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Proton-neutron symplectic model description of *Ne
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Abstract: A microscopic description of the low-lying positive-parity rotational bands in *Ne is given within the
framework of the symplectic-based proton-neutron shell-model approach provided by the proton-neutron symplectic
model (PNSM). For this purpose, a model Hamiltonian is adopted. This includes an algebraic interaction lying in the
enveloping algebra of the S p(12,R) dynamical group of the PNSM, which introduces both horizontal and vertical
mixings of different S U(3) irreducible representations within the S p(12,R) irreducible collective space of *Ne. A

good overall description is obtained for the excitation energies of the ground and first two excited # bands, including

the ground state intraband B(E2) quadrupole collectivity and the known interband B(E2) transition probabilities
between the low-lying collective states, without utilizing an effective charge.
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I. INTRODUCTION

The microscopic description of the properties of
atomic nuclei is a longstanding challenge in nuclear
structure physics. A general microscopic framework for
the study of nuclear collective motion is provided by the
nuclear shell model, which includes all many-particle fer-
mion degrees of freedom. Unfortunately, the dimension
of the model space grows rapidly with the increase in the
number of the nucleons or/and the available single
particle states included in the model calculation, even
when the valence shell is solely considered. Accordingly,
several submodels of the shell model have been construc-
ted to reduce the number of states as well as the computa-
tional difficulty. In particular, the algebraic models for-
mulated in terms of spectrum generating algebras and dy-
namical groups, are remarkable. These shell-model sub-
models describe more of the physical structure of states in
terms of well-defined quantum numbers.

The corner-stone of the spherical harmonic oscillator
shell model is provided by the S U(3) algebraic structure
of the three-dimensional harmonic oscillator, first pro-
posed in nuclear physics by Elliott [1] in 1958, which is
present as a building block in all sophisticated algebraic
models proposed during the time for the description of
the nuclear structure. The S U(3) classification scheme of
the many-particle nuclear states allows us to answer
whether these states are indeed eigenfunctions of a real-
istic Hamiltonian for a given real nucleus.

Various shell-model classification schemes are most
easily applied to the light nuclei, where the size of the

model space is considerably smaller than in the case of
intermediate and heavy mass nuclei. From the light nuc-
lei, *Ne is a typical example of a well-deformed (prolate)
nucleus from the ds shell, exhibiting rotational bands
with enhanced quadrupole collectivity. Despite the well-
pronounced collective character, the different microscop-
ic shell-model calculations indicate the complicated
structure of the observed rotational bands in *’Ne. Hence,
this nucleus serves as a good example that can be used to
test the different collective models of nuclear structure.

The first microscopic approach that demonstrated
how collective properties can emerge from the underly-
ing shell-model structure was provided by the Elliott
SU(3) model [1] applied to the light ds nuclei. Since
then, various shell-model calculations have been per-
formed to establish the microscopic structure of the low-
lying states in this nucleus. From the early studies (refer
to a review paper by Harvey [2]), we mention a study by
Akiyama, Arima, and Sebe [3], in which the shell-model
calculations have been performed for some ds-shell nuc-
lei using a phenomenological effective interaction of the
central Yukawa type. It has been demonstrated that the
SU(3) multiplets (8,0) and (6,1), with corresponding
space symmetry [4] and [31], and exhaust up to 95% of
the ground state band structure. The dominant SU(3)
component is given by the (8,0) multiplet and is approx-
imately 80%-90% for different angular momentum states
within the ground band.

From the more recent shell-model calculations, we
point out the calculations performed by Rosensteel and
Rowe [4], which explore the competition between the
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SU(3) and pair shell-model coupling schemes in the ds
nuclear shell model. They considered a model Hamiltoni-
an consisting of Q-0 interactions and an L=0 SO(6)
pairing term that breaks the S U(3) symmetry. The S O(6)
term actually introduces a horizontal mixing of different
S U(3) multiplets within the sd shell. They considered the
rotatlonal states of the ground and first two £ bands in

*Ne. The results indicated that the 61 and 87 states of the
ground state band have a pure SU (3) symmetry determ-
ined by the (8,0) representation. The three remaining
lowest 07,27,4] states exhibit a significant S U(3) mix-
ing of the (8,0), (4,2), and (0,4) irreps, which in contrast
to the pure SU(3) case produces nonzero interband elec-
tric quadrupole transitions. Among the six observed inter-
band B(E2) transition probabilities [4, 5], four were
found in qualitative agreement with the usage of an ef-
fective charge. This supports the used physical picture of
the S U(3) mixing created by the S O(6) Casimir operator,
which is qualitatively correct. The results obtained in [4]
demonstrate that the low-energy rotational states in the
three lowest positive-parity bands in *Ne lie close to the
critical point of a quantum phase transition, where the
pairing and quadrupole interactions compete with each
other, thereby confirming its complex rotational charac-
ter.

