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Abstract: The entropy per rapidity dS/dy produced in central Pb-Pb ultra-relativistic nuclear collisions at LHC en-

ergies is calculated using experimentally identified particle spectra and source radii estimated from Hanbury Brown-
Twiss (HBT) correlations for particles 7, k, p, A, Q, and £ and =, k, p, A, and K? at /s =2.76 and 5.02 TeV, re-
spectively. An artificial neural network (ANN) simulation model is used to estimate the entropy per rapidity dS/dy

at the considered energies. The simulation results are compared with equivalent experimental data, and a good agree-

ment is achieved. A mathematical equation describing the experimental data is obtained. Extrapolation of the trans-

verse momentum spectra at pt = 0 is required to calculate dS/dy; thus, we use two different fitting functions, the
Tsallis distribution and hadron resonance gas (HRG) model. The success of the ANN model in describing the experi-

mental measurements leads to the prediction of several spectra values for the mentioned particles, which may lead to

further predictions in the absence of experiments.
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I. INTRODUCTION

Theoretical calculations using the lattice quantum
chromodynamics (LQCD) approach reveal that the quark-
gluon plasma (QGP) phase, which is chirally restored and
color deconfined, is formed at critical conditions of high
energy density (e ~ 1 GeV/fm?) and temperature (7 ~ 154
MeV) [1, 2]. These conditions are expected in ultra-re-
lativistic heavy ion collisions, where a dense medium of
quarks and gluons is produced, which then experience
rapid-collective expansion before the partons hadronize
and subsequently decouple [2]. Numerous experiments
are committed to discovering QGP signals assuming
quick thermalization, such as the Large Hadron Collider
(LHC) at CERN, Geneva, and the Relativistic Heavy lon
Collider (RHIC) at BNL, USA [3, 4]. Regrettably, meas-
urements are limited to final state particles, the majority
of which are hadrons [2]; the ensuing transverse and lon-
gitudinal expansion of the produced QGP is studied us-
ing relativistic viscous hydrodynamics models [5]. In this
case, the net entropy, which is essentially conserved from
preliminary thermalization until freeze-out [2—5], is an in-
triguing quantity that may provide significant informa-

tion on the produced matter during the early stages of
nuclear collisions. By accurately accounting for entropy
production at various phases of collisions, the observable
particle multiplicities in the final state can be linked to
system parameters, such as initial temperature, at earlier
stages of nuclear collisions [3].

Two alternative methods are typically used to calcu-
late the net created entropy during the collisions [3]. Pal
and Pratt pioneered the first approach, which calculates
entropy using the transverse momentum spectra of vari-
ous particle species and their source sizes, as calculated
using Hanbury Brown-Twiss (HBT) correlations [2, 3].
The original research analyzed experimental data taken
from +/syy =130 GeV produced from Au-Au collisions
and is still used to determine entropy at various energies
[3, 4]. The second approach [6, 7] converts the multipli-
city per rapidity dN/dy produced in the final state to en-
tropy per rapidity dS/dy using the entropy per hadron de-
rived in a hadron resonance gas (HRG) model. Despite
the fact that estimating the entropy per rapidity dS/dy
from the measured multiplicity dNch/dn is reasonably
simple, the conversion factor between the measured
charged-particle multiplicity dNc/ /d and the entropy per
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rapidity dS/dy in literature [7—10] is varied. Hanus and
Reygers [3] estimated the entropy production using the
transverse momentum distribution from data produced in
p-p and Pb-Pb collisions at +/s=7, and 2.76 TeV, re-
spectively, for various particles.

Our study aims to calculate the entropy per rapidity
dS/dy based on the transverse momentum distribution
measured in Pb-Pb collisions at +/s =2.76 and 5.02 TeV
for particles =, k, p, A, Q, and £ and 7, k, p, A, and K9,
respectively. For a precise estimation of the entropy per
rapidity dS/dy, we fit the transverse momentum distribu-
tion of the considered particles using two thermal ap-
proaches, the Tsalis distribution [11, 12] and the HRG
model [13]. This enables us to cover a large range of the
measured transverse particle momentum pr, up to ~ 20
GeV/c (unlike Hanus, who used a small range of pr ~ 1.5
GeV/c), and consider the particle's mass as a free para-
meter. Indeed, we use the exact value of the particle's
mass for all considered particles as in the Particle Data
Group (PDQG) [14]. The Tsallis distribution succeeds in
describing a large range of pr but cannot describe its en-
tire range. That is why we use the HRG model to fit the
other part of py. Moreover, we estimate the entropy per
rapidity dS/dy for the considered particles using a highly
promising simulation model, the artificial neural network
(ANN). Recently, several modeling methods based on
soft computing systems have included the application of
artificial intelligence (AI) techniques. These evolution al-
gorithms have a physically powerful existence in this
field [15—19]. The behavior of p-p and Pb-Pb interac-
tions are complicated owing to the non-linear relation-
ship between the interaction parameters and the output.
Understanding the interactions of fundamental particles
requires multi-part data analysis, and Al techniques are
vital. These techniques are useful as alternative ap-
proaches to conventional techniques [20]. In this sense,
Al techniques such as ANNs, genetic algorithms (GAs),
genetic programming (GP), and genetic expression pro-
gramming (GEP) can be used as alternative tools to simu-
late these interactions [15, 19]. The motivation for using
an ANN approach is its learning algorithm, which learns
the relationships between variables in datasets and then
creates models to explain these relationships (mathemat-
ically dependent) [21]. There is a desire for fresh com-
puter science methods to analyze experimental data for a
better understanding of various physics phenomena.
ANNSs have gained popularity in recent years as a power-
ful tool for establishing data correlations and have been
successfully employed in materials science owing to its
generalization, noise tolerance, and fault tolerance [22].
This enables us to use it to estimate the entropy per rapid-
ity dS/dy. The results are then compared to available ex-
perimental data and the results obtained from previous
calculations.

