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Do we need to use regularization for the thermal part in the NJL model? *
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Abstract: The Nambu—Jona-Lasinio (NJL) model is one of the most useful tools for studying non-perturbative

strong interactions in matter. Because it is a nonrenormalizable model, the choice of regularization is a subtle issue.

In this paper, we discuss one of the general issues regarding regularization in the NJL model, which is whether we

need to use regularization for the thermal part by evaluating the quark chiral condensate and thermal properties in the

two-flavor NJL model. The calculations in this work include three regularization schemes that contain both gauge
covariant and invariant schemes. We found that, regardless of the regularization scheme we choose, it is necessary to
use regularization for the thermal part when calculating physical quantities related to the chiral condensate and to not
use regularization for the thermal part when calculating physical quantities related to the grand potential.
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I. INTRODUCTION

The understanding of QCD matter at finite temperat-
ure and chemical potential is one of the main topics in
theoretical physics. In recent decades, heavy-ion colli-
sion experiments, especially at the RHIC and LHC, have
created a ground experiment environment for studying
such matter. From the theoretical viewpoint, because the
strong interaction coupling constant a, is not small in
most regimes, the perturbative method failed. Therefore,
non-perturbative methods are needed to understand the
physics in the large a; regime. One of the most useful
tools is the Nambu-Jona-Lasinio (NJL) model [1, 2]. The
NJL model has a long history dating back to 1961 (for re-
views, see Refs. [3-5]); it incorporates chiral symmetry
and its spontaneous breaking, and the gluonic degrees of
freedom are replaced by a local four-point interaction of
color currents. The essential point of this model is that it
keeps the important symmetry in QCD, and it is trivial to
represent the symmetry breaking in QCD, which is very
useful for helping us understand the properties of QCD
matter.

Because of the point interaction used for quarks in the
NJL model, the model is nonrenormalizable. Therefore,
regularization should be used during the calculation. One
of the fundamental problems is that when the temperat-

ure is finite, the contribution from the thermal part is con-
vergent. It is an open question whether we need to use
regularization on this part similar to that on the divergent
vacuum part. Different choices not only change the nu-
merical values of the results but also change the physical
behaviors. A good example is given in Ref. [6], in which
using/not using the regularization for the thermal part was
discussed, and the dependence of the critical temperature
on the chiral chemical potential gave two opposite results.
On the one hand, the thermal part does not need a regu-
larization as it is convergent, and to determine the full
contribution from the thermal part, we should not use the
regularization on this part. On the other hand, regulariza-
tion should be applied to all parts of the equation to de-
termine the correct physical quantities under the same en-
ergy limit for consistency. Therefore, to answer the ques-
tion of the regularization of the thermal part, a systematic
study is needed.

In this paper, we calculate the quark chiral condens-
ate/quark constituent mass and grand potential related
thermodynamics by using the framework of the two-fla-
vor NJL model. We evaluate the physical quantities us-
ing three different regularization schemes and by introdu-
cing two different treatments for the thermal part for each
scheme. We will investigate the simple and fundamental
question: should we use regularization for the thermal
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part when we are using the NJL model to calculate the
physical quantities?

II. MODEL

The Lagrangian density of the two-flavor NJL model
is given by

L= iy, @ —mp +Gs |G)’ + @iyswy?]. (D)

Here, m is the current quark mass, 7 = (t',7%,7%) repres-
ents the isospin Pauli matrices, and Gs is the coupling
constant with respect to the (pseudo)scalar channels. By
using mean-field (Hartree) approximation the Lagrangi-
an density can be given by [3],
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where the dynamical quark mass o =-2Gs {(¢/) and
(g is the chiral condensate. Then, the constituent quark
mass is given by M = m+ 0. The general grand potential
can be written for the vacuum part and the thermal part as
follows:

Q= Quac + Qs (3)
where the vacuum and the thermal part are given by
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Here, the on shell energy of a quark is given by
E,(p.M)= +/p>*+M?. Ny and N, are the numbers of the
flavours and colors, which are 2 and 3, respectively, in
this work. The constituent mass/chiral condensate can be

. . oQ

solved by the corresponding gap equations o =0 and
*Q
902 > 0. It is easy to see that the integral for the vacuum
part in Eq. (3) is divergent and the integral for the thermal
part is convergent by integrating over the three momenta
from 0 to infinity.

