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Abstract: Light mesons (o, 7°,7%) are investigated in up —T —eB and u; — T —eB spaces using a two-flavor NJL
model and used to determine chiral symmetry restoration and the pion superfluid phase transition. In up—7 —eB
space, during the chiral symmetry restoration process, the mass of the pseudo-Goldstone mode #° increases, with
sudden jumps. At the critical end point, the 77 meson exhibits a sharp but continuous mass increase, with a sudden
mass jump at the Mott transition. In the nearby first order chiral phase transition region, we observe two 7°

jumps, one induced by the Mott transition and the other by the quark mass jump. The mass of the Higgs mode o first

mass

decreases and then increases with chiral symmetry restoration, only showing a jump at the first order chiral phase
transition. We plot a chiral phase diagram in terms of the change in quark mass, the Mott transition of the pseudo-
Goldstone mode 7°, and the minimum mass of the Higgs mode o. Owing to explicit breaking of chiral symmetry in
the physical case, the chiral restoration phase boundaries on the up—7 plane from the order parameter side and
meson side are different. The 79 and o mass jumps will be helpful to the experimental search for the chiral phase
diagram and critical end point. On the y; — T plane, the competition between the pion superfluid phase transition and
chiral symmetry restoration under magnetic fields is studied in terms of the Goldstone mode n* and pseudo-Gold-
stone mode #°. In contrast to the two mass jumps of 7¥ in the first order chiral phase transition region, the 7* meson
displays several mass jumps in the chiral crossover region. At the critical end point, 7* also has sharp but continu-
ous mass change, with a mass jump at the Mott transition. The isospin symmetry is strict, and the pion superfluid
phase transition is uniquely determined by the massless Goldstone mode 7*. The separation of chiral restoration and

the pion superfluid phase boundaries is enhanced by the external magnetic field.
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I. INTRODUCTION

The phase structure of quantum chromodynamics
(QCD) at finite magnetic field, temperature, and density,
including chiral symmetry restoration, quark deconfine-
ment, pion superfluids, and color superconductors, has at-
tracted significant attention in recent years and is related
to the evolution of the early universe, relativistic heavy
ion collisions, and compact stars [1-3]. The mechanism
behind a continuous phase transition is spontaneous sym-
metry breaking, and we can define an order parameter
that changes from a nonzero value to zero, or vice versa,
when the phase transition occurs. On the other hand, the
spontaneous breaking of global symmetry manifests it-
self in Goldstone's theorem [4, 5], that is, whenever glob-
al symmetry is spontaneously broken, massless fields,
known as Goldstone bosons, emerge. For example, under
an external magnetic field, the pseudo-Goldstone (Higgs)

mode of chiral symmetry breaking is the neutral pion (¢
meson), and the Goldstone mode of isospin symmetry
breaking is the charged pion. Modifications to hadron
properties in a medium will help to understand QCD
phase transitions. Different from previous studies on the
QCD phase structure at the order parameter level, we fo-
cus on the meson properties and their application for de-
termining phase transitions in a chemical potential-tem-
perature plane under a constant external magnetic field.
Electromagnetic interactions provide a sensitive probe
for hadron structure. At hadron level, without consider-
ing the inner structure, neutral hadrons are blind to elec-
tromagnetic fields, and their properties in hot and dense
mediums are not directly affected by the fields. However,
at quark level, the electromagnetic interactions of charged
constituent quarks lead to a sensitive dependence of the
neutral meson properties on external electromagnetic
fields [6—40]. When the magnetic field strength is com-
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patible with the strong interaction, such as eB ~ m2, the

quark structure of hadrons should be considered.

LQCD has a sign problem in the case of finite baryon
chemical potential. In this paper, we investigate the prop-
erties of light mesons (o, 7°,7%) and the phase structures
of chiral and isospin symmetry on baryon chemical po-
tential-temperature (ug—7) and isospin chemical poten-
tial-temperature (u; —7T) planes under external magnetic
fields in the framework of the two-flavor NJL model at
quark level. The NJL model [12, 41-44], which is in-
spired by Bardeen-Cooper-Schrieffer (BCS) theory, en-
ables us to directly observe how the dynamical mechan-
isms of symmetry breaking and restoration operate. With-
in this model, quarks are treated on the mean field level,
and mesons are the quantum fluctuations constructed
from the quark bubble. On the one side, we can study the
QCD phase transitions at the order parameter level [12,
41-48]. On the other side, the associated hadronic mass
spectrum and the static properties of mesons are de-
scribed remarkably well [12, 41-48].

In the framework of the quark model, meson proper-
ties under an external magnetic field are studied, mainly
in the vacuum, finite 7" (vanishing ug), and finite up (van-
ishing T) cases [12—16, 18—40]. During chiral crossover
at finite 7 and vanishing ug, the pseudo-Goldstone mode
n° exhibits a mass jump at the Mott transition because of
the discrete Landau level of constituent quarks [20, 26,
28, 30, 31]. With the first order chiral phase transition at
finite up and vanishing 7, the pseudo-Goldstone mode 7°
and Higgs mode o display a mass jump at the phase trans-
ition point, induced by the corresponding mass jump of
constituent quarks [20]. The meson properties at finite
temperature and baryon chemical potential, especially
around the critical end point of chiral symmetry restora-
tion, is not yet explored and is an important issue for the
experimental search for the critical end point and QCD
phase structure. Furthermore, chiral symmetry restora-
tion can be defined in terms of mesons, such as the Mott
transition of the Goldstone mode n° and the minimum
mass of the Higgs mode o [23, 49, 50]. For example, chir-
al symmetry restoration under an external magnetic field
shows inverse magnetic catalysis when defined through
the Mott transition of #° [50]. Here, we study the chiral
phase diagram on ug — T plane under an external magnet-
ic field based on our results on 7° and ¢ mesons.

On the isospin chemical potential-temperature
(ur—T) plane, except for chiral symmetry restoration,
there is a pion superfluid phase transition [27, 46—48,
51-79]. With a vanishing external magnetic field, when a
pion superfluid phase transition occurs at y; >0, the 7*
meson becomes massless, which is confirmed by both the
LQCD simulation and effective theories [27, 46—48, 54,
67, 68, 74]. Owing to the predicament caused by the elec-
tromagnetic interaction between the charged pion con-
densate and magnetic field, there is limited research with

finite magnetic field [27, 77-79]. In vacuum, it is repor-
ted that the mass of charged pions increases when the ex-
ternal magnetic field is not significantly strong [10, 11,
21, 22, 26, 27]. At finite temperature and vanishing y;y,
charged pions exhibit several mass jumps induced by the
discrete Landau level and different electric charges of
constituent quarks [26]. Pion superfluid phase transition
under an external magnetic field has been investigated us-
ing the Goldstone meson n* [27]. Much less is known
about the properties of charged and neutral pions on the
u; — T plane under an external magnetic field. In terms of
(pseudo-)Goldstone modes, the competition between
chiral symmetry restoration and pion superfluid phase
transition on the y; — T plane has also not been explored
under an external magnetic field.