This paper is organized as follows: In Sec. I, the ap-

proaches used in this study are presented, the results and
discussion are shown in Sec. III, and the conclusion is
presented in Sec. IV. A mathematical description of the
entropy per rapidity dS/dy and the transverse momentum
spectra based on both the Tsallis distribution and HRG
model are given in the Appendices.

II. USED APPROACHES

In Sec. II, we discuss the methods used to estimate
the entropy per rapidity dS/dy for various particles. The
first method depends on the measured spectra of the con-
sidered particles [3]. In the second, we use the ANN
model, which may be considered the future simulation
model [22].

A. Entropy per rapidity ds/dy from the transverse mo-
mentum distribution and HBT correlations

Here, we review the entropy per rapidity dS/dy estim-
ation from the phase space function distribution calcu-
lated using particle distribution spectra and femtoscopy
[3]. The fundamentals of this approach are shown in Ref.
[3, 23, 24].

For any particle species in the thermal freeze-out
stage, the entropy S is obtained from the phase space dis-
tribution function f(7,7) [3].

3..13
S =(2J+1)fd "D s HnAEnL (1)
(2n)3

where + and — represent bosons and fermions, respect-
ively. The quantity 2J + 1 represents the spin degeneracy
of particles. The net entropy produced in nuclear colli-
sions is then obtained by summing all the entropy of the
created hadrons species. From Eq. (1), the integral can be
expressed in a series expansion form

2 B 4
i(lif)ln(lif)=fif?—%i{—24-..., 2)

The source radii, observed from HBT two particle correl-
ations [25] in three dimensions, are calculated from a lon-
gitudinally co-moving system (LCMS) where the pair
momentum component along the direction of the beam
vanishes. In the LCMS, the density function of the source
is parametrized by a Gaussian in three dimension, allow-
ing the phase space distribution function to be represen-
ted as [3]

2 2 2

RY X5 xlon
ﬁ’?) =F #JCX _ Tout _ _“'side g i 3
f(p (p P 2R%ut 2 zzide 2 120n ( )
g

where 7 (p), the maximum phase density, is given by [2, 3]
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_Qn2d’N 1
2J+1 d3p RoutRsideRlong ’

F(P) “)

In Egs. (3) and (4), the source radii are expressed in terms
of the momentum p.

Owing to restricted statistics, in many circumstances,
only the source radius R;,, measured in one dimension,
which is computed in the pair rest frame (PRF), may be
obtained experimentally.

The relationship between the PRF's R, and the three-
dimensional source radii in the LCMS is considered as [2, 3]

R}, =~ YRoutRside Riong> &)

mv

where y = mp/m = \Jm?+ p3./m.

In Refs. [3, 26], the ALICE collaboration published
values for both R;,, and Ry, Rsides Riong, Which were de-
termined from two pion correlations in Pb-Pb nuclear col-
lisions at +/syy =2.76 TeV.

From these data, Hanus et al. expressed a more gener-
al formula for Eq. (5) as [3]

Ri3nv ~ h(y)ROutRsideRlong, (6)
with A(y) = ay”.

From Eq. (5), the entropy per rapidity ds/dy can be
given as [3]

ds &N (5 F
E = fdezﬂ'pTE@ (5 —-InF = ﬁ
2 3
_LiL)’ (7)
2x352 T 3x 4372

where ¥, the phase space distribution function, is given
by [3]

1@ 1 d3N
m2J+1 R (mr) d3p’

®)

For a better description of central Pb-Pb, Hanus et al.
approximated the expression (1+ f)In(1+ f) in terms of
Eq. (1) with numerical coefficients a;, which is also used
for high multiplicity values of # as [3]

ds #N(5 L
d_y:fdezinE@[E_lnT-i-;aiTJ. (9)

To calculate the entropy per rapidity dS/dy for the
considered hadrons, the measured spectra of the trans-
verse momentum E(d>N/d?p) must be extrapolated at

pr =0. To achieve this, we compare the pr momentum
spectra to two various fitting functions estimated from
two well-known models, the Tsallis distribution and HRG
model. A mathematical description of the transverse mo-
mentum distribution E(d*N/d?p) using the HRG model
and Tsallis distribution is given in Appendices B and C,
respectively.

B. Artificial neural network model

The ANN model [27-33] is a machine learning tech-
nique most popular in the high-energy physics com-
munity. In the last decade, important physics results have
been separated using this model. A neuron is an essential
processing component of the ANN model (see Fig. 1),
which forms a weighted sum of its input and passes the
outcome to the yield through a non-linear transfer func-
tion. These transfer functions can also be linear, and then
the weighted sum is sent directly in the output direction.
Egs. (10) and (11) represent the weighted summation of
the inputs and the non linear transfer function to the out-
put of the neuron, respectively.

o= anwn, (10)

Y = f(o). (11)

The most widely recognized ANN is the multilayer
feed forward neural network dependent on the back-
propagation (BP) learning algorithm. Backpropagation
learning calculation is the most incredible of the multi-
layer calculations, as revealed in Alsmadi et al., [34]. The
multilayer feed-forward ANN structure is a blend of vari-
ous layers (see Fig. 2). The primary layer (input layer) is
the information layer, which presents the experimental
data that is then prepared and spread to the yield layer
(output layer) through at least one hidden layer.

