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Abstract: Considering the quantum electrodynamics (QED) effect, we study the phase transition and Ruppeiner

geometry of Euler-Heisenberg anti-de Sitter black holes in the extended phase space. For negative and small posit-

ive QED parameters, we observe a small/large black hole phase transition and reentrant phase transition, respect-

ively, whereas a large positive value of the QED parameter ruins the phase transition. Phase diagrams for each case

are explicitly shown. Then, we construct the Ruppeiner geometry in thermodynamic parameter space. Different fea-
tures of the corresponding scalar curvature are shown for both the small/large black hole phase transition and

reentrant phase transition cases. Of particular interest is the additional region of positive scalar curvature, indicating

a dominant repulsive interaction among black hole microstructures, for the black hole with a small positive QED

parameter. Furthermore, universal critical phenomena are observed for the scalar curvature of Ruppeiner geometry.

These results indicate that the QED parameter has a crucial influence on the black hole phase transition and micro-

structure.
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I. INTRODUCTION

Since the earliest pioneering work of Hawking and
Bekenstein on the temperature and entropy of black
holes, it has been revealed that there is a deep connection
between gravity, quantum mechanics, and thermodynam-
ics [1-3]. Equipped with the established four laws of
black hole thermodynamics [4], the study of thermody-
namics has become an increasingly active area in black
hole physics. Motivated by anti-de Sitter/conformal field
theory (AdS/CFT) correspondence [5, 6], the Hawking-
Page phase transition [7] between a stable large Schwarz-
schild AdS black hole and thermal space has been inter-
preted as the confinement/deconfinement phase trans-
ition of the gauge field [8]. The phase transition was also
extended to charged and rotating AdS black hole cases
[9-11].

Recently, it was found that, by interpreting the cos-
mological constant as thermodynamic pressure in AdS
space [12— 14], black hole systems are analogous to
everyday thermodynamic systems. In this extended ther-
modynamic phase space, the charged small/large AdS
black hole phase transition is similar to the gas-liquid
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phase transition of van der Waals (VdW) fluids [15].
Subsequently, additional interesting black hole phase
transitions and phase structures, such as the reentrant
phase transition [16, 17], isolated critical point [18], triple
point [19-21], and superfluid black hole phase [22], have
been uncovered. Now, this field is known as black hole
chemistry, which aims at uncovering the similarity and
differences between black hole systems and everyday
thermodynamic systems.

Understanding the black hole microstructure is a sig-
nificant challenge. Although string theory [23—26], the
fuzzy ball model [27, 28], and pierced horizons [29] have
made great progress, more questions remain unanswered.
As proposed in Refs. [30, 31], the study of black hole
phase transition can also be applied to this challenge with
the assumption that the micro-degree of freedom is meas-
ured by the underlying molecules of the black hole. Com-
bined with Ruppeiner geometry [32], the characteristic
black hole microstructure has been tested. The scalar
curvature of its corresponding geometry is an important
tool for exploring the microstructure of a black hole, and
empirical observation has shown that the positive or neg-
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ative scalar curvature corresponds to the repulsive or at-
tractive interaction among these underlying black hole
molecules. Such empirical results have been supported by
numerous studies on different fluid systems, such as ideal
fluids [33], VAW fluids [34], one-dimensional Ising mod-
els, and quantum gases [35, 36]. More significantly, when
considering a microscopic model and the equation of
state, a possible interpretation of the empirical observa-
tion was given and the corresponding molecular potential
was constructed in Ref. [37].

In view of the "hard-core" model, there is only a dom-
inant attractive interaction for the VdW fluid. However,
for charged AdS black holes, a dominant repulsive inter-
action emerges for a small black hole (SBH) with a high
temperature [38], which uncovers an interesting phe-
nomenon for the black hole microstructure. After general-
izing the study for the modified gravity [39], it was found
that the dominant repulsive interaction may not emerge,
whereas the attractive interaction is universal. Other re-
lated studies can be found in Refs. [40, 41].

Although quantum gravity remains to be established,
understanding of black hole microstates can be classic-
ally tested using the Ruppeiner geometry of AdS black
holes. Inspired by the AdS/CFT correspondence, Rup-
peiner geometry may be relevant to dual CFT. In particu-
lar, there have been studies in which the change in the
pressure or cosmological constant of the bulk was con-
sidered to correspond to the change in the number of col-
ors in the boundary of Yang-Mills theory. Ruppeiner geo-
metry was also constructed in Refs. [42—45], and many
interesting properties were found. More recent develop-
ments on this issue also focused on thermodynamic laws
and phase transitions in dual field theory by combining
cosmological and Newton constants as well as the central
charge [46—48].

Furthermore, black hole solutions with nonlinear elec-
trodynamics have been gaining great interest. In particu-
lar, this theory can be viewed as a low-energy limit from
string theory or D-brane physics, where Abelian and non-
Abelian nonlinear electrodynamic Lagrangians can be
produced. The thermodynamics of charged Born-Infeld
(BI) AdS black holes were considered in Ref. [49]. The
presence of BI vacuum polarization governs a rich black
hole phase transition. The study was also extended to
higher dimensions, and the SBH/large black hole (LBH)
phase transition was found to be universal [50]. Another
widely concerned nonperturbative one-loop effective
Lagrangian of nonlinear electromagnetic fields was pro-
posed by Heisenberg and Euler [51] and reformulated
within the QED framework by Schwinger [52]. The black
hole solutions corresponding to the effective Lagrangian
have been calculated [53]. In Refs. [54—58], the first law
of black hole thermodynamics and the Smarr formula
were found to be consistent with each other when the va-
cuum polarization parameter is included. The phase trans-

ition was preliminarily studied, and at the critical point,
the standard mean field theory exponents were obtained.

Motivated by this, in this paper, we thoroughly study
the phase transition of charged Euler-Heisenberg (EH)-
AdS black holes by considering the QED effect. The
SBH/LBH phase transition and reentrant phase transition
are found to exist in different regions of the parameter
space. The phase diagrams and structures are shown in
their entirety. Then, based on the phase diagrams, we
construct the Ruppeiner geometry of charged EH-AdS
black holes. The feature of scalar curvature is also ob-
tained. Furthermore, employing the empirical observa-
tion of the Ruppeiner geometry, we disclose a particu-
larly interesting property of the microstructure of black
holes.