The rest of this paper is organized as follows. Sec. 11
presents the NJL framework of quarks and mesons in
up—pur—T —eB space. Numerical results and physical
discussions in up—T-—eB and p;—T-—eB space are
shown in Sec. III, where we focus on the phase diagram
and corresponding (pseudo-)Goldstone and Higgs modes
around the critical end point. Finally, we provide a brief
summary and outlook in Sec. I'V.

II. NJL FRAMEWORK

The two-flavor NJL model is defined using Lagrangi-
an density in terms of the quark fields w [12, 41-44].

L= (1D = mo+you)w+ G () + @iysty)’], (1)

where the covariant derivative D, =d,+iQA, couples
quarks with electric charge Q = diag(Q,, Q) = diag(2¢/3,
—e/3) to a magnetic field in the z direction, B = (0,0, B),
through the potential A, =(0,0,Bx;,0). In our calcula-
tions, the magnetic field is not a dynamical field and is
treated as an external classical field. mg is the current
quark mass characterizing explicit chiral symmetry
breaking, and the quark chemical potential
u = diag (uy, pq) = diag (up/3+ wr/2,up/3 - pr/2) isa mat-
rix in flavor space, where u, and p, are the u- and d-
quark chemical potentials, up and y; are the baryon and
isospin chemical potentials, and G is the coupling con-
stant in the scalar and pseudo-scalar channels. Under an
external magnetic field, SUQ)L®SU(2)r chiral sym-
metry is explicitly reduced to U(1),® U(1)r. The order
parameter of spontaneous chiral symmetry breaking is the
neutral chiral condensate (Y) or the (dynamical) quark
mass m, = mo—2G{yy), and the corresponding Goldstone
boson is the neutral pion 7°. At finite isospin chemical
potential (u; >0), with spontaneous breaking of the
isospin symmetry U(1); by the charged pion condensate
(Wyst'y), the Goldstone boson is the 7t meson. In our
study, we focus on chiral and isospin symmetries, and
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thus neglect the interaction of the color superconductor
phase transition in the NJL model, which is an interest-
ing issue and will be studied elsewhere.

The chiral condensate is charge neutral and only af-
fected by the external magnetic field through paired
quarks. However, the charged pion condensate directly
interacts with the external magnetic field. This breaks
both isospin symmetry in flavor space and translational
invariance in coordinate space. Moreover, when one in-
troduces a magnetic field into a pion superfluid, there is
either a superconductor or magnetic vortex, both of which
can completely or partially change the magnetic field. To
avoid the complication and difficulty of dealing with the
charged pion condensate under an external magnetic
field, we begin with the normal phase only with a neutral
chiral condensate and no charged pion condensate. We
calculate the light meson (o, 7%, 7%) mass spectra and use
them to determine the chiral symmetry restoration phase
boundary and pion superfluid phase transition based on
Goldstone's theorem.

There are two equivalent ways to manage particle
propagators under an external magnetic field: the Ritus
scheme [80—82] and Schwinger scheme [1-3]. For con-
venience in studying both neutral and charged particles,
we perform derivations using the Ritus scheme in the fol-
lowing, where the Fourier-like transformation of the
particle propagator between the conserved Ritus mo-
mentum space and coordinate space is well defined
[80—82]. For example, the quark propagator S ¢(x,y) with
flavor f'in coordinate space can be written as

AN RGYSE

X Pu(x1, p2)D (PP (y1, P2),

1
Paxr.p2) =3 |8 (a1 p2) + 1ag) (o1 p)]
iSf
+_
2
D' (p) =y-p-my, ()

|20 (et p2) = Igy (e, p2) | 7172,

where p = (po,0, p2, p3) is the Fourier transformed mo-
mentum, p = (po,0,—s7+/2n|QfBl, p3) is the conserved
Ritus momentum with n describing the quark Landau
level in magnetic fields, D/(p) is the quark propagator in
Ritus momentum space, sy =sgn(QrB) is the quark sign
factor, I, =1-6,9 is governed by the Landau energy
level, and the magnetic field dependent function
8y (x1,p2) = ¢u(x1 —s;p2/IQsBl) is controlled by the

VIQrB
(D) = | =1

2nn! i
e*({Z‘Q'B‘)/ZH,,@ w/leBl) Throughout this paper, we use

the definitions x* = (xo, x1,X2,x3) and p* = (po, p1, P2, P3).-

Hermite polynomial H,({) via

At mean field level, the quark mass m, = mo—2G{y)
is controlled by the gap equation

my(1-2GJy)—mq =0,

B 1-F(E})-F(E;)
J :chan|Qf | (dps s s
2w 2n E;
fin

N E)

with the summation over all flavors and Landau energy
levels, the spin factor «,=2-6,0, the quark energy

Ef= \/p§+2n|QfB|+m§ and Ej=Ey+us. Fermi-Dirac

distribution function F(x) = (ex/ Ty 1)_1, and the number
of colors N, = 3, which is trivial in the NJL model. In this
paper, the terminologies for chiral crossover or first or-
der chiral phase transition are conventionally defined by
the continuous change or sudden jump in the order para-
meter m,, and the connection point is the critical end
point.

As quantum fluctuations above the mean field,
mesons are constructed through quark bubble summation
in the framework of random phase approximation (RPA)
[12, 41-45]. Namely, the quark interaction via meson ex-
change is effectively described using the Dyson-
Schwinger equation

Dy(x,2) =2G5(x—z2) + [d*y 2GTy(x, ) Dy (.2),  (4)

where Dy (x,y) represents the meson propagator from x
to y, and the corresponding meson polarization function is
the quark bubble

My (x,y) =i Tr[T5,8 (e, 0)TuS (0, (5)

with the meson vertex

1 M=o, 1 M=o,
_ | ityys M =nt, = it_ys M=n",
M=) irlys M=n, M7 iryys M=n,
it3ys M= 70, it3ys M= 7°.

(6)
The quark propagator matrix S = diag(S,, S4) in flavor
space is at mean field level (see Eq. (2)), and the trace is
taken in spin, color, and flavor space.

A. Neutral mesons

When studying chiral symmetry, we focus on its
pseudo-Goldstone mode 7° and Higgs mode o. The neut-
ral mesons 7° and ¢ are affected by an external magnetic
field only through the pair of charged constituent quarks.
Consequently, the transformation from coordinate to mo-
mentum space is a conventional Fourier transformation,
characterized by the plane wave e ** [1-3, 80-82]
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Dyr(h) = f (=)D Dy (x,y),

My (k) = f (e ) Iy (x,y), ™

for M =% 0. By taking the quark bubble summation in
the RPA and considering the complete and orthogonal
conditions of the plane wave e **, the neutral meson
propagator in momentum space can be simplified to

2G

Duk) = 1~ 26Ty (k)

®)

The meson pole mass my, is defined as the pole of the
propagator at zero momentum, k =0,

1-2GTy(w? = m2,, k2 = 0) =0, )
and the polarization function can be simplified to

My (w?,0) = Ji = (0 — €)J2(w?) (10)
with € =0, €, =2m, and

0Bl [ dps 1~ F(ED-F(E))
2n 2r Ef(4E]% - w?)