The Elliott SU(3) shell model [1, 2] has clearly
demonstrated that the rotational bands of states is ob-
tained by using the in-shell quadrupole-quadrupole inter-
action Q-Q, which is actually expressed using the
second-order Casimir operators of the SU(3) and SO(3)
groups. Because Elliott's (truncated) quadrupole operator
Ooy has vanishing matrix elements between the shell-
model states from different major shells, an effective
charge should be used in the calculations. Hence, the
SU(3) shell model can be considered as a projected in-
shell image of the rigid rotor model [6], which includes
the full major-shell-mixing quadrupole operator Qs
among its generators. Therefore, if the latter is included
to the set of angular momentum operators, i.e. replacing
0>y by Oau, the so-called (one-component) symplectic
S p(6,R) model [7] can be obtained, which is a multi-ma-
jor-shell extension of the Elliott S U(3) model, that con-
tains the latter as a submodel. The advantage of the
S p(6,R) model, owing to the mixing of various shell-
model states from different major shells (vertical mixing),
is that it allows the observed enhanced quadrupole col-
lectivity to be achieved without the introduction of an ef-
fective charge.

The first S p(6,R) model calculation for the rotatlonal
states of low-lying states of the ground state band in *’Ne
has already been given in [8], using a phenomenological
Hamiltonian comprising a harmonic oscillator and col-
lective potential, which is expressed as a polynomial, up
to the fourth degree in the mass quadrupole moment oper-
ators. The shell-model calculations within the framework

of the S p(6,R) model indicated that the dominant contri-
bution to the microscopic structure of the ground band
states is provided by the so-called stretched states, which
are S U(3) states of the type (o +2n,up) with n=0,1,2,...
[9]. In particular, 90% of the ?°Ne ground state origin-
ates from the (8,0), (10,0), and (12,0) stretched states [8].
The results exhibited excessive collectivity compared to
the experimental data.

A more realistic Hamiltonian with a pairing and
single-particle energy symplectic symmetry-breaking in-
teractions was subsequently adopted for the same nucle-
us to obtain a better agreement [10]. A good description
of the intraband B(E2) transition strengths between the
states of the ground band was obtained. The degree of ho-
rizontal and vertical mixing was determined to be approx-
imately 20% in the ground state and up to as much as
50% for the 87 level. A contracted version of the sym-
plectic model [l 1] has also been applied [12] for the de-
scription of the ground band in *Ne, using a hamiltonian
that generates the shell structure and includes the full ma-
jor-shell-mixing quadrupole-quadrupole interaction Q- Q,
plus a residual rotor term. The results of these shell-mod-
el calculations for the eigenstates of the ground band in

*’Ne exhibit a considerable shell mixing in which the 07w
contribution increases from approximately 50% for L=10
to approximately 80% for L=38. In Refs. [10, 12] only
the ground band was considered; hence, only the ground
state intraband B(E2) transition probabilities have been
provided with no interband transition strengths.

More recent shell-model calculations for the structure
of the ground band and the first few resonance-excited
bands in “’Ne have been performed within the frame-
work of the one-component S p(6,R) symplectic model in
[13], using a fermionic Hamiltonian with partial S U(3)
dynamical symmetry, and a symplectic Hamiltonian com-
prising a harmonic oscillator term, Q- Q interaction, and
residual rotor part. The microscopic structure of the
ground band states exhibits a strong Ohiw component
(8,0) (= 60%) with a restriction of the model space up to
8hw. States of the first resonance band (K = 03) contain
significant contributions from all, except the highest 87w,
shells. States are found to be dominated by one represent-
ation (10,0) for the K=0; band, (8,1) for K=17,
(6,2)x =2 for K =27, and (6, 2)/< =1 for K =07, while the
other irreps contribute only a few percent. The resonance
bands resulting from the calculations of [13] within the
framework of the Sp(6,R) symplectic model within a
single S p(6,R) irrep lie high in energy, in the region of
giant resonances (i.e., there are no low-lying vibrations).
To obtain other low-lying excited bands (e.g., § bands)
within the one-component S p(6,R) symplectic model, the
symplectic-breaking interactions need to be considered,
such as the pairing or spin-orbit forces, which mix differ-
ent S p(6,R) representations.