This paper is organized as follows. In Sec. II, we first
review the thermodynamics of charged EH-AdS black
holes. Then, in different regions of the parameter space,
we study the SBH/LBH phase transition and reentrant
phase transition. The phase diagrams are clearly exhib-
ited. In Sec. III, Ruppeiner geometry is constructed. Em-
ploying the corresponding scalar curvature, we explore
the characteristic black hole microstructure under the
SBH/LBH phase transition and reentrant phase transition.
Novel properties are found. Finally, the conclusions and
discussions are given in Sec. [V.

II. THERMODYNAMICS AND PHASE TRANS-
ITION OF EULER-HEISENBERG-ADS
BLACK HOLES
In this section, we briefly review the thermodynam-
ics of charged EH-AdS black holes with QED correction
[53] and then study their phase transition in complete

parameter space, where the SBH/LBH phase transition
and reentrant phase transition are clearly exhibited.

A. Thermodynamics and critical points

The action of EH theory with a cosmological con-
stant in four-dimensional spacetime is [59]

S = i d4x\/—_g[l(R—2A)—£(F,G) , (1)
47 M* 4
L(F,G) = —F+§F2+7§Gz. )

Here, g, A, and R are the determinant of the metric tensor,

cosmological constant, and Ricci curvature tensor, re-

spectively. The term £(F,G) is the Lagrangian of nonlin-

ear electrodynamics, which depends on the electromag-
L . 1 1

netic invariants F = —F,, F" and G=-F, F". The

symbol F,, =d,A,—-0dy,A, denotes the electromagnetic
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field tensor, and *F" = e€u,,,F7"/(24/=g) is its dual,
where A, is the corresponding vector potential. The para-
meter a in Eq. (2) can be used to measure the strength of
the QED correction, which is related to the mass and
charge of an electron, and thus we call it the QED para-
meter. When a=0, the influence of the QED term van-
ishes.

For a static spherically symmetric charged EH-AdS
black hole solution, the line element is [56]

ds* = —f(r)de* + f(r) " dr? + (A6 +sin’ 6d¢”),  (3)

and the metric function f(r) is given by

2
f=1-Z4 S 2 @)
r 14

where M and Q are the mass and electric charge of the
black hole, respectively. When a =0, this solution re-
duces to the Reissner-Nordstrom (RN) AdS black hole
solution. The EH electromagnetic potential ®(r) and elec-
tric field of EH-AJS black holes are given by [56]

_Q aQ?
o, aQ?

Similar to the electric field behavior of a point charge
in Maxwell's linear electromagnetic theory, the electric
field &(r) diverges at r = 0. However, the Maxwell beha-
vior is recovered when a = 0.

The radius r, of the outer black hole event horizon is
the largest root of f(r,) =0, which can be obtained by
solving

0.0 0.5 1.0 1.5 2.0
r

(a)
Fig. 1.

A 0*a
gri—rﬁ—Q2r4++2Mri+%=O. @)

The radius ry = r.(M,Q,A,a) of the event horizon of
an EH-AdS black hole depends on four parameters: the
mass M, electric charge O, cosmological constant A, and
QED parameter a. In different parameter regions, there
may be two, one, or no horizons. Taking Q=0.8,
M =1.0, and A =-2 <0 as an example, we plot the met-
ric function f(r) in Fig. 1(a) for a = -5, 0, 0.04, and 0.4.
We observe that when a < -5, there is no black hole hori-
zon, and only one naked singularity is present. For a=0,
0.04, and 0.4, there are two, three, and one horizons, re-
spectively. Therefore, we may conclude that there is no
horizon for a <0, whereas at least one horizon exists for
a>0.

To clearly show whether there is black hole horizon,
we examine the asymptotic behavior of the metric f(r)
(4) at r —» 0 and r — oo. Expanding this, we obtain

A 2
Flr— o0) = —T’" +0(9), ®)
0=~_92 oL 9
f(r_> )__20r6+ (rz)' ( )

Considering that in AdS space, A is negative, one can
reach f(r) —» o0 as r — oo. Near r — 0, f(r) tends to pos-
itive infinity for a <0 and negative infinity for a > 0.
Hence, for the case of a > 0, we can find r, € [0,00] such
that f(r.) =0 according to the intermediate value theor-
em. Therefore, there is at least one black hole horizon at
r=r, for a> 0. For negative a, the behaviors of f(r) are
obscure. A naked singularity may emerge in some para-
meter regions. As an explicit example, we show the re-
gions for the naked singularity and black hole on the (a,
A) plane (see Fig. 1(b)) with M =1 and Q =0.8. The sol-
id curve represents black holes with one degenerated ho-

10 EH-AdS BH

-20 Naked Singularity
-30
-40
-25 -2.0 -1.5 -1.0 -0.5 0.0
A

(b)

(color online) (a) Metric f(r) of an EH-AdS black hole for parameters A = -2 and a = -5, 0, 0.04, and 0.40 from top to bottom.

(b) Parameter regions for the EH-AdS black hole and naked singularity in the (a, A) plane with M =1 and Q =0.8.
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rizon. Above and below the curve are the black hole and
naked singularity regions, respectively. It is clear that the
entire positive a region is for the black hole. Moreover,
we find that, with increasing A, the parameter region of a
increases for the black hole. A similar pattern also holds
for other values of the black hole charge Q.

In terms of r,., the mass M from (7) can be expressed
as

_ —-3aQ*+600%rt —20Ar8 +60r°

M 5
12073

(10)

Using the “Euclidean trick,” the Hawking temperat-
ure is

_feo 1 (@ ag

= +
2 6
4r 4rr, ri 48

T

—Ari). (11)

In the extended phase space, the cosmological con-

.. . A
stant A is interpreted as the pressure using P = —— [12].