The number of hidden layers and neurons required in
every hidden layer is important when designing a net-
work. The best number of neurons and hidden layers re-
lies on factors such as the number of inputs, output of the
network, commotion of the target data, intricacy of the er-
ror function, network design, and network training al-
gorithm. In most cases, it is basically impossible to effort-
lessly decide the ideal number of hidden layers and neur-
ons in each hidden layer without training the network.
The training network involves constantly adjusting the

Xo

Output

Transfer

: w;
/

Fig. 1.

Schematic diagram of a basic formal neuron.
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Fig. 2.
cial neural network.

Representative architecture of a feed-forward artifi-

Neural netwurk\
Input | including .
E . connections (called } Output
| weights) between /
\ neurons
Adjust weights
Fig. 3. (color online) Back-propagation network block dia-

gram.

weights of the association links between the processing of
input patterns and the required output components relat-
ing to the network. A block diagram of the backpropaga-
tion network is shown in Fig. 3. The aim of training is to
reduce and minimize the error representing the differ-
ence between the output experimental data (¢) and simu-
lation results (y) to accomplish the most ideal result.

Thus, the next mean square error (MSE) should be
minimized [35].

1 n
MSE = ;Zl]m—yoz, (12)

where n is the number of data points used to train the model.

In this study, the data are divided into three parts: the
training set (70%), test set (15%), and validation set
(15%). The aim of this classification is to ensure the val-
idation of the used ANN model after training by testing it
to predict random values of the used data. A detailed de-
scription of the training algorithm is shown in Appendix
E.

III. RESULTS AND DISCUSSION

In this section, we discuss the obtained results of the
entropy per rapidity dS/dy for central Pb-Pb at LHC en-
ergies +/s=2.76 and 5.02 TeV. The ANN simulation
model is also used to estimate the entropy per rapidity
dS/dy at the considered energies. First, we train the ANN

model to fit 70% of the used experimental data for the
particle spectra of the mentioned particles. Then, we
check the validation of the model by testing it to predict
some values of the available experimental data of these
particles. A comparison between the simulated results ob-
tained from the experimental measurements and the simu-
lated results is also shown.

A. Estimated entropy per rapidity dS/dy from Pb-Pb
collisions at +/s =2.76 TeV

We calculate the entropy per rapidity dS/dy for
particles «, k, p, A, Q, and £ produced in central Pb-Pb
collisions at +/s=2.76 TeV. The obtained results are
compared to those estimated using the ANN simulation
model and those calculated in [3]. As the experimental in-
put, the computation includes the transverse momentum
spectra of particles =, k, p [36], A [37], Q, and £ [38].
Furthermore, we employ the ALICE-measured HBT radii
to calculate the particle spectra of the mentioned particles
[39]. The Rprop based ANN is used to simulate py spec-
tra for the same particles. This procedure involves a su-
pervised learning algorithm that is implemented using a
set of input-output experimental data. Because the nature
of the output (various particles) is not the same, authors
chose individual neural systems trained independently.
Six networks are chosen to simulate experimental data
according to six different particles. Our networks have
three inputs and one output. The inputs are +/s, Pr, and

. .1 &N

centrality. The output is — .
N, evt dy dIET . .

Number of layers between the input and output (hid-

den layer) and the number of neurons in the hidden layer
is selected by trial and error. In the beginning, we start
with one hidden layer and one neuron in the hidden layer.
Then, the number of hidden layers and neurons increase
regularly. By changing the number of neurons, the per-
formance of the network changes. The learning perform-
ance of the network can be measured and evaluated by in-
specting the coefficients of the MSE and regression value
(R) for the training, test, and validation sets. If the coeffi-
cient of the MSE is close to zero, the difference between
the network and desired output is small. Moreover, if this
value is zero, there is no difference or no error. However,
R determines the correlation level of the output. If its
value is equal to 1, the experimental results are com-
pared with the ANN model output, and a very good
agreement has been found between them. In our study,
the best MSE and R values are obtained using one hidden
layer. The number of neurons in the hidden layer is (10),
(10), (5), (10), (8), and (7) for particles =, k, p, A, Q, and
¥, respectively. A simplification of the proposed ANN
networks are shown in Fig. 4 for particles 7 (a), k (b), p
(¢), A(d), Q(e), and ().

The generated MSE and R values for the training, test,
and validation sets are shown in Figs. 5 and 6 for

073103-4



Entropy per Rapidity in Pb-Pb Central Collisions using Thermal and Artificial Neural...

Chin. Phys. C 46, 073103 (2022)

particles 7 (a), k£ (b), p (¢c), A (d), Q (e), and Z(f). The
MSE and R values are summarized in Table 1 after epoch
77,8, 11, 10, 11, and 16 for particles z (a), k£ (b), p (c), A
(d), Q (e), and Z(f). In all cases, the R values are closed
to one. The MSE and regression values indicate good
agreement between the ANN results and experimental
data.

The transfer function used in the hidden layer is
tansig for all particles and purelin for the output layer. All
parameters used in the ANN model are represented in
Table 1.

To estimate the entropy S, extrapolation of the ob-
served transverse momentum spectra to pr=0 is re-
quired. To achieve this, we fit both the experimental and
simulated pr spectra to two various functional models,
the Tsallis distribution [11, 12] and HRG model [13]. The
aim of using two different models is to fit the entire pr
curve.