In this study, we will use three different regulariza-

tion schemes, (1) the three-momentum hard cutoff, (2)

the three-momentum soft cutoff, and (3) the Pauli-Villas
regularization. It should be mentioned here that the first
two schemes are gauge covariant and the third one is
gauge invariant.

Then, the vacuum part of the grand potential using
regularizations can be written as
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The thermal part when using regularizations is given by
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where the upper indexes H, S, and PV represent the hard
cutoff, soft cutoff, and Pauli-Villas, respectively. The
overall grand potential with different regularizations and
that with/without applying the regularizations for the
thermal part can be written as

Q=08 +oll o' =08 +Qn 0°=05.+Qf,
Q5 =05 +Qpn, Q=00 +0l, QP =0QfY +Qq,
(12)
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where the primes represent a regularization-free thermal
part. The general parameters are given in Table 1. In ad-
dition, the soft cutoff weight function is chosen as

A2N
Salp) = W, (13)

here, we use N =5. For the Pauli-Villas regularization,
we set C,=(1,1,-2), a,=(0,2,1) and M? = M?+a,A?
for a = (0,1,2), respectively.

Also, we want to introduce the thermodynamic quant-
ities, which depend on the grand potential directly in this
work. The pressure is equal to the negative of the grand
potential, i.e., P=-Q. By introducing the normalized
grand potential, we will normalize the pressure at zero
temperature and chemical potential equal to zero. Then,
we have

P(u,T)=Q(0,0)-Qu,T), (14)

where Q(0,0) is the grand potential in vacuum. The en-
ergy density € is given by

oQ
- _T =2
v oT ly

_ QD)

= o7 +Q-0(0,0), (15)

and the corresponding specific heat is

O€
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The square of the velocity of sound at constant en-
tropy S is given by

0Q
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Table 1. Parameters of three different regularization
schemes [3, 7].

Regularization Scheme A/MeV m/MeV Gg
three-momentum hard cutoff 653 6 2.14/A2
three-momentum soft cutoff 626.76 6 2.02/A2

Pauli-Villas regularization 859 6 2.84/A2

III. NUMERICAL RESULT

For simplicity, in the numerical calculations, we only
consider the zero chemical potential case. It is obvious
that the results should be equivalent to those from the fi-
nite chemical potential case. By solving the gap equation,

we calculated the constituent mass of the quarks and sev-
eral thermodynamical properties at zero chemical poten-
tial by using different regularizations. The constituent
mass varies with the temperature with different regulariz-
ation schemes, as shown in Fig. 1. It is shown, by using
all three different regularization schemes, that the con-
stituent quark mass is smaller than the current quark mass
at high temperatures when regularizations are not used
for the temperature part. Therefore, the chiral condensate
is positive in this case, which is definitely an incorrect
physical result. When we use the regularizations for the
temperature part, the chiral condensate goes towards zero
when the temperature increases. This means that the chir-
al symmetry is restored at high temperatures, which is
physically correct. By definition, the constituent mass is
always larger than the current mass in the framework of
the NJL model, which has been mentioned in Ref. [5]. In
fact, this is not a model dependent result. In the chiral
limit, the chiral symmetry is an exact symmetry. The
chiral condensate is negative in vacuum and increases to
zero at some critical temperature. As the occurrence of
chiral condensation is due to the dynamical effect, simil-
ar features should follow for the nonzero current quark
mass, that is, the chiral condensate is always nonpositive
at high temperatures. Furthermore, the change in the chir-
al condensate from a negative value through zero to a
positive value would indicate that chiral symmetry is first
restored and then broken again only by increasing the
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Fig. 1. (color online) Constituent quark mass as a function
of temperature at zero chemical potential. For panels (a)-(c),
the three momentum hard cut off, three momentum soft cut
off and Pauli-Villas regularization are used, respectively. In
all panels, the red dashed lines indicate that we use the regu-
larization for the thermal part, the black solid lines indicate
that we do not use the regularization for the thermal part, and
the purple dotted lines indicate the current quark mass m=6
MeV.
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temperature. This certainly does not make sense.