T
Accordingly, the black hole mass M acts as the enthalpy
H of the thermodynamic system, rather than the internal
energy. Then, the first law has the following form:

dH =TdS +VdP+®dQ+ Ada, (12)

0H . . .
where A= s the conjugate quantity of the QED

a
parameter a. The entropy S, thermodynamic volume V,
electric potential @, and A can be calculated using

S =fT*1dH=m3, (13)
OH 4
=[—| == 14
V (aP)SyQ 37Tr+, ( )
3
8Q S.P Iy 10}’_?_
Q4
A=-——r. 16
401 (16)

It is straightforward to confirm that the following
Smarr formula holds:

H=2TS —VP+Aa)- DQ. (17)
From Eq. (11), the equation of state can be written as

T 1 2 4
poLt 1 & 4 (18)
2r,  8ar2  8mrt 3218

This equation of state reveals more than one critical
point, which can be determined by the following condi-
tions:

OvP) o140 =(OvvP)or,=0. (19)

These conditions give a third degree equation for
x=(6V/m?*?

X =240°x* +448a0* = 0. (20)

When 0<a< 37—2Q2, Eq. (20) has three real roots
[56],

2 = 80 (2cos| Larceos (1 - % )= Z* I 1) k= 0.1.2.
3 1602)” 3
(21)

Note that x, gives a negative volume and should be
excluded. Therefore, only k=0 and 1 are allowed, and the
critical temperature and pressure are given by

_8@r*)* a0t 407 1
CTToEVHIA 3Ve (62 BV
_7(27T5)1/3GQ4 71.1/3Q2 1

ck =

s L.

(22)

- + k=
9(3VH2/3 (6VHI3  2(36nV2)2/3

. . 1
The critical volume is defined as V.= —71')62/2, de-

pending on the charge Q and QED parameter a. It is

. 3207
worth noting that when the QED parameter a > 7Q ,

Eq. (20) has no real root, and thus no critical point exists.
For a <0, there is a real root xy (k=0), which gives one
critical point.

To clearly show the number of critical points, we plot
F(x) = x3—240Q%x> +448aQ"* as a function of x in Fig. 2
with O=1. The zero points marked with black dots simply
correspond to the solution of Eq. (20), and thus they are
the critical points of concern. It is worth noting that the
parameter x > 0. For different values of a, F(x) has a sim-
ilar pattern. We also observe that for a <0, there is only
one zero point located near x=25. With an increase in a
such that a =0, a second zero point emerges near x = 0.
By further increasing a, these two zero points approach
and coincide near x =16 for a =32/7. Beyond this, the
zero point disappears. As a result, such behavior is en-
tirely consistent with the above discussion on the critical
point.

In summary, there are two characteristic types of
phase transitions. The first type is for a <0, which re-
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Fig. 2.  (color online) Behavior of F(x) as a function of x.

The QED parameter a=40/7 (red), 32/7 (blue), 15/7 (purple),
0 (orange), and —1.0 (green) from top to bottom. Note that the
zero points (marked with black dots) of the function F(x) are
the critical points. The charge Q is set to one.

veals one critical point, and this phase transition is simil-
ar to the gas-liquid phase transition of VdW fluids. For

. 20?
the other type, with the QED parameter 0 <a < 3 7Q ,

two critical points can be found, and the reentrant phase
transition exists.

For these two types of phase transitions, we may re-
cognize differences from the equation of state (18) ex-

pressed in terms of the thermodynamic volume V = —ar3,

3

r3r 1

_ _(27T5)]/361Q4 ~
- 6V)1/3  (2887V2)1/3"
(23

9(3v4)2/3

732
(162VH)1/3

We plot the pressure P as a function of the specific
volume v=2r, for fixed temperature in Fig. 3 with

32
a=-15 (a<0)and a=1.0 (0<a< TQZ) as two rep-
resentative examples. In Fig. 3(a), there are two extremal

0.020

0.015

0.010

0.005

0.000

-0.005
0

(a)
Fig. 3.

points (marked with red dots) for T < T,, and these points
divide the isothermal curve into three branches. Two of
them are the SBH and LBH located at the left and right
sides of the isothermal curve, respectively, whereas the
middle branch is for the intermediate black hole. Accord-
ing to the heat capacity, black hole branches with a negat-
ive slope are thermodynamically stable, whereas those
with a positive slope are unstable. Thus, the SBH and
LBH are stable, whereas the intermediate black hole is
unstable. Making use of Maxwell's equal area law, we
can construct two equal areas along each isothermal
curve to obtain the phase transition point. However, with
increasing temperature, these two extremal points get
closer and coincide at T =T.. When T > T, there is no
longer any extremal point. In contrast, for a positive QED

. 32
parameter, i.e., a=1.0€(0<a< =Q?), there are three

extremal points in Fig. 3(b) for T < T.. When the temper-
ature approaches its critical value, two of them coincide,
whereas the other one continues to exist, even when the
temperature is above the critical value. Below the critical
temperature, the nonmonotonic behavior of the isotherm-
al curve also allows us to construct two equal areas, in-
dicating the existence of the black hole phase transition.

For convenience of discussion, we can introduce the
reduced quantities P, T, V, and 7 in the extended phase
space.

24

- 1%
V=—.

=
V. Ve

0
1l
~
1l
S~

S

Then, the equation of state (23) takes the following
form:

S| 8a0* 20 1 T
P= N\ = ta T sml = (25)
aPovi\ 80 Tty 29 Ve
Py, . .
where p, = T In the canonical ensemble, the Gibbs
]
0.020f
0.015f
0.010
T=T, T>T.
0.005} —
0.000F T<T,
-0.005F
-0.010 *
0 5 10 15 20
v

(b)

(color online) Isothermal curves on the P-v plane of the charged EH-AdS black hole. (a) a=-1.5 (a<0). (b) a=1.0

(0<a< %QZ). The temperature 7 <T., T =T., and T > T, from bottom to top. The extremal points are marked with red dots, and we

set 0=1.
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free energy G = H—-TS, which reads

T3 aQ* PV

VOO = Tars0ova s~ 2
Om'Pe* 3V
(16V)13  (256m)1/3" (26)

In general, the first-order phase transition can be de-
termined by the swallow tail behavior of the Gibbs free
energy. In the following sections, we study the phase
transition via the behavior of the Gibbs free energy.