JZ(U-)Z) =-N, Z (e
fn

During chiral symmetry restoration, the quark mass
decreases, and the 7° mass keeps increasing, as guaran-
teed by Goldstone's theorem [4, 5]. When the 7° mass is
beyond the threshold

My 2 2my, (11)

the decay channel 7° — ¢g opens, which defines the pion
Mott transition [83—85]. From the explicit expression of
Iy in Eq. (10), the factor 1/(4E}~w?) in the integrated
function of J, becomes (1/4)/(p3+2n|QsBl) at w =2m,.
When we perform the integration over p3, p3 in the de-
nominator leads to infrared divergence at the lowest
Landau level, n=0. Therefore, mm =2m, is not a solu-
tion of the pole equation, and there must be a mass jump
for the Goldstone mode at the Mott transition. The mass
jump is a direct result of quark dimension reduction [20,
26, 28, 30, 31]. When the magnetic field disappears, there
is no more quark dimension reduction, the integration
fd3p/(4E§.—w2)~fdp becomes finite at w = 2m,, and
there are no more mass jumps.

In the chiral limit with the vanishing current quark
mass mgy =0, by comparing the gap equation (3) of the
quark mass m, with the pole equation (9) of the neutral

meson pole mass my;, we obtain simple relations in the
chiral symmetry breaking phase,

mg#0, mp=0, me=2my,, (12)
and chiral restoration phase,
mg=0, mp=msz#0. (13)

This confirms that 7° and ¢ are chiral partners in an ex-
ternal magnetic field. 7° is the Goldstone mode corres-
ponding to spontaneous chiral symmetry breaking, and o
is the Higgs mode, which is heavier than (degenerate
with) 70 in the chiral breaking (restoration) phase. When
chiral restoration phase transition occurs, the 7° Mott
transition occurs simultaneously, and the Higgs mode o
approaches the minimum mass my|min = 0.

In the physical case with a non-vanishing current
quark mass, myg # 0, chiral restoration is no longer a genu-
ine phase transition. We observe my > mg, mp <2m,,
and m, > 2m, in the region with spontaneous chiral sym-
metry breaking, m, > mg, mp =~ 2mg, and mglmin > 0 in the
chiral  restoration process, and my;—my and
My = mgp > 2m, in the region with (partially) restored
chiral symmetry. Different definitions of chiral restora-
tion are proposed in literature [23, 45, 49, 50], such as the
maximum change in quark mass, the Mott transition of
the pseudo-Goldstone mode, and the minimum mass of
the Higgs mode. However, it should be noted that there is
no guarantee for the coincidence of different definitions.

B. Charged mesons

When considering the pion superfluid phase trans-
ition at u; > 0, we focus on the 7" meson because it acts
as the Goldstone boson corresponding to the spontaneous
breaking of isospin symmetry. For the charged mesons
n*, we should consider the interaction between charged
mesons and magnetic fields, which is absent for neutral
mesons. With the Ritus scheme, the Fourier transforma-
tion for neutral mesons (7) is extended to [22, 26, 80—82]

Du® = f A xd* YL (0D (6, ) Fi (),

My () = f drdyF (O () F), (14)

where k = (ko,0,—sy V(2I+ DIQyBl.k3) is the conserved
four-dimensional Ritus momentum, and Fi(x) = e **x

gls’”(xl,kz) is the solution of the Klein-Gordon equation in
a magnetic field, with the index / describing the meson

Landau level, the Fourier transformed momentum
k=(ko,0,ks,k3) and the meson sign factor sy =
sgn(Qm B).

Considering the complete and orthogonal conditions
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of Fi(x) and the Dyson-Schwinger equation (Eq. (4)), the
¥ meson propagator in Ritus momentum space can be
simplified to

2G

Ol = G ®

(15)

The pole mass my; of charged pions is defined through
the singularity of the meson propagator D;/(k)=0 at
k() =mM,l=0 and k3 =0,

1=2G Ty (ma, 0, =51 VIGuBl,0) = 0. (16)

Taking the mean field quark propagator (2) and the
definition (5) of a quark bubble, we obtain the 7" polariz-
ation function at the pole

I (ko, 0, — V]eBI,0) = Jy + J3(k2), (17)

with

dp3 jn n’(k())
2 .
k) =2, f 21 4E,E,

« [F(_En’ _ﬂu) - F(En _ﬂd)

ko+ur+E, +E,
4 F(En’ _,uu) - F(_En _ﬂd)
k() +ﬂ1_En’_En ’
e (ko) = (ko + 1) 12~ 1| QB = 1l Qu Bl .

=2’ |QuBIn|QuBl j » (18)

and quark energy E, = \/ pi+2n'|QuBl+m2  and

E,= 1/p§+2n|QdB|—i-m§ .

At nonzero magnetic field, three-dimensional quark
momentum integration in the quark bubble IT,- becomes
one-dimensional momentum integration and summation
over the discrete Landau levels. The quark dimension re-
duction leads to infrared (p3; — 0) singularity of the quark
bubble I, (m,,0) at some Landau levels , temperature,
and isospin chemical potential, and thus, mass jumps ex-
ist for the meson mass m,- in this case [26]. At finite tem-
perature and isospin chemical potential, the first singular-
ity of the polarization function IT,.(m,-,0) is not located
at the lowest Landau level. Because the spins of the u and
d quarks at the lowest-Landau-level are always aligned
parallel to the external magnetic field and the 7* meson
has zero spin, the lowest-Landau-level term with n=n’ =
0 does not contribute to the polarization function, de-
scribed by ji,=0. The constituent quark and antiquark
of charged mesons carry different charges and energies

E, = \/p§+2n’|QuB|+m2—/.q/2, E;= 1/p§+2n|QdB|+m§—

11/2. The threshold for the singularity of I, is located at
Landau levels n’ =0 and n =1, where the charged pion

mass jumps from m,. >mg,+ 1/2|Q,1B|+m§—u,. to my >
my + 1/2|QdB|+m§— uy. Several other jumps are located

atn’ >1,n>0.

Pion superfluid phase transition at y; > 0 is a genuine
phase transition with the massless Goldstone mode n*.
Therefore, the phase boundary is determined by the con-
dition

My =0, (19)

At weak magnetic field and vanishing temperature and
baryon chemical potential, by straightforwardly compar-
ing the gap equation (3) of the quark mass and the pole
equation (16) of the 7™ mass, the critical isospin chemic-
al potential for the pion superfluid phase transition uj is
equal to the 7* mass in magnetic fields [27].