Figure 7 shows the particle spectrum measured by the
ALICE collaboration [40], which is represented by closed
blue circles and fitted to the Tasllis distribution [11, 12],
represented by the solid red curve, to extrapolate the
spectrum at pr =0. The HBT one-dimensional radii are
scaled by ((2+7v)/3)"/? [3, 40] to become a function of
transverse mass, mr. A comparison of the experimental

and simulated particle spectra pr to both the Tsallis dis-
tribution and HRG model is shown in Fig. 8 for particles
7 (a), k (b), p (¢), A (d), Q (e), and £ (f). It is clear from
Fig. 8 that the use of various forms of the fitting function
is suitable because the Tsallis function can only fit the
left side of the pr curve at 0.001 <y < 6, while the HRG
model can fit the right side 6 <y <12 as well. The ob-
tained fitting parameters as a result of both the Tsallis
distribution and HRG model are summarized in Tables 2
and 3, respectively.

The function that describes the non-linear relation-
ship between the inputs and output based on the ANN
simulation model is given in Appendix D. The results of
the ANN simulation (training and testing), Tsallis distri-
bution, and HRG model of the particle spectra for the
suggested particles compared with experimental data are
shown in Fig. 8. The estimated entropy per rapidity
dS/dy from Pb-Pb central collisions at +/s =2.76 TeV us-
ing the Tsallis distribution, HRG model, and ANN model
for particles «, k, p, A, Q, and ¥ is represented in Table 4.
The effect of both the Tsallis distribution and HRG mod-
el fitting functions on the estimated entropy per rapidity
dS/dy is also shown in Table 4. We compare the entropy
per rapidity obtained from the statistical fits (HRG and
Tsallis models) and ANN model to that obtained in Ref. [3].

Output

Hidden Output Hidden
10 10

Hidden Output
B

Hidden Output Hidden

Output Hidden Output

Fig. 4. (color online) Schematic diagram of the basic formal neuron network for particles (a) z, (b) &, (c) p, (d) A, (e) Q, and (f) £.
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Fig. 5. (color online) Best training, validation, and test performance (MSE) for particles (a) z, (b) &, (c) p, (d) A, (e) &, and (f) £.
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Table 1. ANN parameters for particles 7, &, p, A, Q, and £ at /s =2.76 TeV.
Particles
ANN parameters
T K D A )
Inputs VS pr/GeV Centrality
Vs 2.76/TeV
Output 1 &N
Nevt dydpr
Hidden layers 1
Neurons 10 10 5 10 8 7
Epochs 77 8 11 10 11 16
MSE (Training) 8.325 1.85178x 1072 1.67861x 1073 1.97367x 1072 1.93485x 10 2.75711x 107
MSE (Test) 9.05709 2.6585 9.57606 % 10~* 6.73839x 1072 3.4253x 1076 1.26585x 1074
MSE (Validation) 0.012662 0.41663 0.0018642 0.0072329 1.4303x 1078 2.3812x 1073
R (Training) 0.99997 0.99991 0.99987 0.99426 1 0.99986
R (Test) 0.9976 0.9999 0.99995 0.99995 1 0.99944
R (Validation) 1 0.99201 0.99981 0.99771 1 0.99997
Training algorithms Rprop
Training functions trainrp
Transfer functions of hidden layer tansig tansig tansig tansig tansig tansig
Output functions Purelin
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As shown in Table 4, the calculated entropy per
rapidity dS/dy from the statistical fits (HRG and Tsallis
models), ANN model, and Ref. [3] are in agreement. The
excellent agreement between the estimated results of

[ * ALICE
sl
r \ — This Work

0.8 1

m; GeV
Fig. 7.  (color online) Particle spectrum measured by the
ALICE collaboration [40], represented by blue closed circles,
is fitted to the Tsallis distribution [11, 12], which is represen-
ted by the solid red curve, to extrapolate the spectrum at
pr=0. The HBT one-dimensional radii are scaled by
((2+7)/3)'/? [3, 40] to become a function of transverse mass,

mr.

dS/dy from the ANN simulation model and Ref. [3] en-
courage us to use it at other energies.

B. Estimated entropy per rapidity dS/dy from Pb-Pb
collisions at /s=5.02 TeV

For central Pb-Pb collisions at +/s=5.02 TeV, we
calculate the entropy per rapidity dS/dy for particles =, &,
p, A, and K°. Transverse momentum spectra of the
particles 7, k, p [41], A, and K [42] are used as the ex-
perimental input for the computation. We also employ
ALICE measured HBT source radii [39] and use the same
deduced inputs for the ANN model. We apply the ANN
model to acquire the pr spectra of the particles z, &, p, A,
and K? according to the input parameters represented in
Table 5. First, we train the ANN model to fit (70%) of
the used experimental data. Subsequently, we test its val-
idation through (30%) for both test and validation sets to
predict some of the values of the experimental data. Five
networks are chosen to simulate experimental data ac-
cording to different particles. The best performance train-
ing, test, and validation values R are obtained using one
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Fig. 8. (color online) Transverse momentum distribution measured by the ALICE experiment collaboration [36—38] at a centre of
mass energy = 2.76 TeV, which is represented by blue open circles for particles 7 (a), k (b), p (c), A (d), Q (e), and £ (f), is compared to
the statistical fits from the Tsallis distribution, which has perfect fits at 0.001 <y <6 and is represented by red solid lines, given by Eq.
(40), and the HRG model, which works in 6 <y < 12 and is represented by green solid lines, given by Eq. (35). A border line is drawn
between the Tsallis and HRG models, shown in purple. The experimental data and the results of both models are then compared to that
obtained from the ANN simulation model, represented by dark brown plus signs. The prediction of the ANN model is presented by red

closed circles.