B. Van der Waals type phase transition with a <0

For this case, we take Q=1.0 and a = —1.5 as an ex-
ample. The Gibbs free energy G is plotted with the tem-
perature 7 in Fig. 4 for different values of pressure. When
P < P., we observe the characteristic swallow tail behavi-
or, indicating the coexistence of the black hole phase
transition. As the pressure increases, the shape of the
swallow tail becomes smaller and shrinks to a point when
P = P.. By further increasing the temperature, the behavi-
or completely disappears. Then, the Gibbs free energy
turns into a smooth function of temperature.

To clearly show the phase transition, we describe the
Gibbs free energy in Fig. 4(b) with P < P.. After a simple
calculation, we find that the SBH and LBH branches, in-
dicated by the red and blue solid curves, respectively,
have a positive heat capacity, and thus they are thermody-
namically stable. In contrast, the branches indicated by
dashed curves are unstable or metastable. Considering
that a system always prefers a state of low Gibbs free en-
ergy, the system will undergo a first-order phase trans-
ition from an SBH phase to an LBH phase with an in-
crease in temperature. The phase transition point is pre-
cisely located at the intersection of the swallow tail beha-

1.15

1.10

GIG,

1.05

0.7 0.8 0.9 1.0 11
TIT,

(a)
Fig. 4.

vior. Thus, it is easy to see that this phase transition is
similar to the liquid-gas phase transition of a VAW fluid.

The phase structures of charged EH-AdS black holes
are given in Fig. 5, from which we find that they share a
similar phase diagram with a VAW fluid. In the P-T dia-
gram, the first-order coexistence curve of the SBH and
LBH starts at 7 =0 and ends at the critical point, which
divides the plane into two regions corresponding to the
SBH and LBH phases. Considering that the equation of
state is not applicable in the shadow region, we use the
spinodal curve marked with the blue dashed curve to dis-
tinguish the metastable phase from the coexistence phase
of the black hole. The spinodal curve is determined by

(6\/P)T =0 or (8vT)p =0. (27)

Clearly, the spinodal curve meets the coexistence

curve at the critical point.

C. Reentrant phase transition case with 0 <a < %QZ

For this case, two critical points can be found. The
corresponding phase transition is the reentrant phase
transition, including a zero-order and first-order phase
transition at a certain region of the temperature or pres-
sure. Here, we study the reentrant phase transition of
charged EH-AdS black holes.

As expected, the first-order phase transition can be
determined by constructing two equal areas according to
Maxwell's equal area law. As shown in Fig. 3(a), the iso-
therm curves exhibit a nonmonotonic behavior on the P-v
plane. Therefore, we can construct two equal areas
between two stable black hole branches. However, as
pointed out in Ref. [60], the equal areas should be con-
structed on the P-V plane rather than the P-v plane. Al-
ternatively, Maxwell's equal area law also holds on the 7-

(b)
(color online) (a) Gibbs free energy for P=0.6 (pink solid line), P=0.8 (blue solid line), P=1.0 (orange solid line), and
P =1.2 (green solid line). (b) Small/large black hole phase transition. The small and large black holes are marked with red and blue sol-

id lines, respectively, and are stable; however, the black hole marked with a black dashed line is unstable. Although the red and blue

dot dashed lines indicate stable black holes, they are not the minimum value of the Gibbs free energy. Along the direction of the arrow,

the volume of the black hole increases. We set 9 =1.0 and a=-1.5.
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1.0 Critical point

Fig. 5.

1.0 Critical point
]
0.8 1
1
1
ool [t
o
SBH|; SBH+LBH *
0.4 I >
1
:
0.2 T ———
I e
1
1
0.0 1
0 2 4 6 8 10
viv,

(®)

(color online) Phase diagram for the VAW phase transition type case. (a) First-order coexistence curve (solid red) and spinod-

al curve (blue dashed line) are shown on the P-T plane. The coexistence curve separates the SBH and LBH phases and ends at a critic-
al point. (b) Phase structure on the P-v plane. The shadow region under the coexistence curve is the coexistence phase of the SBH and
LBH. The region between the coexistence curve and spinodal curves is metastable. Here, we take 0 =1.0 and a = -1.5.

S plane by giving the pressure in either ordinary or re-
duced parameter space.

§3~ o . L L
To(Sz—Sn:f TGS,  To=TG1=TG)

(28)

where T, denotes the reduced temperature of the phase
transition, and §; and S, are the reduced entropy of the
corresponding coexistence of the SBH and LBH. Taking
P=0.4 as an example, Maxwell's equal area law is ful-
filled on the T-§ plane in Fig. 6. The black curves de-
note the SBH and LBH branches. The red curves indicate
the two metastable branches, superheated SBH branch,
and supercooled LBH branch. The blue curve with a neg-
ative slope is an unstable branch and is substituted by a
horizontal line according to the equal area law. The area
under the isobaric curve from §; to S, must equal the
area enclosed by the rectangle under the isothermal hori-
zontal line to ensure that the areas of the two shadow re-
gions are equal. The two black dots represent the spinod-
al points, which separate the metastable branches from
the unstable branch. Then, the pressure and temperature
corresponding to the isothermal horizontal line are simply
those of the phase transition point.