Finally, ab initio large-scale multi-shell calculations
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within the framework of the symmetry-adapted no-core
shell model [14], in which the UB)®SU((2)s, ®SU(2)s,
coupled basis is adopted with no a priori symmetry con-
straints, have been applied to the description of low-en-
ergy nuclear structure in some light nuclei, including

Ne using various QCD-inspired reahstlc interactions.
Unfortunately, only the ground band in *Ne was con-
sidered with the intraband B(E2) transition strengths up
to L =4, in which the structure is dominated by a single
deformed shape that results from the leading S U(3) irrep
(8,0).

Recently, a fully microscopic proton-neutron sym-
plectic model (PNSM) of a nuclear collective motion
with an S p(12,R) dynamical algebra was introduced by
considering the symplectic geometry and possible collect-
ive flows in the two-component many-particle nuclear
system [15]. Via its more general motion group GL(6,R) C
S p(12,R), which allows for the separate treatment of the
collective dynamics of proton and neutron subsystems, as
well as the combined proton-neutron collective excita-
tions, the PNSM generalizes the S p(6,R) model [7, 8] for
the case of two-component proton-neutron many-particle
nuclear systems. The collective states in the PNSM were
initially classified by the basis states of the six-dimen-
sional harmonic oscillator by considering the following
dynamical symmetry reduction chain:
Sp(12,R)>U6)>SU,(3)®SU,3)>SU3)>S0@3). Us-
ing this chain, the PNSM has been applied for the simul-
taneous description of the microscopic structure of the
lowest ground, 8, and y bands in '®Er [16], '3>Sm [17],
154Sm [18], and 238U [19]. The results for the microscop-
ic structure of negative-parity states of the lowest K* = 07
and K™ =17 bands in '%2Sm, '**Sm, and #*U were also
reported [17, 20, 21], including the low-energy B(E1) in-
terband transition strengths between the states of the
ground band and K™ =07 band [17, 21] for these three
nuclei. A significant achievement of the presented ap-
proach is the simultaneous description of low-lying
B(E2) and B(E1) transition strengths without the intro-
duction of an effective charge.

The objective of this study is to test the validity of
PNSM in its application to the light nuclei, particularly
for the case of ’Ne. For this purpose, we apply a differ-
ent version of the PNSM, in which the shell-model many-
particle nuclear states are classified by the following dy-
namical symmetry chain Sp(12,R)>SU(1,1)®S0(6) >
UD®SU,B)®S0(2)>S0(3). The latter was recently
demonstrated to correspond to a microscopic shell-model
counterpart [22] of the Bohr-Mottelson [23] collective
model. Preliminary results along this shell-model classi-
fication scheme, applied to the excitation spectra of the
first few collective bands in '“Gd, '°Ru, "Nd and
148Nd, and the ground intraband B(E2) quadrupole col-

lectivity in these nuclei, have been presented in Refs. [24,
25]. In this study, we consider the collective states of the
ground and first two K™ =0* excited bands only in *Ne,
including also the observed interband B(E2) transition
probabilities for the low-lying collective states.

II. THE PROTON-NEUTRON SYMPLECTIC
MODEL CALCULATIONS

The PNSM dynamical group Sp(12,R) has several
subgroup chains, which can be divided into two types of
chains: the collective-model and shell-model chains. The
first chain-type reveals the dynamical content of the sym-
plectic symmetry. For more details regarding the dynam-
ical content of the PNSM, refer to Ref. [15]. From anoth-
er perspective, the shell-model chains of S p(12,R) relate
the PNSM to the shell-model nuclear theory, and thus
provide a connection to the microscopic many-fermion
physics. They also provide a shell-model coupling
scheme and a basis for detailed microscopic shell-model
calculations.