C. Pauli-Villars regularization

Because of the four-fermion interaction, the NJL
model is not a renormalizable theory and requires regu-
larization [12, 41—44]. The external magnetic field does
not cause extra ultraviolet divergence but introduces dis-
crete Landau levels and anisotropy in momentum space.
To avoid unphysical oscillations and the breaking of the
law of causality under the external magnetic field, we
make use of the covariant Pauli-Villars regularization
scheme [18, 19, 86]. In this scheme, the quark mo-
mentum and Landau level run formally from zero to in-
finity, and the divergence is removed by the cancellation
among the subtraction terms.

We introduce the regularized quark masses m; =

w/mé +a;A? for i=0,1,---,N and replace mz in the quark
energy E;= \/ pi+2n|QsBl+m2 with m?. The summa-

tion and integration in the gap equation (J;) and pole
equations (Ji,J2,J3) are modified as follows:

d
zn: f zi;Function(Ef) —

N
Z f dﬂZ[cixFunction(E})],
n 2n i=0

with Ej;.: \/p§+2n|QfB|+m2 The parameters N =3,

:.
aj =1, C1 2—3, a2=2, 6223, and a3=3, C3=—1 are de-
termined by the constraints ay=0, c¢y=1, and
SNoem=0for L=0,1,---N—1.

The three parameters in the NJL model, namely, the
current quark mass mp=5 MeV, coupling constant

094105-5



Luyang Li, Shijun Mao

Chin. Phys. C 46, 094105 (2022)

G =3.44 GeV~2, and mass parameter A = 1.127 GeV, are
fixed by fitting the quark condensate {J)=-2x
(250 MeV)?, pion mass m, = 134 MeV, and pion decay
constant f; =93 MeV in vacuum [12, 41-44]. In the fol-
lowing numerical calculations with finite temperature,
chemical potential, and magnetic field, the Pauli-Villars
regularization is applied in all integrations (J1,J3,J3). It
can be verified that our conclusions will not be changed
by applying Pauli-Villars regularization in only the vacu-
um integrations.

III. RESULTS AND DISCUSSIONS

A. Chiral partners 7° and o on the ug — T plane

Chiral symmetry is spontaneously broken in vacuum
and will be restored at finite temperature and chemical
potential. Because up and y; play similar roles in chiral
restoration, y; = 0 is fixed in this section. Associated with
chiral crossover at finite temperature and zero baryon
chemical potential, the 7° meson shows a sudden mass
jump at the Mott transition, induced by the discrete Land-
au level of constituent quarks, and with the first order
chiral phase transition at finite baryon chemical potential
and zero temperature, the 7° and o mesons display a sud-
den mass jump induced by the mass jump of constituent
quarks [20, 28, 30, 31]. What is the situation in the re-
gion with finite temperature and baryon chemical poten-
tial? Fig. 1 plots the quark, 7°, and & meson masses with
eB =20m2 around the critical end point. Here, panel (a) is
an example in the chiral crossover region with 7' = 100
MeV, panel (b) is an example at the critical end point
with T = Teep = 59 MeV, and panels (c),(d) are in the first
order chiral phase transition region with 7 =55, 10 MeV.
The vertical dashed lines in Fig. 1 denote the maximum
change in quark mass (black), the 7° mass jump at the
Mott transition (red), and the minimum value of ¢ mass
(blue). In the chiral crossover region and at the critical
end point, the quark and o masses change continuously;
however, the 7° meson shows a sudden mass jump at the
Mott transition. In the first order chiral phase transition
region, the quark, 7°, and o meson masses all exhibit
jumps. On the ug — T plane, the mass jump of the pseudo-
Goldstone mode n° can be induced by either the Mott
transition (discrete Landau level of constituent quarks) or
first order chiral phase transition (mass jump of constitu-
ent quarks), whereas the mass jump of the Higgs mode o
is only caused by the first order chiral phase transition.

In the chiral crossover region, as shown by Fig. 1(a),
a smooth decrease in quark mass is observed, with the
maximum change at up/3 =l . Owing to the discrete
quark Landau level in the magnetic field, there is a mass
jump for the pseudo-Goldstone mode n° at the Mott
transition point up/3 =y~ .., where the 7° mass sud-
denly jumps from my < 2m, to myp > 2m,. Except for this

jump, the 7 mass increases during the chiral restoration
process, which is consistent with the decreasing quark
mass, as guaranteed by Goldstone's theorem [4, 5]. The
Higgs mode o is always in the resonant state with
my > 2myg. my decreases in the chiral breaking phase and
reaches its minimum at up/3 = g, . It then increases and
becomes almost degenerate with the 7° meson in the chir-
al  restoration phase. We numerically obtain
Hhe < iy <uS. In Fig. 1(b), we fix the temperature at
the critical end point Tcgp and plot the quark, 7°, and o
masses as functions of baryon chemical potential. At the
critical end point 7 =Tep and up/3 = ucep, the quark
mass, 7, and ¢ meson masses exhibit the sharpest
changes, with dm,/dugp — oo, dmp/dup— co, and
dm, /dup — oo, as indicated by the vertical black dashed
line. In contrast to the continuous mass change of the
quark and ¢ meson with baryon chemical potential, 7°
shows a sudden mass jump after the critical end point at
ug/3 = uﬁm > pcep, which is the Mott transition, with the
mass jumping from mp <2my to mme >2mg,, as denoted
by the vertical red dashed line. The ¢ meson, which is in
the resonate state, decreases to its minimum mass at a
higher baryon chemical potential, with up/3=puJ. >
U . > pcep (see the vertical blue dashed line).

Different from the single mass jump of the 7° meson
in the chiral crossover region (Fig. 1(a)) and at the critic-
al end point (Fig. 1(b)), we observe two 7° mass jumps in
the first order chiral phase transition region. As shown in
Fig. 1(c), in the first order chiral phase transition region
close to the critical end point, the quark mass exhibits a
sudden jump at up/3 = pf, which leads to mass jumps of
the 7% and ¢ mesons, as indicated by the vertical black
dashed line. After this mass jump, the 7° meson is still in
the bound state with my <2m,. A second mass jump is
found for the 7° meson at up/3 = p%,. > ., denoted by
the vertical red dashed line, which is the Mott transition,
with the mass jumping from m < 2m, to mp >2m,. For
the o meson, which is in the resonate state, after the mass
jump induced by the quark mass jump, its mass contin-
ues to decrease, approaches its minimum value at ug/3 =
UZ: > uae, and then begins to increase with baryon chem-
ical potential. Nevertheless, in the first order chiral phase
transition region at extremely low temperature, see
Fig. 1(d), the 7% Mott transition occurs, and the & meson
simultaneously jumps to its minimum mass, with
e = 1oy, =pZ,,, which is associated with the quark
mass jump. The quark mass jump at the first order chiral
phase transition increases with lower temperatures, and
the induced mass jumps for the 7° and ¢ mesons also in-
crease. Comparing Fig. 1(c) and Fig. 1(d), when the con-
stituent quark has a sufficiently large mass jump, the as-
sociated 7° mass jump satisfies the condition of the Mott
transition, jumping from mg <2m, to mmp >2my,; there-
fore, we only observe a single n° mass jump in
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(color online) Quark, 7°, and ¢ masses with eB =20m2 and u; = 0 around the critical end point. Panel (a) is an example in the

chiral crossover region with 7 =100 MeV, panel (b) is an example at the critical end point with 7 = T¢gp = 59 MeV, and panels (c),(d)
are in the first order chiral phase transition region with 7 =55, 10 MeV. The vertical dashed lines denote the maximum change in quark
mass (black), the z° Mott transition (red) and the minimum value of o mass (blue).