Table 2. Transverse momentum distribution fitting parameters when comparing the Tsallis distribution, Eq. (40), and the HRG mod-
el, Eq. (35), to the ALICE experimental data [36-38] at /s =2.76 TeV for particles 7, &, p, A, Q, and £.
Tsallis distribution HRG model
Particle Xz/dof
dN/dy  Tr/GeV ¢ Vifm® T/GeV wGeV
T 739.886 0.0658  1.2305 3.41332x 10! +6.103 3.3881x 107! +4.8231x 1073 1.2549+4.219% 1072 13.6/12
K 883303 0.1711 1.1132 1.38260x 10! +£3.6055 3.13028 x 107! +4.36637 x 1073 1.26516 +6.32063 x 1072 163.536/11
p 39.8814 031752 1.13739  5.57340x 10%+3.31936x 10> 3.89646x 107! £1.79383x 1073 3.10152x 1072 +2.39531x10~" 25.3567/12
A 476767 04388 1.1148 48.7847 +48983.2 0.503582 +45.8599 1.12747 £ 626.183 286.085/15
Q  1.24793 04277 1.14736 1.24168 +1.0661 0.539524+0.0513 1.14468 +0.3706 0.0199/7
) 6.5279  0.4640  1.1245 4.38896+1.5158 0.545919 +0.0209 0.865 £0.1993 3.0475/15
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Table 3. Same as in Table 2, but the statistical fit results, from both used models, are compared to those of the ANN simulation mod-
el.
Tsallis distribution HRG model
Particle x*/dof
dN/dy T/GeV q V/fm3 T/GeV w/GeV
T 775.496 0.08174 1.1873 23.5314 +15.5048 0.3286 +0.0448 1.3797 £0.09944 32.0297/11
K 88.2811 0.1719 1.111 13.8111+1.993 0.3125+0.00478 1.2664 +0.0292 159.234/11
14 40.2232 0.31542 1.14088 26.0248 +3.2175 0.3758 £0.0053 1.2924 +0.0486 23.8924/12
A 47.953 0.4458 1.11257 50.852+54211.8 0.5057 £30.6755 1.1584 +358.797 285.464/15
Q 1.2580 0.4125 1.1492 1.17248 +0.294 0.6464 +0.0184 0.4864 +0.1411 0.02487/7
P 6.5309 0.4595 1.1260 4.3795+1.8017 0.5577+0.0248 0.7849+0.2178 3.1109/15
Table 4. Estimated entropy per rapidity dS/dy from Pb-Pb central collisions at +/s=2.76 TeV using the Tsallis distribution, HRG
model, and ANN model. The obtained results are compared to that obtained in Ref. [3].
(dS/dy)y=0 (dS/dy)y=0 (dS/dy)y=0
Particle (dS /dy)y=0 . ] (dS /dy)y=0 Ref. [3]
supplemented by Tsallis supplemented by HRG model estimated by ANN model
T 1908.21 2260.85 2267.58 2265.17 2182
K 478.351 512.399 514.321 514.347 605
2 265.648 278.125 278.486 277.937 266
A 304.334 325.742 321.939 300 320
Q 10.1561 14.4025 14.2159 13.3129 16
P 54.3717 58.3102 57.8227 58.1449 58

hidden layer. The number of neurons in the hidden layer
is (12), (10), (14), (9), and (7) for particles =, k, p, A, and
KY, respectively. A simplification of the proposed ANN
networks are shown in Fig. 9 for particles (a) =, (b) £, (c)
p, (d) A, and (e) K°.

As a result, the obtained best performance and regres-
sion values from the training, test, and validation sets are
shown in Figs. 10 and 11 for particles (a) =, (b) &, (c) p,
(d) A, and (e) K?. This performance is obtained after
epochs 19, 47, 8, 9, and 14 for particles (a) z, (b) £, (c) p,
(d) A, and (e) KY and is presented in Table 5. The trans-
fer function used is tansig in the hidden layer for all
particles and purelin in the output layer for all particles.
All the parameters used for the ANN are shown in Table
5.

Extrapolation of the observed transverse momentum
spectra to pr =0 is necessary to determine the entropy S.
To achieve this, we fit both the experimental and simu-
lated pr spectra to two various functional models, the
Tsallis distribution [11, 12] and HRG model [13]. The
aim of combining two models is to fit the entire pr curve.

In Fig. 12, the experimental and simulated particle
spectra pr are compared to the Tsallis distribution and
the HRG model for particles 7 (a), k£ (b), p (c), A (d), Q
(e), and £ (f). As shown in Fig. 8, employing various
forms of the fitting function is suitable because the Tsal-
lis function can only match the left side of the pr curve at
0.001 <y < 10, whereas the HRG model can fit the right

side at 10 <y <20. This result may motivate us to pursue
additional research. Tables 6 and 7 summarize the fitting
parameters obtained from the Tsallis distribution and
HRG model, respectively.

The estimated entropy per rapidity dS/dy from Pb-Pb
central collisions at /s = 5.02 TeV using the Tsallis dis-
tribution, HRG model, and ANN model for particles =, £,
p, A, and K? is represented in Table 8. The effect of both
the Tsallis distribution and HRG model fitting functions
on the estimated entropy per rapidity dS/dy is also shown
in Table 8.

The values of the entropy per rapidity dS/dy calcu-
lated by fitting the experimental and simulated particle
spectra to the statistical models are in agreement. Better
knowledge of the full created entropy in high energy
heavy ion collisions is important for determining the bulk
properties of both initial and final state quantities. The
function that describes the non-linear relationship
between the inputs and output is given in Appendix D.