A given shell-model chain is naturally expressed in
terms of the harmonic oscillator creation and annihilation
operators

i myw ) _
i.s o (xts(a') N st(af)),
bia.s %(xm(a') + jpis(a))- (1

Then, the many-particle realization of the S p(12,R)
algebra is given by all bilinear combinations of these har-
monic oscillator operators, which are O(m) invariant [26]:

Fij(.B) = me . @)
Gij(asﬂ) = Zbia,sbjﬂ,s’ (3)
s=1
1
Aij(a’ﬂ) = E Z ia /ﬂ st b/ﬁ me v) (4)
s=1

where i,j=1,2,3; o,=p,n and s=1,....m=A-1. In
Eq. (1), xis(a) and p;s(e) denote the coordinates and cor-
responding momenta of the translationally-invariant Jac-
obi vectors of the m-quasiparticle two-component nucle-
ar system, respectively, while A denotes the number of
protons and neutrons.

We classify the shell-model nuclear states by the fol-
lowing reduction chain [22]:
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Sp(12,R) 2> SU1,1)®50(6) > U(1)®S U,,(3)®S0(2) 2 SO(3),

(o) Ay v

where to different subgroups are assigned the quantum
numbers that characterize their irreducible representa-
tions. The chain (5) defines a shell-model coupling
scheme for the PNSM.

The SU(1,1) Lie algebra, related to the radial dynam-
ics, is generated by the shell-model operators [22]:

1
s = 3 Z F(a,a), (6)
(02
1
s = 5 > %@, a), )
[
1
$¢7 =5 D A, @®)
(2

which are obtained from (2)-(4) by contraction with re-
spect to both indices i and a. The group S O(6) can be ex-
pressed using the number-preserving U(6) generators
A (q,) (4) in the standard way by taking their antisym-
metric combination [22]:

AM(a,p) = A (a,) - (- DA (B, a). ©)

This group introduces L-pairing correlations, and its ir-
reps are labelled by the S O(6) seniority . The generators
of different S O(6) subgroups along the chain (5) are giv-
en by the following operators

M = V3i[A*M (p,n) - A*M (n, p)], (10)

Y™ = V2[A™M (p, p) + A™M (n,m)], (11)
and

M = A,p) =i[A%a.8) - A°(B, )], (12)

which generate the SU,,(3) and SO(2) groups, respect-
ively. Evidently, by construction, the (S O(3)) scalar oper-
ator M of SO(2) commutes with the non-scalar generat-
ors (10)-(11) of SU,.(3). The two groups SU,,(3) and
SO(2) are therefore mutually complementary [27] within
the fully symmetric S O(6) irreps v = (v,0,0)¢ and form a
direct product subgroup S U,,(3)®S O(2) c S O(6). Hence,
the SU,,(3) irrep labels (4,u) are in one-to-one corres-
pondence with the S O(6) and S O(2) quantum numbers v

)

(A4, v qg L

and v, given by the following expression [22]:

(V)6 =

B a=Fru=SDemn 13

v=+v,+(v-2),...,0(x1) 2

The reduction rules for SUp,(3)>S0@3) are given in
terms of a multiplicity index g, which distinguishes the
same L values in the S U,(3) multiplet (4, ) [1]:

q= mln(/lal’l)amln(/lnu) - 25 ’0 (1)
L = max(4,u), max(d,u) - 2,...,0(1); g=0
L=q,q+1,...,qg+max(1,u); g#0. (14)

An S p(12,R) unitary irreducible representation (o) =

(o1 + % .06+ %) is generated by acting on the lowest-

weight state |o), defined by the following equations

Guplo) =0;
Awlo) =0, a<b;
m
Awlo) = (T + 5 )io). (15)

with raising symplectic generators (2), as schematically
presented in Fig. 1. We have used the following nota-
tions for the indices a = ia and b = jB, taking the values
1,...,6. The symplectic bandhead (o) is defined by the
lowest-grade U(6) irreducible representation
o=[o1,...,06]. The structure of the S p(12,R) irreps is
that of the coupled product of a 21-dimensional oscillator,
related to the giant resonance vibrational degrees of free-
dom, and an intrinsic symplectic bandhead structure (o),
related to the valence shell proton-neutron degrees of
freedom. The symplectic bandhead (o) contains several
SU(3) multiplets that are appropriate for the description
of different low-lying collective bands. The structure of
the symplectic S p(12,R) irreducible representations is

1o > ® ([2]9[2])

(Eq+4) 7o
F
(Eg+2) o | 19>®[2]
F
Eyho i

Fig. 1.  (color online) Construction of the symplectic basis
by acting with the symplectic raising generators (2) on the
lowest-weight state |o).