Fig. 1(d). For the ¢ meson in the resonate state, the mass
jumps directly to its minimum value and then begins to
increase, as shown in Fig. 1(d).

Based on Goldstone's theorem, we can define chiral
restoration not only using the order parameter, but also
the 7° and o mesons. Fig. 2 depicts the chiral phase dia-
gram on the up—T plane at eB = 20m2 with three charac-
teristic phase boundaries: B}, B~ .., and BY, . The phase
boundary B is defined from the quark mass, and the
first order chiral phase transition is denoted by the black
solid line and the chiral crossover by the black dashed
line, with a critical end point located at (T,up/3)=
(Tcep,tcep) = (59 MeV,229 MeV). The phase boundaries
Br. .. and BY,  are defined by the Mott transition of the
pseudo-Goldstone boson 7° and the minimum mass of
the Higgs mode o, respectively. They exhibit an apparent
bump structure around the critical end point. In the chiral
crossover region with high temperature and low baryon
chemical potential, we obtain .., <pud. <ug, for the
characteristic baryon chemical potential at the phase
boundaries when fixing the temperature. As we move
closer to the critical end point from the crossover side, a
crossing of the two phase boundaries Bf. and B~ .. is ob-
served; thus, we obtain . < .. <u%, for the charac-
teristic baryon chemical potential with fixed temperature,

which is also observed in the first order chiral phase
transition region near the critical end point. In the first or-
der chiral phase transition region with low temperature
and high baryon chemical potential, the three phase
boundaries become degenerate. It is noticeable that the
starting point of the overlap between BY. and Bf,,, devi-
ates from that of Bf and B7, .

How does chiral symmetry restoration change with
external magnetic field? Table 1 shows the magnetic
catalysis and inverse magnetic catalysis effects of chiral
symmetry restoration via the quark pseudo-critical tem-
perature T, 7° Mott transition temperature 77, and the
minimum mass of the ¢ meson T, ~at vanishing baryon
chemical potential and critical baryon chemical potential
uy/3 at vanishing temperature. Because quarks are
treated at the mean field level, Tgc is controlled by mag-
netic catalysis, that is, it increases with increasing mag-
netic field [1-3]. Mesons are quantum fluctuations con-
structed by quark bubble summation. 77  displays
clearly the inverse magnetic catalysis effect, decreasing
in the entire magnetic field region, and 7. = first de-
creases with magnetic field and then increases. It is the
quantum fluctuation that changes magnetic catalysis to
inverse magnetic catalysis, which is consistent with the
scenario of fluctuation induced inverse magnetic catalys-
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Fig. 2.  (color online) Chiral phase diagram on the up-T

plane at eB=20m2 and y; =0 with three characteristic phase
boundaries: Bj, defined by the maximum change in quark
mass (black line), BT, defined by the Mott transition of the
pseudo-Goldstone boson 7° (red dashed-dotted line), and
BY, ., defined by the minimum mass of the Higgs mode o (blue
dotted line). Here, the terms chiral crossover (black dashed
line), critical end point (black point), and first order chiral
phase transition (black solid line) are conventionally defined
from the continuous change in or sudden jump of the order
parameter m,.

Table 1.
effects for chiral symmetry restoration shown with character-

Magnetic catalysis and inverse magnetic catalysis

istic temperatures at vanishing baryon chemical potential and
critical baryon chemical potential at vanishing temperature.

eBm  TE/MeV  Tm Mev  Tg/MeV  pug/3/MeV
0 157 167 174 290
10 164 160 170 223
20 180 147 190 237

is, discussed in Refs [17-19]. When we consider the feed-
back effect from mesons to quarks by including the
meson contribution to the thermodynamics of the system,
Q=0Q,,+Qy, the decreasing pseudo-critical temperat-
ure T} is observed. At vanishing temperature, the critic-
al baryon chemical potential u§ = pf. = u%0., =pud, ex-
hibits inverse magnetic catalysis at weak magnetic field
and magnetic catalysis at strong magnetic field.

In the physical world with a non-vanishing current
quark mass, chiral symmetry is an approximate sym-
metry and hence its restoration is not a genuine phase
transition. As shown in Fig. 2, the phase boundaries from
the order parameter side (Bj.) and meson side (B~... and
B, ) are different; however, they do not deviate signific-
antly. The occurrence of meson mass jumps, as shown in
Fig. 1, may be helpful for the experimental search for the
QCD phase structure. Such mass jumps may result in
some interesting phenomena within relativistic heavy ion
collisions (HICs), for instance, the enhancement of pions.

At the critical end point, the change from a single to two
mass jumps for 7° and the appearance of the & mass jump
may provide useful signals in HIC experiments.

B. Goldstone bosons 7" and 7 on the y; — T plane

This section focuses on the pion superfluid phase
transition and chiral symmetry restoration on the u;—T
plane under an external magnetic field and vanishing ba-
ryon chemical potential, which are determined by the cor-
responding Goldstone mode n* and pseudo-Goldstone
mode 7, respectively.

Figure 3 shows a comparison between the masses of
n* and n° on the y; — T plane under an external magnetic
field. Here, we choose the same magnetic field,
eB =20m2, and temperatures as in Fig. 1, with the chiral
crossover region with 7 =100 MeV in panel (a), critical
end point with 7 = Tcgp = 59 MeV in panel (b), and first
order chiral phase transition with 7' =55, 10 MeV in pan-
els (c),(d). The isospin and baryon chemical potentials
play the same role in chiral symmetry restoration; thus,
the 7° and quark masses are the same as in Fig. 1, except
for the replacement of up/3 with u;/2. Owing to the elec-
tromagnetic interaction between the n* meson and ex-
ternal magnetic field, the #* mass becomes heavier than
the 7° meson mass at zero isospin chemical potential.
When increasing the isospin chemical potential pyy,
isospin symmetry is broken, which leads to a decrease in
the 7" mass to zero, but the broken chiral symmetry is re-
stored, which leads to an increase in the #° mass. There-
fore, a crossing behavior is expected for the n* and n°
masses, and the 7° mass will become heavier than the 7*
meson mass with sufficiently high isospin chemical po-
tential (as shown in Fig. 3).