In Figs. 2-4, we show the dimensionless quantities of
pressure, energy density, specific heat, and the square of
the sound velocity as a function of normalized temperat-
ure T/To for different regularization schemes (hard
cutoff, soft cutoff, and Pauli-Villas regularization, re-
spectively) at zero chemical potential in the NJL model.
Ty is the critical temperature at zero chemical potential;
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Fig. 2. (color online) Dimensionless thermal properties as a
function of the normalized temperature at zero chemical po-
tential using the three momentum hard cutoff. In all panels,
the red dashed lines indicate that we use the regularization for
the thermal part, the black solid lines indicate that we do not
use the regularization for the thermal part.

------- th regularization ===== with regularization

without regularization

without regularization 20

1 S
= S 15
10 LI T
- 10 N
e A 5 N
0.0 okt e
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T T,
(a) (b)
25 4 -
/
_____ with regularization =====with regularization ra
2 without regularization 3 without regularization //
T is o
S 2 L
10 L
5 . 1 e
o T Pzt
00 05 10 15 20 25 30 00 05 10 15 20 25 30
T T
(c) (d)

Fig. 3. (color online) Dimensionless thermal properties as a
function of normalized temperature at zero chemical potential
using the three momentum soft cutoff. In all panels, the red
dashed lines indicate that we use the regularization for the
thermal part, the black solid lines indicate that we do not use
the regularization for the thermal part.
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Fig. 4. (color online) Dimensionless thermal properties as a
function of normalized temperature at zero chemical potential
using the Pauli-Villas regularization. In all panels, the red
dashed lines indicate that we use the regularization for the
thermal part, the black solid lines indicate that we do not use
the regularization for the thermal part.

the values for using different regularization schemes are
given in Table 2. By applying all three different regular-
ization schemes, it is obvious that the behaviors when us-
ing and without using the regularizations for the thermal
part are quite different for these quantities. It is well
known that when the temperature increases, the thermal
quantities should approach the results of the free Fermi
gas. The most trivial quantity is the speed of sound, i.e.,
v? =1/3 at high temperature. When we are not using the
regularizations for the thermal part, it is evident that the
square of the speed of sound approaches this value at a
high temperature, which is incorrect when we are using
the regularizations for the thermal part because it is high-
er than the speed of light when the temperature is high.
We have the same issue for other thermal quantities, re-
gardless of the regularization we are using.

Table 2. Values of T, for different regularization schemes.
“With” (“Without”) stands for using (not using) the regulariz-
ation for the thermal part.

Regularization Scheme With/MeV Without/MeV
three momentum hard cutoff 195 178
three momentum soft cutoff 202 179

Pauli-Villas regularization 172 138

IV. CONCLUSION

In this paper, we discussed the fundamental question
of whether we need to apply the regularization for the
thermal part when we evaluate physical quantities in the
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NJL model by considering two sets of physical quantities:
the chiral condensate and thermodynamical quantities,
which are basically derived from the grand potential. By
selecting a wide range of temperatures and three popular
regularization methods (including both gauge covariant
and gauge invariant schemes) in the NJL model, we find
that to arrive at a physical result, we need to use (not use)
the regularization for the thermal part when we are evalu-
ating physical quantities related to the chiral condensate
(grand potential). A good example is the net baryon fluc-
tuation in QCD matter, which is very useful for studying
the QCD phase transition. From the theoretical viewpoint,
it purely depends on the orders of the derivative of the
grand potential, for which we should not use the regular-
ization for the thermal part, as can bee seen in one of the
author's previous papers [8, 9]. In contrast, for some
quantities, such as meson masses, which are directly re-
lated to the chiral condensate of quarks, we need to use
the regularizations for the thermal part, e.g., Refs. [10,
11]. We could also come back to the question left in Refs.

[6] which we mentioned in the introduction section. For
calculating the chiral condensate and related chiral phase
transition temperature, which are evaluated by the deriv-
ative of the chiral condensate, we need to use the regular-
ization for the thermal part. Then, the behavior of the crit-
ical temperature and chiral condensate are consistent with
the results from lattice QCD [12] and Dyson-Schwinger
Equations [13]. A similar discussion about this specific
problem is given in Ref. [14].

Another thing we want to mention here is that, al-
though the numerical result is based on the simplest two
flavor NJL model, it should be correct for all NJL based
models because of model consistency. Also, we have
covered the results for both gauge covariant and gauge in-
variant regularization schemes, and our conclusion should
be valid for all other regularization schemes. Therefore,
the results should help understand the physical qualities
of QCD matter, especially in the non-perturbation regime.
Also, this work should be very helpful for beginners, who
are working on NJL based model projects.
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