044105-4



Proton-neutron symplectic model description of *Ne

Chin. Phys. C 46, 044105 (2022)

:_i L=013, 19,219, 36, 46

E—EL:OG,ZGJ ' ——— i

o i = =T |=== !
=== =g el T

—iL=0 ® 1= “ K=0 < %z 1) i
| ke (Ra,11)

_____ O ]

Fig. 2.  (color online) Structure of the S p(12,R) irreducible

representations that can be represented as a coupled product of
a 21-dimensional oscillator, related to the giant resonance vi-
brational degrees of freedom, and an intrinsic symplectic
bandhead structure (o), related to the valence shell proton-
neutron degrees of freedom, which contains several SU(3)
multiplets appropriate for the description of different low-ly-
ing collective bands.

schematically presented in Fig. 2. If the symplectic band-
head is represented by the scalar (o) =0 S p(12,R) repres-
entation, corresponding to the physically unimportant
case of doubly-closed shell nuclei, then one obtains the
irreducible collective space of the two-fluid irrotational-
flow collective model of Bohr-Mottelson type. This is a
characteristic feature of all phenomenological models of
the nuclear structure. Therefore, the main difference of
the present symplectic-based shell-model approach from
the phenomenological models is that the combined pro-
ton-neutron collective dynamics is governed by the non-
scalar S p(12,R) symplectic bandhead structure (o) # 0. If
we allow the mixing of different S U(3) multiplets within
the symplectic bandhead (horizontal mixing), we will ob-
tain a distribution over A and u. Using their relationship to
the Bohr-Mottelson deformation parameters f and y [9,
28, 29], we will obtain a distribution over £ and y. In oth-

er words, in contrast to the §p(6,R) symplectic model,
here, we obtain low-lying shape vibrations. The SU(3)
states of the symplecic bandhead can also be mixed with
the SU(3) shell-model configurations from the higher
major shells (vertical mixing). Accordingly, we see that
the PNSM naturally incorporates rotational, low-lying,
and high-lying vibrational collective degrees of freedom
into nuclear dynamics.

The relevant S p(12,R) symplectic irreducible repres-
entation for ’Ne is obtained by filling pairwise the ds
shell by two valence protons and two valence neutrons,
which first gives the identical SU(3) irreducible repres-
entation (4,0) for both the proton and neutron subsystem,
respectively. These two identical irreps are then strongly
coupled to produce the leading S U(3) irreducible repres-
entation (8,0), i.e. (4,0)®(4,0) — (8,0). The S p(12,R) ir-
rep is therefore determined by the lowest-weight U(6)
state |o-), which is fixed by the requirement to contain the
leading S U(3) multiplet (8,0) as a subrepresentation.
Then, the shell-model considerations based on the real
S U(3) scheme, originally proposed by Elliott [1] (in con-
trast to the so-called "pseudo-S U(3) scheme" [30] used

for the case of heavy nuclei), gives the following

. . . 1 1
S p(12,R) irreducible representation (o) = (10 + 79,2 + —9,

2
19 19 19 19 .
2+ ?,2+ 7,2+ 7,2+ 7) of *Ne with the lowest U(6)

irrep o =[10,2,2,2,2,2]s =[8]¢, which we denote as
0hw [8]s, for simplicity. The U(6) irrep [8]¢ in turn de-
composes to the following S O(6) irreps: v = 8,6,4,2, and
0, each containing the corresponding S U,(3) subrepres-
entations. The lowest-weight U(6) irrep is the symplectic
bandhead, from which the set of remaining basis states
for the considered S p(12,R) irreducible representation is
obtained via the repeated actions on it by the raising sym-

