3) and neutron star (NS) properties, such as max-

imum mass (M in solar mass unit) and radius (R km), obtained using the original G3(O) and IOPB-I(O) and the modified G3(M) and
IOPB-I(M) parameter sets. The tidal Love number k;, tidal deformability (1) and dimensionless tidal deformability (A) at 1.4 solar
mass are also presented. The experimental values for both NM and NS quantities are given for comparison, wherever available.

NM G3 G3 10PB-1I 10PB-I Expt.
NS (O] ™M) (©)] ™M)
J 31.842 33.063 33.355 34.831 33.4-42.8 [2]
L 49.317 65.530 63.700 78.947 69-143 [2]
Ksym -106.07 —-113.99 —36.60 —61.46 —(174-31) [100]
Osym 915.47 525.46 859.90 559.57 —
K 243.97 243.97 222.33 222.33 220-260 [58-60,101]
Kasy —401.98 -507.17 —418.80 —535.14 —
Qo —466.61 —466.61 —96.67 —96.67 —
K -307.65 —381.84 —391.10 =500.81 —(840-350) [102-104]
PO 0.148 0.148 0.149 0.149 0.148-0.185 [105]
Ksa -307.65 -381.84 -391.10 ~500.81 —
My 2460.98 2460.98 2571.31 2571.31 —
E/A -16.024 -16.024 -16.105 -16.105 —(15.0-17.0) [105]
M 1. 1. 2.14 2.14 0.04 0.10 0.04
9 29 1.97+094[106], 2.14* 3197107, 2.01*35% [108]
. . . . 124 114
R 10.81 10.87 11.80 11.85 13'02:,06’ 12.71;.19[109]
A 464.63 498.23 689.62 727.43 70-580 [110-112]
A 2.61 2.81 3.87 4.11 —
ky 0.09 0.09 0.11 0.11 —
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. Fig. 8. (color online) Calculated pressure with the variation
Fig. 7. (color online) Symmetry energy J (upper panels) and & ( ) p

slope parameter L (lower panels) for G3 (black solid shapes)
and IOPB-I (red open shapes) parameter sets as a function of
A, (left panels, circles) and g,(right panels, squares). The
single arrow is for better visibility of the values of modified
G3(M) and IOPB-I(M).

ron star properties. In Fig. 9, the EoS of original and
modified G3 and IOPB-I forces are presented along with
the extracted recent GW170817 observational data. The
shaded regions are deduced from GW170817 data with

of baryon density. The results for G3(0O), IOPB-1(0O), G3(M)
and IOPB-I(M) are compared with HIC data [113] for sym-
metric nuclear matter.

50% (grey) and 90% (orange) credible limit [112]. Both
the original and modified versions of G3 and IOPB-I fit
on top of the empirical data, having some differences in
lower as well as higher energy density regions. However,
these undulations are very marginal between the original
G3(0) and IOPB-I(O) and modified G3(M) and IOPB-
I(M), respectively. The modified forces G3(M) and
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Fig. 9. (color online) Equations of states of g—equilibrated

matter for G3(0), IOPB-I(O), G3(M) and IOPB-I(M) para-
meter sets. The shaded regions are for 50% (grey) and 90%
(orange) posterior credible limits given by the GW170817
data [112].

IOPB-I(M) are further applied to neutron star matter to
determine mass M and radius R. The M—R profile with the
original and the modified forces are shown in Fig. 10 and
also in Table 3 as earlier discussed. The experimental ob-
servations for mass and possible radius [106, 107] are
also shown in the figure. It is interesting to note that the
overall results for both modified and original parameter
sets are unchanged. The calculated mass and radius ob-
tained for both the original and modified parameter sets
are compiled in Table 3. The values of M and R for all the
parameter sets are well within the recent measurements
[106—109].

Finally, we have calculated the highly-discussed bin-
ary neutron star merger properties [111, 112, 114] such as
the Love number k;, quadrupole tidal deformability A,
and the dimensionless tidal deformability A for the modi-
fied G3(M) and IOPB-I(M) parameter sets listed in Table
3. Figure 11 shows the effect of the considered tuning
parameters A, and g, on tidal deformability (1,)(10°
gm cm? sec?) and dimensionless tidal deformability (A)
at maximum solar mass in the conversion from original
G3(0) and IOPB-I(O) to modified G3(M) and IOPB-
I(M) parameters. One can notice from the figure the ef-
fect of A, over tidal deformability (A1) is almost negli-
gible, while on the other hand for the G3 parameter set
the values are decreasing with the increase of g,. The pat-
tern is the reverse for the IOPB-I set. In the case of the
tidal deformability A, for the G3 parameter, it firstly de-
creases and then increases slightly with the variation of
both A, and g,, while the opposite trend is followed by
IOPB-I parameter set. From Figs. 7 and 11 we conclude
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Fig. 10. (color online) Mass radius (M—R) profile for the ori-

ginal G3(0) and IOPB-I(O) and modified G3(M) and IOPB-
I(M) parameter sets, given with some of the recent experi-
mental data [106—109] for comparison.
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Fig. 11.  (color online) Tidal deformability (1, (upper pan-
els, units 10°® gm cm? sec?) and dimensionless tidal deform-
ability A (lower panels) at maximum solar mass for G3 (black
solid shapes) and IOPB-I (red open shapes) parameter sets as
a function of A,(left panels, circles) and g, (right panels,
squares). The single arrow is for better visibility of the values
of modified G3(M) and IOPB-I(M).