IV. SUMMARY AND CONCLUSIONS

In this study, we calculate the entropy per rapidity
dS/dy produced in central Pb-Pb ultra-relativistic nuclear
collisions at LHC energies using experimentally ob-
served identifiable particle spectra and source radii estim-
ated from HBT correlations. The considered particles are
Tk, p, A, Q, and £ and =, k, p, A, and KV with center of
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Table 5. ANN parameters for particles 7, k, p, A, and K? at /s =5.02 TeV.

Particles
ANN parameters
s K )4 A K0
Inputs VS Pr/GeV Centrality
Vs 5.02 TeV
2
Output L &N
Nevt dydpr
Hidden layers 1
Neurons 12 10 14 9 7
Epochs 19 47 8 9 14
MSE (Training) 5.41199x 1072 3.7357x 1077 2.45426 % 10730 2.42245 1.30543% 102
MSE (Test) 5.3254 1.50092 x 106 5.03187x 1072 1.37346 4.64693 x 107!
MSE (Validation) 0.0024821 1.5046 x 1077 0.052807 0.0042563 0.49388
R (Training) 0.99979 1 1 0.99205 0.99995
R (Test) 0.98118 1 0.99999 0.95224 1
R (Validation) 0.99989 1 0.99999 0.99878 0.99931
Training algorithms Rprop
Training functions trainrp
Transfer functions of hidden layer tansig tansig tansig tansig tansig
Output functions Purelin
= Hidden Output b Hidden Output c Hidden Output
Input Output Input Output Input , ‘ Output
3 1 Ay gt e
12 1 10 1 14 1
d Hidden Output e Hidden Output
Input Output Input Output
3 1 3 1
Fig. 9. (color online) Same as in Fig. 4 but for particles (a) z, (b) &, (c) p, (d) A, and (e) K? at /s =5.02 TeV.
. Best is 0.0024821 at epoch 13 Best Per is 1.5046e-07 at epoch 41 Best Validation Performance is 0.052807 at epoch 8
BE er
% 10° § §'
g ,“=: E 102
H 2 H
102
0 2 4 6 8 10 12 1‘4 16 18 0 10 20 30 40 10»“0 1 2 3 4 5 6 7 8
19 Epochs 47 Epochs 8 Epochs
10 Best Validation Performance is 0.0042563 at epoch 3 . Best Validation Performance is 0.49388 at epoch 8
d —Train R —Tran |
- —Tost e en
] Best o) Bost
E 402 E
5 = 107
& 5
B 3
g 10° 5
§' "E 10°
10?
102
0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 14
9 Epochs 14 Epochs
Fig. 10. (color online) Same as in Fig. 5 but for particles (a) z, (b) k, (¢) p, (d) A, and (e) KO at /5 =5.02 TeV.
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(color online) Same as in Fig. 6 but for particles (a) x, (b) &, (¢) p, (d) A, and (¢) K? at /s =5.02 TeV.
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(color online) Transverse momentum distribution measured by the ALICE experiment collaboration [41, 42] at a centre of
mass energy =5.02 TeV, which is represented by blue open circles for particles z (a), & (b), p (c), A (d), and K (e), is compared to the
statistical fits from the Tsallis distribution, which has perfect fits at 0.001 <y < 10 and is represented by red solid lines, given by Eq.
(40), and the HRG model, which works in 10 <y <20 and is represented by green solid lines, given by Eq. (35). A border line is drawn
between the Tsallis and HRG models, shown in purple. The experimental data and the results of both models are then compared to that

obtained from the ANN simulation model, represented by dark brown plus signs. The prediction of the ANN model is presented by red
closed circles.

Transverse momentum distribution fitting parameters when comparing the Tsallis distribution, Eq. (35), and the HRG mod-
el, Eq. (40), to the ALICE experiment data [41, 42] at +/s = 5.02 TeV for particles z, &, p, A, and K?.

Tsallis parameters HRG model
Particle x*/dof
dN/dy T/GeV q V/fm? T/GeV 1GeV

T 5804.25 0.2101 1.1218 4709.14 +1351.88 2.6497 +£0.0475 26.2268 +0.7773 316/48
K 953.214 0.2392 1.1146 3614.78 +1.6854 0.719156 + 630181 1.28019 +630181 905.7/44
V4 437.394 0.3393 1.1167 8.6667 +3.7659 3.45715+0.1372 22.842+1.8419 219.6/36
A 466.969 0.4920 1.119 395.622 +44731.7 1.49141 +15.7463 10.0101 +£226.948 198/16
K? 750.684 0.4003 1.105 72.7633 +82.7046 2.5859+£0.227 17.809 +3.2296 547.7/18

073103-10



Entropy per Rapidity in Pb-Pb Central Collisions using Thermal and Artificial Neural...

Chin. Phys. C 46, 073103 (2022)

Table 7. Same as in Table 7, but the statistical fit results, from both used models, are compared to those of the ANN simulation mod-
el.
Tsallis fitting parameters HRG model fitting parameters
Particle x*/dof
dN/dy Trs/GeV q V/fm? T:,/GeV wGeV
T 5807.58 0.2099 1.1221 4681.65 +1995.89 2.5486 +0.066 24.7643 +1.0789 3173/48
K 958.826 0.2396 1.1159 5871.87+4273.75 3.202+0.1495 36.6246 +2.627 9116.2/44
14 440.362 0.3341 1.1223 1981.5+1398.83 4.5297 +0.2092 59.7687 +3.7575 2246.4/36
A 472.765 0.4976 1.1183 396.77 +£53486.2 1.42152+15.2713 9.10505 +220.834 1949.7/16
K? 749.794 0.3945 1.108 26.688 +55.3559 2.0758 £0.4493 9.7132+£5.5569 5558.9/18
Table 8. Same as in Table 4 but at /s =5.02 TeV.
Particle (dS/dy)y=0 (dS /dy)y=0 supplemented by Tsallis (dS /dy)y=o supplemented by HRG model (dS /dy)y=o estimated by ANN model
T 13188.2 13406.9 13333.6 13330.9
K 3909.58 3938.4 1011.8 3896.25
P 2259.36 2262.64 2250.08 2253.3
A 210491 2193.98 2179.42 2178
K? 2463.9 3396.13 3372.08 3369.06