We depict the Gibbs free energy for these two types
of phase transitions in Fig. 7. In Fig. 7(a), the SBH/LBH
phase transition is analyzed for the reduced pressure
P =0.4. As the temperature increases, the system jumps
directly from the SBH phase (red solid line) to the LBH
phase (blue solid line), and the volume of the black hole
directly undergoes a sudden change when the temperat-
ure is equal to the phase transition temperature. The heat
capacity of the black hole branches represented by the
black dashed lines is negative, indicating thermodynamic
instability. Note that although the black hole branches de-
noted by the dot dashed lines in the Fig. 7 have a positive

0.9
0.8
LBH
'2 0.7 /
0.6 'SBH i
1
1
i
0.5f i §1 J: S
0 2 4 6 8 10
SiISc
Fig. 6. (color online) Isobaric curve with P=0.4 and the

equal area law on the 7-§ plane, where the two shadow areas
above and below the horizontal line are equal. The black
curves represent the SBH and LBH branches. The two red
curves represent the superheated SBH branch and super-
cooled LBH branch. The blue curve represents an unstable
branch. We set 0 =1.0 and a = 1.0.

heat capacity, they do not have the lowest free energy for
a fixed temperature, and thus they are metastable black
hole branches. In addition to the SBH/LBH phase trans-
ition, another new zero-order phase transition emerges in
Fig. 7(b). When the zero-order phase transition occurs,
the black hole system jumps from the LBH phase to the
SBH phase. In addition to the volume of the black hole
undergoing sudden changes, the Gibbs free energy
changes drastically. In short, the black hole system first
undergoes a zero-order phase transition from the LBH
phase to the SBH phase and then returns to the LBH
phase via the SBH/LBH phase transition with increasing
temperature. A phase transition with this type of pattern
is known as a reentrant (large/small/large BH) phase
transition.
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(color online) (a) SBH/LBH phase transition with P =0.40. (b) Reentrant phase transition (large/small/large black hole phase

transition) with 2 =0.19. The SBH (red solid line) and LBH (blue solid line) are stable, whereas those represented by the black dashed
curves are unstable. It is worth noting that the red and blue dot dashed curves correspond to a positive heat capacity. However, they are
not the minimum value of the Gibbs free energy and thus are metastable. We set 0 =1.0 and a = 1.0.
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(color online) Phase diagrams of charged EH-AdS black holes. (a) First-order coexistence curve (solid red) and zero-order

phase transition line (solid green) are also shown on the P-T plane. The black line separates the no black hole region from the black
hole region. The first-order coexistence curve separates the SBH and LBH phases and ends at a critical point. (b) Phase structure in the

P-v plane. The shadow area under the coexistence curve is the coexistence phase of the SBH and LBH.

Phase diagrams of the reentrant phase transition are
shown in Fig. 8. Similar to the case of the VAW phase
transition type, the coexistence curve (red solid line) di-
vides the parameter space into two regions in Fig. 8(a).
Above and below the coexistence curve are the SBH and
LBH phases, respectively. The zero-order phase trans-
ition line marked with a green solid line connects the
first-order coexistence curve and minimum temperature
curve. The phase diagram is also shown on the P-¥ plane
in Fig. 8(b). The critical point divides the coexistence
curve into left and right parts, which correspond to the
coexistence SBH and LBH, respectively. The SBH and
LBH regions are located on the left and right, respect-
ively.

In Fig. 9(a) and (b), we plot the difference of the
volume AV =V;—V, among first-order phase transitions
as a function of temperature and pressure, respectively. It
is clear that below the critical point, AV has a finite
value, indicating a sudden change during the black hole
phase transition. However, when the critical point is

reached, AV vanishes, which means that one cannot dis-
tinguish between the SBH and LBH anymore. Consider-
ing the behavior of AV, it can be regarded as an order
parameter that characterizes the phase transition.

Near the critical point, the critical exponent of AV can
be calculated (see Ref. [56]). However, in the calculation,
the specific volume v is used in constructing the equal
area law, which, as we noted, is inappropriate. Here, we
make use of the thermodynamic volume V instead and
observe whether the result remains unchanged. Using the
relationship betwe3en thermodynamic volume and specif-

ic volume, V = %, we get V =77, Then, Eq. (25) can be
expressed as

- 1 20 8aQ*! 1 T
P= 20 80 1) T g
aPv2 \V4By, V838 2123 V1i3p,
Py, . :
where p. = . Let the first term in the previous equa-

c
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Fig. 9.
vs. P. The critical point is at 7, and P..

tion be the function (V) so that (29) can be written as

.o - T

The Taylor expansion in the vicinity of the critical
pointat V=1 and T = 1 is written as

B(T,V) L +h(1)+(V - 1)(h’(1)— ! )
Pe 3pc

2 h”(l))

+
90, 2

+(V—1)2(
o (L ey 14
+(V=-1) (6h (1) 8100
i _ 7 1)2
1V 1+2(v 1) )

31
Pe 3pc 9pc @b

+(T—1)(

From the definition of the critical point, Eq. (31) must
meet the following conditions:

PV, T) 1L +h() =1,
V=1.T=1 Pc
e 1
8y P(V,T =H(l)-— =0,
yP(V.T) . (1) 3
S o 4
8y o P(V,T) =— +K’(1)=0. (32)
’ v=1.7=1  9pc
Therefore, Eq. (31) can be simplified to
NS - 3(1 14
_ 1V (L1301 -
BT, V) =1+(V-1) (6h (1 SIpC)
_ 1 V-1 2(\7—1)2)
+HT-1)|—-—+22—1). 33
( )(pc 3pc 9c G33)

Taking w=V -1 and t=T -1, the previous expression
becomes

0.2 0.4 0.6 0.8 1.0
PIP,

(b)

(color online) Behavior of the change of the thermodynamic volume at the black hole phase transition. (a) AV vs. T. (b) AV

P(r,w)=1+ t(i - 3i) - Cw® +0(tw?, w™h, (34)

Pc IPc

14 1
where we define C = g1 —gh@)(l). From Maxwell's

S1pc
equal area law, we obtain

P, : f
f VszmecVC(aHl) +3Cw? |dw=0, (35)
P, wy 3p¢

where w; and w, are the volumes of the coexistence SBH
and LBH, respectively. For an isothermal process, the
pressure P is equal to Py, i.e., Py(t,w)= P/(t,w), which
reads

twy

tw
—+Cw = — +Cw’. 36
3pc i 3pc S ( )
Combining (35) and (36), we have
W) =—ws = = Vi 37
1= s = 5Cpc .

The critical exponent £ is related to the order para-
meter n = |t/’, namely, with the change in volume at the
phase transition for a given isotherm process,

-3
n=Vi=Vy=Ve(w-w,) =2V, Vo |f'/2. (38)
5Cpe

Therefore, the critical exponent f is

B= (39

N —

As a result, the choice of specific volume or thermo-
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dynamic volume does not change the value of the critical
exponent . However, when applying Maxwell's equal
area law, we should choose the thermodynamic volume
rather than the specific volume.