Note that in Fig. 3, independent of temperature, both
the 7" and 7° masses exhibit an approximate linear beha-
vior as functions of isospin chemical potential in the low
and high u; regions. In the medium y; region, mass
jumps are observed for both 7+ and #°, which depend on
the temperature. For example, with 7 =100 MeV in
Fig. 3(a), where the quark mass continuously decreases
with isospin chemical potential, the 7" meson exhibits
four mass jumps induced by the discrete quark Landau
levels, which differs from the single mass jump of the x°
meson. In Fig. 3(b) with T = Tegp =59 MeV, the 7" mass
jump occurs slightly before the critical end point u$* and
the mass jump of n°. After the mass jump, there is a
sharp decrease in the mass of the 7* meson (shown in the
almost vertical blue solid line), which is induced by the
sharp change in the constituent quark mass around u$¥.
Finally, it approaches a more gradual and constant rate of
mass decrease. It should be noted that the sequence of the
7 mass jump and critical end point u$¥ is dependent on
the magnetic field. We numerically verify that at
eB = 10m2, the 7+ mass jump occurs after its correspond-
ing S . In the first order chiral phase transition region
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near the critical end point with 7 =55 MeV in Fig. 3(c),
we observe a single 77 mass jump caused by the quark
mass jump, which differs from the two observed mass
jumps of the 7° meson, induced by the quark mass jump
and discrete quark Landau levels. With a lower temperat-
ure, T = 10 MeV, in Fig. 3(d), both the 7* and 7° mesons
exhibit only a single mass jump due to the constituent
quark mass jump at the first order chiral phase transition.
The phase diagram on the y; — T plane is depicted in
Fig. 4 with eB=10m2 (upper panel) and eB=20m2
(lower panel). In contrast to approximate chiral sym-
metry, the isospin symmetry U(1); is strict, and hence the
pion superfluid phase transition can be defined through
the Goldstone mode (massless n* meson) according to
Goldstone's theorem [4, 5, 46, 54]. For chiral symmetry
restoration, because the characteristic phase boundaries
from the order parameter and pseudo-Goldstone boson
are not far from each other, we plot the phase boundary
defined through the pseudo-Goldstone mode n°, parallel
to the pion superfluid phase boundary defined by the
Goldstone boson n*. On the one hand, isospin chemical
potential tends to break isospin symmetry and restore
chiral symmetry. On the other hand, temperature tends to
enhance quark thermal motion and leads to the phase
transition from the pion superfluid phase to the normal
phase and from chiral breaking to the restoration phase.

1000 >
M+ eB=20m;;
800 \ N, T=100Me
S 600 AR
[ P
= 400 |
200-m 70 (a)
0 L
0 100 200 300 400 500
Hr/2 (MeV)
1000 : 5
M+ eB=20m;,
800 T=55MeV
S 600
(] )
S 400 |
200 m 0 ()
0 L
0 100 200 300 400 500
/2 (MeV)

Fig. 3.

In the low temperature and low isospin chemical poten-
tial region, the system is in the chiral breaking and nor-
mal phase, which means that chiral symmetry is spontan-
eously broken and isospin symmetry is intact. In the low
temperature and high isospin chemical potential region,
chiral symmetry is restored and isospin symmetry is
spontaneously broken, indicating a chiral restored and pi-
on superfluid phase. At medium isospin chemical poten-
tial, there is a chiral restored and normal phase. With suf-
ficiently high temperature, the system is in the chiral re-
stored and normal phase owing to strong quark thermal
motion. In contrast to the apparent bump structure of the
chiral restoration phase boundary, the phase transition
temperature of the pion superfluid decreases slightly with
isospin chemical potential in the low temperature region
and then increases in the high temperature region. With
increasing magnetic field, the separation between the two
phase boundaries increases, that is, the region of the chir-
al restored and normal phase is enlarged. It should be
noted that with a sufficiently weak magnetic field, the
two phase transition lines will cross. As mentioned at the
beginning of Sec.II, the coexistence of the chiral and pi-
on condensates causes difficulty in the analytical deriva-
tions. The competition between chiral restoration and pi-
on superfluid phase transitions under magnetic fields de-
serves careful investigation in future studies.

1000
800
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(MeV)

400
200 m 20

0 L L
0 100 200 300 400

/2 (MeV)

500

1000 -
eB=20m>

800 T=10MeV
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400+
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(color online) n* and #° masses with eB =20m2 and up =0 as functions of isospin chemical potential x;/2 in the chiral cros-

sover region with 7 =100 MeV (panel (a)), at the critical end point with T = Teep =59 MeV (panel (b)), and in the first order chiral
phase transition region with T =55, 10 MeV (panels (c),(d)). The vertical dashed lines denote the 2% mass jump (red) and z* mass jump

(blue).
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Fig. 4. (color online) Phase diagram of the pion superfluid
and chiral restoration on the u;—T plane at eB=10m2 and
up =0 (upper panel) and eB=20m2 and up =0 (lower panel),
where the pion superfluid phase transition line (blue solid
line) is determined by the massless Goldstone boson =+
(mg+ =0), and the phase boundary of chiral symmetry restora-
tion (red dashed-dotted line) is determined by the Mott trans-
ition of the pseudo-Goldstone boson 7° (m,0 = 2m,).

IV. SUMMARY AND OUTLOOK

Light mesons (o,7° n*) are investigated in up—T—
eB and u;—T —eB space using a two-flavor NJL model
and are used to determine chiral symmetry restoration
and the pion superfluid phase transition.

On the up—T plane, during the chiral symmetry res-
toration process, the mass of the pseudo-Goldstone mode
n® increases and exhibits sudden jumps. In the chiral
crossover region, the 7° meson displays a single mass
jump induced by the discrete quark Landau level. In the
first order chiral phase transition region with very low
temperature, the single mass jump of the 7% meson is
caused by the quark mass jump. At the critical end point,
the 7° meson shows a sharp but continuous mass in-
crease, with a sudden mass jump at the Mott transition, In
the nearby first order chiral phase transition region, we
observe two 7° mass jumps, one induced by the discrete

quark Landau level and the other by the quark mass jump.
The Higgs mode o, which is in the resonate state, exhib-
its a non-monotonical mass change with a local minim-
um value. The ¢ mass continuously changes in the chiral
crossover region and at the critical end point and only has
a jump in the first order chiral phase transition region. We
plot a chiral phase diagram on the up—T plane under an
external magnetic field with three characteristic phase
boundaries: B, defined by the maximum change in
quark mass, BY,. , defined by the Mott transition of the
pseudo-Goldstone boson #°, and B, , defined by the
minimum mass of the Higgs mode o. Because of the ex-
plicit breaking of chiral symmetry in the physical world,
the phase boundaries from the order parameter side (B )
and meson side (BZ,., and BZ, ) are slightly different.
The meson mass jump will be helpful to the experiment-
al search for the QCD phase structure and critical end
point.