mass energies of /s =2.76 and 5.02 TeV, respectively.
The ANN simulation model is used to estimate the en-
tropy per rapidity dS/dy for the same particles at the con-
sidered energies. Extrapolating the transverse momentum
spectra at py =0 is required to calculate dS/dy; thus, we
use two different fitting functions, the Tsallis distribution
and HRG model. The effect of both the Tsallis distribu-
tion and HRG model fitting functions on the estimated
entropy per rapidity dS/dy is also discussed. The Tsallis
function can only match the left side of the pr curve,
whereas the HRG model can fit the right side. This result
may motivate us to pursue additional research. The suc-
cess of the ANN model in describing the experimental
measurements implies further prediction for the entropy
per rapidity in the absence of experiments.

APPENDIX A: DETAILED DESCRIPTION OF THE
ENTROPY PRODUCTION dS/dy,
AS SHOWN IN EQ. (1)

According to the Gibbs-Duhem relation, thermody-
namic quantities are related by [43]

EV,T,w)=F (V,T,w)+TS(V,T,u) +ub(V,T,p).  (Al)

Thus, the entropy (S) can be obtained as [43]

| dInZ dInzZ
S:?(E_F/_ﬂb):mz_ﬁ%—(ln/l)/l -

5 o (A2)

Our aim is to express (S) in terms of (f), which is the

single particle distribution function and is given by [43]
f )= ! A3
Fp&.B,A) = TR (A3)

where (+) and (-) represent fermions and bosons, re-
spectively.
The partition function (InZ) is given by [43]

d3rd’pP
Bu—¢)
o7 In[1+e/0] (A4)

1IIZF//3(V,ﬁ,/l) = if

Differentiating Eq. (16) with respect to £, the inverse
of temperature, we get [43]

onZpp . f Srd’P (u - £)ePr-9
B T J @r)} 1xeBud
Erd’P (u-9)

=+ | o AEm LT (A5)

Furthermore, differentiating Eq. (16) with respect to
A, we obtain [43]

3,43 Bu—¢)
(91nZ:J_r d’rd°P e . (A6)
0 2r)3 1+eBw-9
Eq. (18) can be arranged as [43]
dlnZ dérd’p 1
nZ _ r (A7)

| ———.
9l 2n)} ePEm x|

073103-11



D. M. Habashy, Mahmoud Y. El-Bakry, Werner Scheinast et al.

Chin. Phys. C 46, 073103 (2022)

Substituting Egs. (16), (17), and (19) into Eq. (14),
we get [43]

d3rd3p _ ﬂ(ﬂ_f)
Szif 2 []“(lieﬁ(ﬂ ) et

Bﬂeﬂ# ]

T ePEm 41 (A8)

At vanishing chemical potential, up =0, the last term in
Eq. (20) will equal zero.

P L1 = L (A9)
Trip

Eq. (15) can be written in the following form [43]

1 1+
_¢1=ﬂ

_BEw _
Trip Trp

(A10)

and recalling Eq. (22), we obtain

_oBu-e) _ _JFIB

e (All)

Rearranging Eq. (23) in the following form:

L+ B0 _1 4 frip _ YF frip* frip
1 $fF/ﬁ 1 ¢fp//3
1

LF fryp

=1+efl9, (A12)

Substituting Eq. (24) into Eq. (20), we get

_ d*rd’P 1 Sfrp
S = J_rf 2 [ln(] ¢fF/ﬁ)_ln(—1 1fF/ﬂ)fp/ﬁ—zero].
(A13)

We rearrange Eq. (25) as

d*rd*pP
S =+ (;ﬂp |~ 10(1% frs)

- [lan/ﬂ - ln(l F fF/,B)] fF/ﬁ]-

(Al14)

Then, simplify Eq. (26) to

&Brd®p
S Zif(er)?’[—ln(lep/ﬁ)—fp/ﬁlnfp/ﬁ

+frpIn (17 frp)|. (A15)

Finally, the entropy S can be given by [43]

3.3
S ==+ %) [—fp/ﬁ ln(l Tfp/[;) —fp/ﬁlnfp/’g
+fr/pIn(1F fF/ﬁ)]. (A16)

Eq. (28) represents the entropy equation shown in Eq.
.
APPENDIX B: TRANSVERSE MOMENTUM DISTRI-

BUTION BASED ON THE HRG MODEL
The partition function Z(T, V,u) is given by

Z(T,V,u) = Tr [exp('uNT_H)], (B1)

where H represents the system's Hamiltonian, u is the
chemical potential, and N is the net number of all con-
stituents. In the HRG approach, Eq. (29) can be written as
a summation of all hadron resonances.

Vgi
2n)

x f id3pln[liexp(Tﬂ)], (B2)
0

INZ(T, Vi) = Y InZi(T, Vyps) =
i

where + represent bosons and fermions, respectively, and
E; = (p2 + miz)l/2 is the energy of the i-th hadron.