III. RUPPEINER GEOMETRY AND
MICROSTRUCTURE

In this section, we construct the Ruppeiner geometry
of charged EH-AdS black holes, and the microstructure is
tested using the curvature scalar.

A. Ruppeiner geometry

Here, we first give a brief introduction to Ruppeiner
geometry and then calculate the curvature scalar for
charged EH-AdS black holes.

Let us consider a thermodynamically isolated system
in equilibrium with total entropy S. The system is di-
vided into two subsystems, the small system under con-
sideration and its large environment. Their entropies are
denoted by S5 and Sg, with Sy < Sg~S. We suppose
that the total entropy of the system is described by two in-
dependent thermodynamic variables xy and x;. The total
entropy of the system can be written as

S (x0,x1) = S5 (x0,x1) + S £(x0,x1).
For a system in equilibrium, the entropy reaches its

maximum locally. We perform a Taylor expansion in the
neighborhood of this local maximum (x* = x{))

8S's dSE 1 0%Sg
S =So+—| A+ —| A +- AxEAXY,
O o | T B | E T 2 aran ST
1 0*Sg
Z A AL+,
2 OxHOx” | EAYET

(40)

where the zero-order term S is the local maximum of
entropy at x‘(;. The entropy of an isolated system in equi-
librium is conserved under virtual change. This shows
that the first derivative of the entropy vanishes, and thus
we get

1 &S5 1 0*Sg
AS=85-Sg=- A AXY + = AXAX + -+
0 2 OxHOx” | s2%s 2 OxHOx” | ESXE
1 &S5
~ = A,
2 O0xHOx” | s %s
(41)

It is worth noting that S g is a thermodynamic extens-
ive quantity and has the same order of magnitude as the
entropy of the entire system. Therefore, its derivative

with respect to the intensive quantity x* is significantly
smaller than the derivative of S, which can be ignored.
Therefore, the probability of finding the system in the in-
ternals (xg, xo +dxp) and (x;, x; +dxp) is

P(xo,xp) oceln = e 347, (42)

where kg is the Boltzmann constant. With (41), the line
element of Ruppeiner geometry that measures the dis-
tance between two neighboring fluctuation states can be
written as

1
AP = Py g A A, (43)
a*s
R _ _ B
B = T “4)

Because A’ can measure the distance between two
neighboring fluctuation states, the thermodynamic metric
gffv potentially contains some information about the mi-
crostructure of the system.

When we choose the thermodynamic coordinates x*
to be the temperature 7 and volume V, the Helmholtz free
energy is the thermodynamic potential. The correspond-
ing line element can be written as follows [31]:

AP = S pr2 - OB

V2, 45
T2 T (45)
where Cy =T(97S)y is the heat capacity at constant
volume. Using the convention in literature [32], we can
directly calculate the corresponding scalar curvature of
the line element.

ZW{T@VP)[(@TCV)(@VP— TdrvP)+(@vCy)?]

+Cv[@yP) + T(ByCy)(@P) ~ T(@r.y P?))

+2T@PXT@r.rvP) - @Cv)] )
(46)

It should be noted that the sign of scalar curvature
characterizes the type of interaction between two micro-
scopic molecules in a given system [61], i.e., R>0 and
R <0 represent a dominant repulsive interaction and at-
tractive interaction, respectively. For VAW fluids, the
study shows that it has a negative scalar curvature, indic-
ating a dominant attractive interaction between these un-
derlying molecules. In addition, when R =0, the interac-
tions of repulsion and attraction reach equilibrium [62].

For charged EH-AdS black holes, the heat capacity at
constant volume vanishes. Adopting the treatment in Ref.
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[38], the new normalized scalar curvature Ry is

Rx =RCy
_(OyPy —=T*(Oyr P +2T*(0yP)OyrrP)  (47)
- 2(9yP)? '

Using the equation of state (23), the normalized scal-
ar curvature of a charged EH-AdS black hole reads

_AA-2B)

=== 48
2(A-B)?’ “8)

N

where

A = 167%aQ* = 12622 VH 2 0% + 9V2,
B=9(6x*V)!3T.

We plot the scalar curvature Ry as a function of Vand
T in Fig. 10 for the SBH/LBH phase transition and
reentrant phase transition. It can be observed that the sur-
face of the normalized scalar curvature is concave where
the scalar curvature diverges. Moreover, compared with
the VAW type phase transition, a new divergence occurs
in the reentrant phase transition when the reduced volume
V is close to zero.

B. Van der Waals type phase transition with a <0

As shown above, there is an SBH/LBH phase trans-
ition of the VdW-type for this case.

To reveal the details, we take Q=1.0 and a=-1.5
and illustrate the normalized scalar curvature Ry as a
function of V for fixed reduce temperature 7= 0.4, 0.8,
1.0, and 1.2 in Fig. 11. For T < T,, there are two diver-
gent points of the normalized scalar curvature Ry. These
two points get closer as the temperature increases. At the

critical temperature, these two points merge. When
T > T,, the normalized scalar curvature Ry does not di-
verge while maintaining finite values. In most of the
parameter space, Ry is negative, whereas in a small re-
gion of V for T= 0.4, shown in the inset of Fig. 11(a), Ry
is positive. This phenomenon indicates that the dominant
repulsive interaction may exist in some parameter re-
gions.

From the analysis of the normalized scalar curvature
Ry, it is clear that the divergent point of Ry satisfies the
spinodal point condition (dy P); = 0, which gives

_ —16n%aQ* +12(6n° V41302 — 9V?
Tsp - 9(67T2V7)1/3 . (49)

After a simple calculation, the specific expression of
the sign changing curve corresponding to Ry = 0 reads

_ Tsp _ _—167r2aQ4+ 12(672VH13 Q% —9V? (50)
e T 18(672VT)1/3 ’

which indicates that the temperature of the sign changing
curve is half of the temperature of the spinodal curve [31,
38].