Table 1. Relevant SO(6) and SU,,(3) irreducible representations, which are contained in the Sp(12,R) irreducible collective space
Ohw [8]¢ and obtained according to Eq. (13).
N v\v e 10 8 6 4 0 -2 —4 -6 -8 -10
10 (10, 0) 9, 1) 8,2) (7,3) (6,4) (5,5) (4,06) 3,7) (2,38) (1,9) (0, 10)
8 (8,0) (7, 1) (6,2) 5,3) 4,4) (3,95 (2,6) 1,7) 0, 8)
6 (6, 0) 5,1) 4,2) 3,3) 2,4 (1,5) (0, 6)
No+2 4 4,0) 3,1 2,2) (1,3) 0,4)
2 2,0) (1, 1) ©,2)
0 (0, 0)
8 ®,00 () (62 (5.3 @44 (35 (2,6 (1,7 (0,8
6 (6, 0) 5, 1) 4,2) (3,3) 2,4) (1,5) (0, 6)
No 4 4,0) 3,1) 2,2) (1,3) 0, 4)
2 2,0) 1,1 0,2)
0 (0, 0)
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plectic generators, which increase the harmonic oscillat-
or energy by two quanta. In Table 1, we present the relev-
ant model space for performing the shell-model calcula-
tions in “*Ne. From Eq. (15), it follows that the minimum
number of oscillator quanta (eigenvalue of the number

. 6
operator N =3,Au) 18 Nj=(01+...+06)+ Em’ count-

ing all filled levels and including the factor ém for the

zero-point motion of the m = A—1 Jacobi quasiparticles.
However, because the protons and neutrons are actually
physically present in the real three-dimensional potential
well, half of the zero-point degrees of freedom are re-
dundant. The proper value of the minimum Pauli allowed

number of oscillator quanta will then be given by

3 . .
N0=(0'1+...+o-6)+§m, which  for *Ne gives

3
No=20+ 5.19 =48.5.

The basis functions along the chain (5) can thus be
written in the form [22]:

W, gy (1,Q5) = Ry (1Y 1(Qs), (16)

where quLM(Qs) represents the SO(6) Dragt's spherical
harmonics [31, 32]. The SU(1,1) group describes the ra-
dial motion, while the S O(6) group is associated with or-
bital excitations. Accordingly, the nuclear collective dy-
namics splits into radial and orbital motions. The full
many-particle Hilbert space of the nucleus can therefore
be represented as a direct sum

H= @HﬁU(I’I)QbHiO@ (17)

of Hilbert spaces labeled by a seniority quantum number
v, each of which carries an irrep of the direct product
group SU(1,1)®S O(6). For the harmonic oscillator series
Ay =v+6/2.

The starting point of the present application is the fol-
lowing dynamical symmetry Hamiltonian

H=2S{"+BA?+CC[SUp(3)]
+D(CalS U,,,,(3)])2 +aC[SO(3)], (18)

in which the first term 2§ f)ﬂ) = H, represents the harmon-
ic oscillator mean field that defines the shell structure.
Because the second-order Casimir operator Ca[S U, (3)]
of SU,,(3) is proportional to the in-shell quadrupole-
quadrupole interaction ¢-g, its role, together with the
fourth term, is to reduce the energy of the SU(3) mul-
tiplet with the maximal eigenvalue of this operator, i.e.
the most deformed one (8,0), within the valence shell
with Ny = 48.5 and maximal seniority vy = 8. All terms in

the Hamiltonian (18) are SU(3) scalars; hence, they do
not mix different SU(3) irreps. The eigenvalues of the
Hamiltonian (18) with respect to the shell-model coup-
ling scheme (5) are therefore given by

E(p,v,A,u,L) =phw+ Bu(u+4) + C{(C2[S U ,,(3)])
+ D(C,[S Upn(3)]))2 +al(L+1), (19)

where (Co[SU,(3)]) = %(/12 +p%+Au+32+3u)  repres-
ents the eigenvalue of the SU,,(3) second-order Casimir
operator.

For the calculation of the B(E2) transition strengths,
we adopt the E2 transition operator T2 = (eZ/(A - 1))g*",
where the in-shell quadrupole moment operator g*” is
given by Eq. (10). Because g>" is a generator of the
S U,n(3) group, one obtains the well-known result for the
B(E2) transition probabilities [24]:

ZLf+1 E20 |2
BEXL = L) = 57 AT =26
2L+1( eZ \2 ,
i (35 ) (VBamatia a0 L)

2
X AJACo[S Upn(3)]>) ; (20)

where (A, gLi; (1, D2I|(A,1)q" L) denotes the
SU(3) > SOQ3) isoscalar factor. In the present shell-mod-
el calculations, as in other symplectic model applications,
no effective charge is used, i.e. e=1. Using Eq. (20),
B(E2;27 — 07)=19.5 W.u. is obtained for the leading
SU@3) irrep (8,0), to be compared with the experimental
value 20.3 [5]. This indicates that the SU(3) symmetry
already provides a very good approximation to the first
B(E?2) transition probability of the ground band; however,
it slightly underestimates the experimental value. Further-
more, we point out that in the pure S U(3) limit, there are
no non-zero interband B(E2) transition probabilities.