The particle's multiplicity can be determined from the
partition function as

0Z(T,V) Vg foo 3 [ (E—lli) ]_l
N=T—"——2 -~ =_"°L d +1| . (B3
Opi 2n)3 Jo Pl )* ®3)

For a partially radiated thermal source, the invariant
momentum spectrum is obtained as [43]

&N Vgi

E =F
d3p (2n)3

eXp(E;'ui)i 1]_1. (B4)

The i-th particle's energy E; can be written as a func-
tion of the rapidity (y) and mr as

E =mycosh(y). (BS)

Here, mr represents the transverse mass and can be
expressed in terms of the transverse momentum pr by

my = \Jm?+ p3. (B6)

Substituting Eq. (33) into Eq.(32), we obtain the
particle momentum distribution at mid-rapidity (y=0)
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and u#0

1 dN Vg -y -1
- ng[ (mT “)11] @7
2nprdydpr  (2n)3 T

We fit the experimental data of the particle mo-
mentum spectra with that calculated using Eq. (35),
where the fitting parameters are V, i, and T.

APPENDIX C: TRANSVERSE MOMENTUM DISTRI-
BUTION BASED ON THE TSALLIS MODEL

The transverse momentum distribution of the pro-
duced hadrons at LHC energies is expressed as [11, 12]

/(g=1)

2 _
L &N [1+(q—1)%]q ., (Cl)

pr dprdy

mr
(2n)?

= gV
y=0

where mt and pr represent the transverse mass and trans-
verse momentum, respectively, y is the rapidity, g is the
degeneracy factor, and V' is the volume of the system.

The obtained values of ¢ and T represent a system in
the kinetic freeze-out case.

In the limit where g— > 1, Eq. (36) is a simplification
of the conventional Boltzmann distribution [11, 12].

.1 d&N
lim —
g—1 pT dedy

. T exp(—%). (C2)

As a result, several statistical mechanics ideas may be
applied to the distribution provided in Eq. (36).

Integrating Eq. (36) though the transverse mo-
mentum, we obtain [11, 12]

dN gv = myp 179/@D
== d [1 -1 —]
dy |, " @aP fo‘ prdprmr|1+(g-1) T
gVT {(2—q)m%+2moT+2T2]
()2 2-9)(3-29)
-1/(g-1
x[1+(q—1)%] : (C3)

where my is the mass of the used particle.

From Eq. (38), the volume of the system can be writ-
ten in terms of the multiplicity per rapidity d¥/dy and the
Tsallis parameters ¢ and T as

y_dN (27r)2[ C-93-20)
~dyly 8T [(Q2-qymd+2moT +2T2
1/(g-1)
x[1+(q—1)$] . (C4)

Substituting Eq. (39) into Eq. (38), we obtain the
transverse momentum spectra.

1 &N
pr dprdy

_dN
y=0 dy

my 2-9)3-29)
-0 T (2- q)m% +2moT + 272

mo l/(q—l)[ mT]—q/(q—l)
<1+ (@g=1)=2 1+ (g—1)—L
|1+G-D%2| G-

(C5)

where dN/dy, T, and ¢ are the fitting parameters.

APPENDIX D: TRANSVERSE MOMENTUM DISTRI-
BUTION BASED ON THE ANN MODEL
d’N

The transverse momentum distribution
New dydpr

can be estimated from the ANN model as

1 &N
Nevt dyde

=purelin[net.LW {2, 1}tansig(net.Iw{1,1}R

+net.b{1}) +net.b{2))].
(D1)

Here, R represents the inputs ( VS, pr, and centrality),
IW and LW are the linked weights, represented as fol-
lows: net.IW{1,1} is the linked weights between the in-
put layer and hidden layer, net.LW{2,1} is the linked
weights between the hidden layer and output layer, and b
is the bias, where net.b{1} is the bias of the hidden layer
and net.b{2} is the bias of the output layer.

APPENDIX E: RESILIENT PROPAGATION

Resilient propagation, or RPROP [44], is one of the
fastest widely available training algorithms used for
learning in multilayer feed forward neural networks for
numerous applications with the extraordinary advantage
of basic application. The RPROP algorithm simply al-
ludes to the direction of the gradient. It is a supervised
learning method. Resilient propagation calculates an indi-
vidual delta A;; for each connection, which determines
the size of the weight update. The following learning rule
is applied to calculate delta:

OE "V 9E®
— X

+XA,“(I_1), if >0
n J ! GW,'J‘ ﬁwii,‘
A0 = OE D 9E® (E1)
“xAD) i/ x <0
n Y ! awij 6w,~j

A7V else

where 0 <y~ <1 <n*.
The update-amount A;; developed during the learn-
ing process depends on the sign of the error gradient of
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the past iteration, 8E/<9w,<j(”1) and the error gradient of
the present iteration, dE/dw; j(”. Each time the partial de-
rivative (error gradient) of the corresponding weight w;;
changes sign, which indicates that the last update was too
large and the calculation has jumped over a local minim-
um, the update-amount A;; decreases by the factor -,
which is a constant usually with a value of 0.5. If the de-
rivative retains its sign, the update amount slightly in-
creases by the factor n* to accelerate convergence in
shallow regions. 1" is a constant usually with a value of
1.2. If the derivative is 0, we do not change the update-
amount. The weight-update is determined when the up-
date-amount is obtained for each weight.

The following equation is utilized to compute the
weight-update:

OE®
Wij
OE®
) B
Aaw) = { AT 1 Fle <0 (E2)

0, else

—A,'j(t), if >0

(r+1)

— .. (D)
wy = wij +Aw,j(

If the present derivative is a positive amount, suggest-
ing that the past amount was also a positive amount (in-
creasing error), the weight decreases by the update
amount. If the present derivative is a negative amount, in-
dicating that the past amount was also a negative amount
(decreasing error), the weight increases by the update
amount.
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