The competition between the pion superfluid phase
transition and chiral symmetry restoration is studied on
the y; — T plane in terms of the corresponding Goldstone
mode 7 and pseudo-Goldstone mode 7°. The n* meson
also exhibits a sudden mass jump caused by either the
discrete quark Landau level or the mass jump of constitu-
ent quarks. In contrast to the two mass jumps of 7° in the
first order chiral phase transition region, several mass
jumps occur for the 7* meson in the chiral crossover re-
gion. At the critical end point, they both display sharp but
continuous mass changes. Moreover, different from ap-
proximate chiral symmetry, the isospin symmetry is
strict, and thus the pion superfluid phase transition is
uniquely determined by the massless Goldstone mode #*.
Isospin chemical potential tends to break isospin sym-
metry and restore chiral symmetry, but temperature tends
to induce the phase transition from the pion superfluid
phase to the normal phase and from chiral breaking to the
restoration phase. In the low T case, the system is in the
chiral breaking and normal phase with low g, the chiral
restored and normal phase with medium y;, and the chir-
al restored and pion superfluid phase with high y;. The
separation between the chiral restoration phase boundary
and pion superfluid phase transition is enhanced by the
external magnetic field.

To obtain a comprehensive understanding of the
phase diagram in T —up—pu; space under an external
magnetic field, studies on collective modes and phase
structure in ug—p; —eB space are necessary, which will
be reported elsewhere. This will involve competitions
among chiral symmetry restoration, the pion superfluid,
and color superconductor phase transitions.

References

[1] D. Kharzeev, K. Landsteiner, A. Schmitt et al., Strongly

Interacting Matter in Magnetic Fields, Lecture Notes
Physics 781 (2013)

094105-10



Light mesons and phase structures in uz-T-eB and u-T-eB spaces

Chin. Phys. C 46, 094105 (2022)

(2]

V. A. Miransky and I. A. Shovkovy, Physics Reports 576,
1-209 (2015)

J. O. Anderson and W. R. Naylor, Rev. Mod. Phys. 88,
025001 (2016)

J. Goldstone, Nuovo Cim. 19, 154-164 (1961)

J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965-970 (1962)

Y. Hidaka and A. Yamatomo, Phys. Rev. D 87, 094502
(2013)

E. Luschevskaya, O. Solovjeva, O. Kochetkov et al., Nucl.
Phys. B 898, 627 (2015)

E. Luschevskaya, O. Solovjeva, and O. Teryaev, Phys. Lett.
B 761, 393 (2016)

G. S. Bali, B. Brandt, G. Endrddi et al., Phys. Rev. D 97,
034505 (2018)

G. S. Bali, F. Bruckmann, G. Endrédi et al., JHEP 1202,
044 (2012)

H. T. Ding, S. T. Li, A. Tomiya et al., Phys. Rev. D 104,
014505 (2018)

S. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

S. Avancini, R. Farias, M. Pinto et al., Phys. Lett. B 767,
247 (2017)

S. Avancini, W. Travres, and M. Pinto, Phys. Rev. D 93,
014010 (2016)

S. Fayazbakhsh, S. Sadeghian, and N. Sadooghi, Phys. Rev.
D 86, 085042 (2012)

S. Fayazbakhsh and N. Sadooghi, Phys. Rev. D 88, 065030
(2013)

K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 110, 031601
(2013)

S. J. Mao, Phys. Lett. B 758, 195 (2016)

S.J. Mao, Phys. Rev. D 94, 036007 (2016)

S.J. Mao and Y. X. Wang, Phys. Rev. D 96, 034004 (2017)
Z. Y. Wang and P. F. Zhuang, Phys. Rev. D 97, 034026
(2018)

M. Coppola, D. Dumm, and N. Scoccola, Phys. Lett. B 782,
155-161 (2018)

R. Zhang, W. J. Fu, and Y. X. Liu, Eur. Phys. J. C 76, 307
(2016)

H. Liu, X. Wang, L. Yu et al., Phys. Rev. D 97, 076008
(2018)

D. N. Li, G. Q. Cao, and L. Y. He, Phys. Rev. D 104,
074026 (2021)

S. J. Mao, Phys. Rev. D 99, 056005 (2019)

S. J. Mao, Phys. Rev. D 102, 114006 (2020)

B. K. Sheng, Y. Y. Wang, X. Y. Wang et al., Phys. Rev. D
103, 094001 (2021)

D. G. Dumm, M. 1. Villafafie, and N. N. Scoccola, Phys.
Rev. D 97, 034025 (2018)

S. S. Avancini, R. L. S. Farias, and W. R. Tavares, Phys.
Rev. D 99, 056009 (2019)

N. Chaudhuri, S. Ghosh, S. Sarkar et al., Phys. Rev. D 99,
116025 (2019)

M. Coppola, D. G. Dumm, S. Noguera et al., Phys. Rev. D
100, 054014 (2019)

J. Y. Chao, Y. X. Liu, and L. Chang, arXiv: 2007.14258

K. Xu, J. Y. Chao, and M. Huang, Phys. Rev. D 103,
076015 (2021)

V. D. Orlovsky and Y. A. Simonov, JHEP 1309, 136 (2013)
K. Hattori, T. Kojo, and N. Su, Nucl. Phys. A 951, 1 (2016)
M. A. Andreichikov, B. O. Kerbikov, E. V. Luschevskaya
et al., JHEP 1705, 007 (2017)

Y. A. Simonov, Phys. Atom. Nucl. 79, 455 (2016)

094105-11

M. A. Andreichikov and Y. A. Simonov, Eur. Phys. J. C 78,
902 (2018)

C. A. Dominguez, M. Loewe, and C. Villavicencio, Phys.
Rev. D 98, 034015 (2018)

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)
M. Volkov, Phys. Part. Nucl. 24, 35 (1993)

T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994)

M. Buballa, Phys. Rep. 407, 205 (2005)

P. F. Zhuang, J. Hiifner, and S. Klevansky, Nucl. Phys. A
567, 525 (1994)

L. Y. He and P. F. Zhuang, Phys. Lett. B 615, 93 (2005)

L. Y. He, M. Jin, and P. F. Zhuang, Phys. Rev. D 71,
116001 (2005)

L. Y. He, S. J. Mao, and P. F. Zhuang, Int. J. Mod. Phys. A
28, 1330054 (2013)

E. Quack, P. Zhuang, Y. Kalinovsky et al., Phys. Lett. B
348, 1 (1995)

S. J. Mao, Chin. Phys. C 45, 2 (2021)

J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505
(2002)

J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 014508
(2002)

J. B. Kogut and D. K. Sinclair, Phys. Rev. D 70, 094501
(2004)

P. Scior, L. Smekal, and D. Smith, EPJ Web Conf. 175,
07042 (2018)

B. B. Brandt, G. Endrédi, and S. Schmalzbauer, Phys. Rev.
D 97, 054514 (2018)

D. T. Son and M. A. Stephanov, Phys. At. Nucl. 64, 834
(2001)

D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001)