In Fig. 12(a), the sign changing curve (black dot
dashed line), spinodal curve (blue dashed line), and coex-
istence curve (red solid line) are displayed. The shadow
regions I and II have a positive scalar curvature, whereas
the other regions have a negative scalar curvature. Be-
cause the equation of state of the charged EH-AdS black
hole in region II is no longer valid, this region must be
excluded. However, in region I, the SBH with high tem-
perature still exhibits the dominant repulsive interaction.
This is similar to the situation of charged RN-AdS black
holes, but different from that of neutral black holes in
Gauss-Bonnet gravity [39, 63]. The negative parameter a

|
\

0.0 0.5 1.0 1.5 2.0

(a)
Fig. 10.

\
\
L
I
|
L
—
0

0.0 0.5 1.0 1.5 2.

(b)

(color online) Behavior of the normalized scalar curvature Ry as a function of ¥ and T for charged EH-AdS black holes. (a)

VdW phase transition type case with 0 = 1.0 and a = —1.5. (b) Reentrant phase transition case with 0 = 1.0 and a = 1.0.
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(color online) Behavior of the normalized scalar curvature Ry with the reduced volume V at a constant temperature. (a)

T7=04.(b) T=0.8.(c) T=1.0.(d) T=1.2. The inset shows the enlarged portion near the origin, and Ry has positive values, which is

depicted by shadow regions. We set 0 =1.0 and a=-1.5.
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(b)

(color online) (a) Sign changing curve of Ry (black dot dashed line), spinodal curve (blue dashed line), and coexistence

curve (red solid line) for the VAW type phase transition case. The shadow regions marked with I and II correspond to positive Ry, oth-
erwise Ry is negative. (b) Behavior of the normalized Ruppeiner curvature scalar Ry along the coexistence curve. The red solid and
blue dashed lines correspond to the SBH and LBH, respectively. The change in the nature of the SBH interaction is shown in the inset.

Weset 0=1.0and a=-15.

increases the effective black hole charge, which
strengthens the repulsive interaction between black hole
micromolecules of small size. However, a method of es-
tablishing a precise microscopic interpretation between
the effect of QED and Ruppeiner geometry remains to be
further explored.

We show the behavior of Ry along the coexistence

SBH and LBH in Fig. 12(b). It is clear that both tend to-
ward negative infinity at the critical temperature, indicat-
ing the existence of the critical exponent. Moreover, we
find that Ry of the coexistence SBH is always above that
of the LBH. At low temperature, the coexistence SBH has
a positive value, which is consistent with Fig. 12(a).
Because the critical exponent can provide us with
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some universal properties, we now calculate it for the
scalar curvature at the critical point. Here, it is natural to
assume that the normalized scalar curvature Ry near the
critical point has the following form [64]:

Ry ~-(1-1T)"°, (51)

or equivalently,
In|Ry| = —aIn(1 -T)+p. (52)

By calculating Ry near the critical point, we obtain the
following fitting results:

In|Ry| = —2.03651In(1 — T) —2.4466, for coexistence SBH,

(53)

for coexistence LBH.
(54)

In|Ry| = —1.96361In(1 = T) - 1.7135,

The numerical results (small red dots) and fitting res-
ults (blue solid lines) are shown in Fig. 13. The numeric-
al and fitting results are highly consistent with each other.
The slopes obtained by fitting the coexistence curves of
the SBH and LBH are asgy=2.0365 and a;py=1.9636,
respectively. Considering the error on the numerical cal-
culation, the critical exponent is @ = 2, which is the same
as that of a VAW fluid.

Moreover, using the intercept £ obtained from the fit-
ting results, we obtain a dimensionless constant

5 1
Ry(1=T)? = e(724466-1.7139)/2 = _() 124924 ~ -3 (55)

This has the same value for charged AdS black holes
and VAW fluids and is also consistent with the result ob-

20

In|Ry|
T

10

-12 -1 -10 -9 -8 -7 -6 -5
Log(1-T/Tc)
(a)
Fig. 13.

tained in Ref. [56] by expanding the equation of state
near the critical point at the first leading term.

C. Reentrant phase transition case with 0 <a < %QZ

We explore the underlying microstructure of the black
hole that results in a reentrant phase transition with O =1
and a = 1 using a similar method. The behavior of Ry
against the reduced thermodynamic volume V for a fixed
temperature is shown in Fig. 14. Compared with the VAW
phase transition, the scalar curvature of the reentrant
phase transition has an additional divergent point near the
origin. This is because when T < T,, there are three ex-
tremal points on each isothermal curve (see Fig. 3(b)). As
the temperature increases, the evolution behavior of oth-
er two divergent points is very similar to the case of the
VdW-like phase transition. Furthermore, when the tem-
perature is higher than its critical value, the additional di-
vergent point still exists. However, when the reduced
volume is close to the origin, positive scalar curvature is
observed as expected.

The first-order coexistence curve, zero-order phase
transition curve, spinodal curve, and sign changing curve
are depicted in Fig. 15(a). In the shadow regions I, II, and
111, the scalar curvature takes positive values. Compared
with the VdW-like phase transition, the number of shad-
ow regions is three instead of two. The leftmost part of
the coexistence curve of the SBH ends at the spinodal
curve and indicates a divergence. However, one should
note that the black hole does not exist in region I.

We also plot the normalized scalar curvature Ry
along the coexistence SBH and LBH curves as a function
of temperature in Fig. 15(b). Along the coexistence curve,
Ry negatively diverges at the critical point for both the
SBH and LBH. However, in contrast with the previous
VdW-like phase transition, the scalar curvature of the
SBH gains a new divergence when the reduced temperat-
ure is approximately 0.48. For the coexistence LBH, there
is no such phenomenon. The reason for this new diver-

20

Log(1-TITc)
(b)

(color online) Fitting curves of In|Ry| vs. In(1-T) near the critical point. The red dots are numerical data, and the blue solid

lines are obtained from the fitting formulas. (a) Coexistence SBH branch. (b) Coexistence LBH branch.
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Fig. 14. (color online) Behavior of the normalized scalar curvature Ry with the reduced volume ¥ at a constant temperature for the
reentrant phase transition case. (a) 7 =0.4. (b) T =0.8. (c) T =1.0. (d) T = 1.2. The inset shows the enlarged portion near the origin, and
Ry has positive values. We set 0 =1.0 and a = 1.0.
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Fig. 15. (color online) (a) Sign changing curve of Ry (black dot dashed line), spinodal curve (blue dashed line), first-order coexist-
ence curve (red solid line), and zero-order phase transition line (green solid line) for the reentrant phase transition case. The shadow re-
gions marked with I, I1, and III correspond to positive Ry, otherwise Ry is negative. (b) Behavior of the normalized scalar curvature
Ry along the coexistence curve. The red (solid) and blue (dashed) lines correspond to the SBH and LBH, respectively. The change in
the sign of Ry of the SBH is shown in the inset.

gence is that the leftmost part of the coexistence SBH In|Ry| = —2.0426In(1 — T)—2.5918, for coexistence SBH.

curve is located on the spinodal curve, but that of the (56)
LBH is not.