II1. RESULTS

In the present application, we use the Hamiltonian
(18) plus the mixing Hamiltonian

Hiix = §1Hhmix + &2 Hymix, (21)
consisting of horizontal and vertical mixing terms lying

in the enveloping algebra of S p(12,R) dynamical group
and given by the following expressions
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Himix = (GX(a.a)- F*(b,b) + G*(b,b) - F*(a.a)),
22
Hymix = (A%(a.0)- FX(a,a) + G*(a,a) - A*(a,a)). 22

The a and b operators are expressed by the proton and
neutron raising operators of the harmonic oscillator

- i L i i1
using  af = $(—1Bj(p) +Bim), bi= -5
(iBj.(p)+Bj.(n)) and their conjugate counterparts [24].

quanta

Hyumix mixes different S U),(3) multiplets within a given
S O(6) representation v, whereas Hynyix mixes the SU(3)
multiplets of the (4,u) and (1+2,u) types from the adja-
cent oscillator shells. Hence, we diagonalize the model
Hamiltonian consisting of Eqgs. (18) and (21) within the
S p(12,R) irreducible collective space Ohiw [8]¢ of **Ne
given in Table 1, and restricted up to energy 20%w above
the valence shell given by the minimal Pauli allowed
number of oscillator quanta Ny = 48.5. In addition, due to
the prolate-oblate symmetry of the S U,,(3) multiplets re-
lated with the conjugate SU,,(3) multiplets (4,4) and
(u,A) contained within the corresponding S O(6) irredu-
cible representations, we use only the SU(3) multiplets
(A,u) with A > u. Practically, the model space in which
the Hamiltonian is diagonalized contains the SU,(3)
multiplets (4,4) with A >y within the maximal seniority
SO6) irrep vp=8 (cf. Table 1) and the so-called
stretched SU(3) states of the type (4+2k,u) [9] with
k=0,1,2,... built on them up to the energy 20%iw.

The results of diagonalization for the low-lying excit-
ation spectrum in *Ne together with the experimental
data are presented in Fig. 3, while the intraband B(E2)
transition strengths between the states of the ground band
for this nucleus are given in Fig. 4. In the calculations for
the corresponding B(E2) values, no effective charge is
used. The values of the model parameters (in MeV), ob-
tained by a fit to both the energy levels and B(E2) trans-
ition probabilities, are as follows: B=0, C=-1.756,
D =0.0098, a=0.15, £ =-0.143, and & =-0.099. The
major shell separation energy #w is determined by the
standard formula 41A~'/3 MeV. From Fig. 3, it is ob-
served that the structure of the three lowest bands in **Ne
is reasonably well described by the theory, especially for
the ground band. For the two f bands, the model calcula-
tions give rotational bands with smaller moments of iner-
tia than those observed in the experiment. Generally, the
agreement can be improved by introducing deformation-
or/and energy-dependent moments of inertia (see, e.g.,
[33, 34]). The position of the 07 bandhead is obtained at
much low energy then observed in an experiment, a situ-
ation encountered also in Ref. [4], and in less extended, in
Ref. [3]. The position of this and other excited bands de-
pends first on the third and fourth terms of the Hamiltoni-
an (18). However, more importantly, the result of the cal-
culations depends on the amount of the horizontal and
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Fig. 3.
ergy levels with the theory for the low-lying ground, g;, and
B2 bands in *Ne.