J. B. Kogut and D. Toublan, Phys. Rev. D 64, 034007
(2001)

K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D
64, 016003 (2001)

M. C. Birse, T. D. Cohen, and J. A. McGovern, Phys. Lett.
B 516, 27 (2001)

M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034
(2003)

D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003)
M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562,
221 (2003)

A. Barducci, R. Casalbuoni, G. Pettini et al., Phys. Rev. D
69, 096004 (2004)

S. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D 75,
094015 (2007)

C.F.Mu, L. Y. He, and Y. X. Liu, Phys. Rev. D 82, 056006
(2010)

S. J. Mao and P. F. Zhuang, Phys. Rev. D 86, 097502
(2012)

T. Xia, L. Y. He, and P. F. Zhuang, Phys. Rev. D 88,
056013 (2013)

H. Ueda, T. Z. Nakano, A. Ohnishi et al., Phys. Rev. D 88,
074006 (2013)

K. Kamikado, N. Strodthoff, L. Smekal et al., Phys. Lett. B
718, 1044 (2013)

R. Stiele, E. S. Fraga, and J. S. Bielich, Phys. Lett. B 729,
72 (2014)

S. J. Mao, Phys. Rev. D 89, 116006 (2014)

P. Adhikari, J. O. Andersen, and P. Kneschke, Phys. Rev. D
98, 074016 (2018)

T. Xia, J. Hu, and S. J. Mao, Chin. Phys. C 43, 054103


https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1016/j.physletb.2016.05.018
https://doi.org/10.1103/PhysRevD.94.036007
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.102.114006
https://doi.org/10.1103/PhysRevD.103.094001
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.116025
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1103/PhysRevD.103.076015
https://doi.org/10.1016/j.nuclphysa.2016.03.016
https://doi.org/10.1134/S1063778816030170
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1142/S0217751X13300548
https://doi.org/10.1016/0370-2693(95)00128-8
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1103/PhysRevD.75.094015
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.86.097502
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.89.116006
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1088/1674-1137/43/5/054103
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1016/j.physletb.2016.05.018
https://doi.org/10.1103/PhysRevD.94.036007
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.102.114006
https://doi.org/10.1103/PhysRevD.103.094001
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.116025
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1103/PhysRevD.103.076015
https://doi.org/10.1016/j.nuclphysa.2016.03.016
https://doi.org/10.1134/S1063778816030170
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1142/S0217751X13300548
https://doi.org/10.1016/0370-2693(95)00128-8
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1103/PhysRevD.75.094015
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.86.097502
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.89.116006
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1088/1674-1137/43/5/054103
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1016/j.physletb.2016.05.018
https://doi.org/10.1103/PhysRevD.94.036007
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.102.114006
https://doi.org/10.1103/PhysRevD.103.094001
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.116025
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1103/PhysRevD.103.076015
https://doi.org/10.1016/j.nuclphysa.2016.03.016
https://doi.org/10.1134/S1063778816030170
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1142/S0217751X13300548
https://doi.org/10.1016/0370-2693(95)00128-8
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1103/PhysRevD.75.094015
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.86.097502
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.89.116006
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1088/1674-1137/43/5/054103
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1016/j.physletb.2016.08.054
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevLett.110.031601
https://doi.org/10.1016/j.physletb.2016.05.018
https://doi.org/10.1103/PhysRevD.94.036007
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.102.114006
https://doi.org/10.1103/PhysRevD.103.094001
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.116025
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1103/PhysRevD.103.076015
https://doi.org/10.1016/j.nuclphysa.2016.03.016
https://doi.org/10.1134/S1063778816030170
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/j.physletb.2005.03.066
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1142/S0217751X13300548
https://doi.org/10.1016/0370-2693(95)00128-8
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1134/1.1378872
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1016/S0370-2693(01)00923-6
https://doi.org/10.1103/PhysRevD.67.074034
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1103/PhysRevD.69.096004
https://doi.org/10.1103/PhysRevD.75.094015
https://doi.org/10.1103/PhysRevD.82.056006
https://doi.org/10.1103/PhysRevD.86.097502
https://doi.org/10.1103/PhysRevD.88.056013
https://doi.org/10.1103/PhysRevD.88.074006
https://doi.org/10.1016/j.physletb.2012.11.055
https://doi.org/10.1016/j.physletb.2013.12.053
https://doi.org/10.1103/PhysRevD.89.116006
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1088/1674-1137/43/5/054103

Luyang Li, Shijun Mao

Chin. Phys. C 46, 094105 (2022)

[75]
[76]

[77]
(78]

[79]

(80]

(2019)

P. Adhikari and J. O. Andersen, Phys. Lett. B 804, 135352
(2020)

S. S. Avancini, A. Bandyopadhyay, D. C. Duarte et al.,
Phys. Rev. D 100, 116002 (2019)

G. Endrédi, Phys. Rev. D 90, 094501 (2014)

M. Loewe, C. Villavicencio, and R. Zamora, Phys. Rev. D
89, 016004 (2014)

G. Q. Cao and P. F. Zhuang, Phys. Rev. D 92, 105030
(2015)

V. Ritus, Annals Phys. 69, 555 (1972)

[81]
(82]

(83]
[84]

[85]

(86]

094105-12

C. Leung and S. Wang, Nucl. Phys. B 747, 266 (2006)

E. Elizalde, E. Ferrer, and V. Incera, Ann. Phys. (N.Y.) 295,
33 (2002)

N. F. Mott, Rev. Mod. Phys. 40, 677 (1968)

J. Huefner, S. Klevansky, and P. Rehberg, Nucl. Phys. A
606, 260 (1996)

P. Costa, M. Ruivo, and Y. Kalinovsky, Phys. Lett. B 560,
171 (2003)

S. S. Avancini, R. L. S. Farias, N. N. Scoccola et al.,
Phys.Rev. D 99, 116002 (2019)


https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.physletb.2020.135352
https://doi.org/10.1103/PhysRevD.100.116002
https://doi.org/10.1103/PhysRevD.89.016004
https://doi.org/10.1103/PhysRevD.92.105030
https://doi.org/10.1016/0003-4916(72)90191-1
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1006/aphy.2001.6203
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/S0370-2693(03)00395-2
https://doi.org/10.1103/PhysRevD.99.116002

	I INTRODUCTION
	II NJL FRAMEWORK
	A Neutral mesons
	B Charged mesons
	C Pauli-Villars regularization

	III RESULTS AND DISCUSSIONS
	A Chiral partners ${\bm \pi}^{\bf 0} $ and σ on the ${\bm \mu_{\bm B}-{\bm T}}$ plane
	B Goldstone bosons $\bm \pi^{\bf +}$ and $\bm \pi^{\bf 0}$ on the ${\bm \mu}_{\bm I}-{\bm T}$ plane

	IV SUMMARY AND OUTLOOK