that the dependency on A,, and g, is significant for J and
L, but nominal for tidal properties such as 1, and A.
From the above analysis, we find the modified version of
G3 and IOPB-I can reproduce all the nuclear matter
quantities and neutron star properties, including neutron
star mergers, and compete with the original version along
with the current PREX-2 constraint on neutron-skin
thickness. More systematic analysis of various regions of
the nuclear chart with systematic study of nuclear and star
matter quantities will be communicated soon.
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V. SUMMARY AND CONCLUSIONS

In summary, we have revisited the relativistic mean-
field forces for G3 and IOPB-I parameter sets, applying
the currently reported constraint on the neutron radius of

%py by PREX-2. It is worth demonstrating that the pre-
cise measurement of the neutron distribution radius dis-
criminates various theoretical predictions. Hence it
provides an opportunity to modify the force parameter or
readjust the model with the implication of new interac-
tions in the model. In this context, we have performed a
minimal modification to the relevant couplings of re-
cently developed G3 and IOPB-I parameter sets with E-
RMF without compromising the predictions for finite
nuclei and infinite nuclear matter. We carried out fine-
tuning of the w—p cross-coupling A, along with the
coupling of isovector—vector-meson (g, ) to reproduce the
recent experimental R,. The updated values of A, and g,
are 0.021 and 0.872 for G3, and 0.014 and 0.803 for
1OPB-I, respectively. The modified parameter sets repro-
duce the neutron distribution radius as 5.717 and 5.721
(in fm) for G3(M) and IOPB-I(M) respectively, which
both meet the present experimental demand of

R,® =5.727+0.071 fm.

The modified forces have been used to calculate
ground-state properties such as binding energies, root-
mean-square charge distribution radii R.,, nuclear dens-
ity distributions, pairing gap parameters, and single-
particle energies for a few even—even nuclei. Further, we
have considered 195 even—even nuclei to estimate the
root-mean-square (rms) deviation in binding energy with
respect to the experimental data, and the results compare
favourably with the well-calibrated effective interactions
of Skyrme, Gogny and other RMF parametrizations. The
rms deviation has also been calculated for the charge ra-
dius using the available experimental data. We found a
reasonable value for the rms deviation consistent with
other theoretical calculations, with binding energy
3.751973 and 3.5698173 MeV and charge radii 0.023278
and 0.021237, respectively for the G3(M) and IOPB-I(M)
parameter sets. We have also performed the same for
G3(0) and IOPB-I(O), where the mean deviation of BE is
found to be 2.69674 and 2.3537 MeV. We have also veri-

fied the pairing gap for Sn-isotopes and found a pattern
match to the Hartree—Fock—Bogoliubov predictions. The
isotopic shift and the single-particle energy spacing is
also examined for *°Pb, which match reasonably with the
experimental data. Comparing the original version of G3
and IOPB-I parameter sets with the modified version, we
did not find any substantial difference in the nuclear bulk
properties except the neutron radial distribution, i.e., the
skin-thickness.

Subsequently, the density and isospin-dependent nuc-
lear matter parameters, such as symmetry energy J, slope
L, and other specific observables, have also been estim-
ated, significantly favouring the experimental or other
theoretical predictions. Furthermore, the dependence on
Ao, and g, for J, L, A;, A have been estimated. We no-
ticed that the changes in NM quantities J, L are signific-
ant, but changes are nominal for NSM quantities. For ex-
ample, the value of symmetry energy is 31.842 MeV for
original G3(0), and after the modification, modified
G3(M) produces the value of J as 33.063 MeV. Similarly,
the J values are 33.355 and 34.831 MeV for IOPB-1(O)
and IOPB-I(M), respectively. For both the parameter sets,
the new values are closer to the limit set up by Reed et al.
[2]. The EoS for symmetric NM and neutron star matter
was briefly discussed. We noticed that both the original
and modified G3 and IOPB-I forces are in good agree-
ment with the empirical data. Further, the forces are ap-
plied to calculate the properties of high isospin asym-
metry dense systems such as neutron star matter have
been tested to validate the constraint from GW170817
binary neutron star merger events [111, 112]. We find
better predictions in the modified version of G3 and
IOPB-I compared to the original version for finite and in-
finite nuclear matter systems. Hence, recalibration of the
parameters is essential for theoretical studies in garallel
with the PREX-2 constraint on neutron radius of ** Pb.
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