(color online) Comparison of the experimental en-

40
CR (e “Ne
= 30} g.s.b.
~
4
20+
-
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m
0 1 1 1 1
2 4 6 8
L [h]
Fig. 4.  (color online) Comparison of the experimental and

theoretical intraband B(E2) values in Weisskopf units between
the states of the ground band in *Ne. No effective charge is
used.

vertical mixings of the S U(3) states from the correspond-
ing irreducible collective space, which in turn crucially
affects the transition strengths. In this regard, an L pair-
ing interaction can be introduced to improve the agree-
ment on the position of the S excited bands, which at the
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same time does not affect the S U(3) structure of the wave
functions. Fig. 4 demonstrates that the ground state intra-
band B(E2) quadrupole collectivity is well described
within the error bars. Furthermore, in Table 2 we com-
pare the values of the experimentally known interband
B(E?2) transition probabilities with the theoretical predic-
tions for the lowest states. Among the six observed inter-
band B(E2) transition probabilities, five were found in
qualitative agreement and only the 27 — 2] transition
was approximately an order of magnitude smaller than
the experimental value. We point out that, in contrast to
the results of Ref. [4], here, the intraband and interband
B(E2) values are obtained without involving an effective
charge. The interband B(E2) transition probabilities
strongly depend on the amount of the S U(3) mixing and
their relative values are a result of the delicate balance of
the horizontal and vertical mixing of the SU(3) shell-
model configurations. We calculated the quadrupole mo-
ments of the corresponding 2* excited states for the three
bands under consideration. The obtained theoretical val-
ues are —0.17, —0.19, and —0.15 eb, respectively for the
ground, 31, and B, bands, to be compared with the known
experimental value Q(27)=-0.23(+0.03)eb for the 2*
state of the ground band. In general, from the presented
results, a good overall description of the experimental
data can be observed for the excitation energies and
B(E?2) transition probabilities.

In Fig. 5, we provide the S U(3) decomposition of the
wave functions for the collective states of the ground and
first two excited f bands in *Ne. From the figure, it can
be observed that the S U(3) symmetry of the states under
consideration is severely broken. For the states of the
ground band, it can be observed that the microscopic
structure is predominated by the 0%iw component of the
leading (8,0) irreducible representation of the symplectic
bandhead, in accordance with Refs. [3, 10, 12, 13]. For
the low angular-momentum states of the three considered
bands, one observes a significant amount of both the ver-
tical and horizontal mixing of different S U(3) shell-mod-
el configurations to the structure of the collective states.

Table 2. Theoretical and experimental values in Weisskopf
units of the interband B(E2) transition probabilities. No effect-
ive charge is used.

initial final B(E2;L; — Ly B(E2;L; = Ly)exp
0, 2 4.63 3.6
03 2y 0.26 0.31
2 2y 0.19 1.7
4 2 1.73 5.8
23 0 0.52 0.73
43 2 2.04 8.3

ground band

20
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Fig. 5.

functions for the states of the ground, g, and B, bands in

20.
Ne.

(color online) SU(3) decomposition of the wave

IV. CONCLUSIONS

In this study, we studied the microscopic structure of
low-lying positive-parity rotational states in the ground
and first two excited £ bands in **Ne within the frame-
work of the symplectic-based shell-model approach
provided by the proton-neutron symplectic model of col-
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lective motions in atomic nuclei. This is the first applica-
tion of PNSM to light nuclei. The shell-model states are
classified by the following dynamical symmetry chain
Sp(12,R) > SU,1H)®S06) > U)®@SU,,3)®S0(2) >
S 0(3), which was demonstrated recently to correspond to
a microscopic version of the Bohr-Mottelson model [22].
The PNSM dynamics naturally incorporates the low-ly-
ing rotations, high-lying vibrations associated with the gi-
ant resonance degrees of freedom, and (in contrast to the
one-component S p(6,R) symplectic model) low-lying vi-
brations [15, 26].

To determine the microscopic shell-model structure
of the collective states in ~'Ne, we adopt a dynamical
symmetry Hamiltonian, including a simple algebraic in-
teraction, lying in the enveloping algebra of the S p(12,R)
dynamical group of PNSM, which introduces both the

horizontal and vertical mixings of the SU(3) multiplets
within the S p(12,R) irreducible collective space 0fiw [8]¢
of 2ONe, including the shell-model configurations from
the major shells up to energy 20hw. A good overall de-
scription is obtained for the excitation energies of the
three bands considered, as well as for the ground state in-
traband B(E2) quadrupole collectivity and the known in-
terband B(E2) transition probabilities between the low-ly-
ing collective states. The results for the B(E2) transition
strengths are obtained without the use of an effective
charge, inherent to the symplectic-based shell-model ap-
proach to nuclear structure.

The results of this study indicate that the PNSM,
which was initially proposed for the description of the
collective motion in heavy mass nuclei, can also be ap-
plied successfully to light nuclei.
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