Near the critical point, the fitting results for the coex- In|Ry| = —=1.95361n(1 — T)— 1.5253, for coexistence LBH.
istence SBH and LBH are given by (57)
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The numerical and fitting results are shown in Fig. 16
and are highly consistent with each other. The fitting
coefficients of the LBH and SBH are a;pg =1.9536 and
aspu =2.0426, respectively. Considering the error on the
calculation, we obtain the critical exponent a = 2. The di-
mensionless constant is

_ 1
Ry(1 = T)? = e"2918-15253)/2 _ _() 127636 ~ 3 (58)

which is the same as that of the VdW-like phase trans-
ition.

IV. CONCLUSION

In this study, we investigate the phase transition and
Ruppeiner geometry in different ranges of the QED para-

meter in the extended phase space. For a<0 and
2

0<ac< , we observe the SBH/LBH phase transition

and reentrant phase transition, respectively, whereas for
320?

< a, there is no first-order phase transition. In these

different ranges, we explore the black hole microstruc-
ture, and different potential interactions are uncovered for
charged EH-AdS black holes.

First, we investigate the thermodynamic properties of
the black hole phase transition. Treating the cosmologic-
al constant and QED parameter as two new variables, we
find that the first law of black hole thermodynamics and
the Smarr formula hold. We also confirm that they are
consistent with each other in the extended phase space.
Furthermore, using the Hawking temperature, we obtain
the equation of state and hence the critical point. It is

320° 3207
shown that for a <0, 0<a< 7Q , and Q

<a, one,

two, and zero critical points can be observed. Based on
this, we study the phase transition in these parameter
ranges.

25

20

15

In|Ry|

10

-14  -12 =10 -8 -6 -4
Log(1-T/Tc)
(a)Small BH
Fig. 16.

For a negative QED parameter a, we observe a char-
acteristic swallow tail behavior of the Gibbs free energy
below the critical point, which indicates that there is a

typical first-order black hole phase transition. Phase dia-

- 3207
grams are also explicitly shown. When 0 <a <

, two

critical points are observed, which indicates a rich phase
transition beyond the SBH/LBH phase transition. For cer-
tain values of temperature or pressure, four black hole
branches are found, two of which are unstable, while the
other two are stable. From the behavior of the Gibbs free
energy, the two stable branches form a reentrant phase
transition. We then show the phase diagrams, which dif-
fer from those of the SBH/LBH phase transition of the
VAW type. ngen the QED parameter has a large value

such that 320

and thus no black hole phase transition exists.

Next, we study the microstructure using Ruppeiner
geometry. Taking (7, V) as two fluctuation coordinates in
thermodynamic phase space, we construct the Ruppeiner
geometry and calculate the corresponding normalized
scalar curvature of charged EH-AdS black holes. The
scalar curvature behaves differently for the SBH/LBH
phase transition and reentrant phase transition, which
may be due to their different phase structures. For the
SBH/LBH phase transition, the normalized scalar
curvature has at most two divergent points for each iso-
thermal curve, whereas for the reentrant phase transition,
an additional divergent point near a small volume is ob-
served.

Using the empirical observation of Ruppeiner geo-
metry, we find that, with a negative QED parameter, the
repulsive interaction dominates in the microstructure of
the SBH with high temperature, whereas the attractive in-
teraction dominates for other black holes. This result is
similar to that of a charged AdS black hole without the
QED parameter. For a charged EH-AdS black hole with a
small QED parameter, another region of positive scalar

< a, only one black hole branch is stable,

25

20

In|Rw|
a

10

Log(71-TITc)
(b)Large BH

(color online) Fitting curves of InRy vs. In(1-T) near the critical point for the reentrant phase transition. The red dots are nu-

merical data, and the blue solid lines are obtained from the fitting formulas. (a) Coexistence SBH branch. (b) Coexistence LBH branch.
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curvature emerges, which is below, but not surrounded
by, the coexistence curve of the first-order phase trans-
ition. As a result, in contrast with the SBH/LBH phase
transition, the equation of state is applicable for this case.
Therefore, low temperature black holes may be domin-
ated by the repulsive interaction.

Furthermore, the behavior of the scalar curvature
along the first-order coexistence curve of the SBH and
LBH is carefully analyzed. In the case of a = —1.5 and Q
= 1, the scalar curvature for both the coexistence SBH
and LBH decreases and tends to negative infinity at the
critical temperature. However, for a = 1 and Q = 1, the
reentrant phase transition is present. Except for the diver-
gent point near the critical point, the scalar curvature of
the coexistence SBH also diverges near 7=0.48, which is
mainly because the starting point of the coexistence SBH

curve is on the spinodal curve. This is also a novel fea-
ture of the reentrant phase transition.

In particular, through numerical calculation, we ob-
serve a critical exponent of 2 and a dimensionless con-
stant of —1/8 near the critical point for the scalar
curvature. These results are the same as those of other
black holes and VAW fluids, suggesting a solution of
mean-field theory.

Our study is a complete investigation of the phase
transition and microstructure of charged EH-AdS black
holes. The effects of the QED parameter on black hole
thermodynamics are examined in detail. Using the geo-
metric method, interactions inside the microstructure are
uncovered. These results help us understand the nature of
black holes with a QED correction from the viewpoint of
thermodynamics.
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