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Neutrons in the classically forbidden region in
neutron-rich nucleus “Ca*

Shiwen Zhu(RHF5E)

Ying Zhang(3K i)'

Department of Physics, School of Science, Tianjin University, Tianjin 300354, China

Abstract: Neutrons tunneling to the classically forbidden (CF) region in the neutron-rich nucleus ®3Ca are invest-
igated in the Skyrme Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) models. The definition of the CF re-
gion is examined in the HF model by using different single-particle potentials for the bound states. In the HFB mod-

el, the weakly bound and continuum states could also contribute to the neutrons in the CF region due to the pairing

correlation. Their asymptotic wave functions are carefully calculated by the Green’s function method.
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I. INTRODUCTION

Tunneling is a quantum mechanical phenomenon, in
which a wave function can penetrate a potential barrier
[1]. A classical particle will rebound from the barrier at
the position xy where E = V(xp), i.c., the total energy of
the particle E is equal to the potential V(x). The region
beyond xo where E < V(x) is then called the "classically
forbidden" (CF) region. However, a wave function can
penetrate to this CF region, depending on the height and
the width of the barrier. This effect plays an important
role in different fields, such as in alpha radioactivity, nuc-
lear fusion, quantum computing, and scanning tunneling
microscopy.

A nucleus is a complex quantum many-body system
that is self-bound by neutrons and protons. Quantum tun-
neling allows neutrons and protons to penetrate to the CF
region, which could contribute to the density distribution
in the exterior region. In particular, tunneling can be easi-
er for neutrons or protons that are weakly bound. In the
past few decades, due to an extensive exploration toward
the nuclear drip line, people found many exotic phenom-
ena in weakly bound neutron/proton-rich nuclei. The
neutron halo is one of these exotic phenomena, in which
the weakly bound valence neutrons can move far away
from the nuclear center, which leads to an abnormal in-
crease in the root-mean-square (rms) radius compared
with a stable nucleus [2]. There have been many investig-
ations on the mechanism of the halo phenomenon. Those
weakly bound states with a small angular momentum /
became the focus of these discussions, as its wave func-

tions are easier to extend far outside the low centrifugal
barrier [3, 4]. Moreover, the pairing correlation could
scatter neutrons above the Fermi energy into the con-
tinuum in a weakly bound nucleus. The wave functions of
continuum states also have a large contribution to the
density distribution in the exterior region [5, 6]. There-
fore, it is interesting to investigate how many weakly
bound and continuum neutrons could penetrate to the CF
region, and what the relation is between this number and
the halo phenomenon.

The first investigation on the relation between the
number of neutrons/protons in the CF region and the halo
phenomenon was performed by Im and Meng [7, 8], us-
ing the Skyrme Hartree-Fock (HF) theory. They found a
fast increase in the neutron number in the CF region in
neutron-rich Ca isotopes, which is quite similar to the in-
crease in neutron rms radius in a halo nucleus. Therefore,
they claimed that the number of particles in the CF re-
gion can give information on the appearance of a halo or
skin. In %8Ca, they counted more than 6 neutrons in the
CF region. Recently, Zhang et al. [9] examined this prob-
lem in neutron-rich Mg isotopes using the deformed re-
lativistic Hartree-Bogoliubov theory, which included
pairing and deformation effects that were neglected in the
work of Im and Meng [7, 8]. They found a notable in-
crease in the neutron number in the CF region for the pre-
dicted halo nuclei “*Mg and **Mg, due to contributions
from the continuum states by considering both the pairing
and deformation effects. However, this increase only due
to the pairing effect is much smaller in these two nuclei.

Comparing the abovementioned two works, it is inter-
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esting to find that they used different definitions of the
CF region. Namely, one could define the starting posi-
tion of the CF region rcg with &; = U(rcg), where &; is the
single-particle energy and U(r) is the corresponding
single-particle potential. In Im and Meng’s work, they in-
cluded the centrifugal barrier in U(r), while Zhang et al.
did not, as they investigated a deformed nuclei, in which
the angular momentum is no longer a good quantum
number. In this work, we will first take the neutron-rich
nucleus %Ca as an example to show the obvious differ-
ence in the neutron numbers in the CF region calculated
with these two definitions within the same Skyrme HF
model, especially for bound states. Furthermore, for the
weakly bound and continuum states, we will examine the
contributions to the neutron number in the CF region by
including the pairing effect in the Skyrme Hartree-Fock-
Bogoliubov (HFB) method. In particular, their wave
functions will be carefully calculated using the Green’s
function method. It has been demonstrated that the
Green’s function method can properly describe asymptot-
ic wave functions for weakly bound and continuum states
and thus provide a good description for the extended
density distribution of neutron-rich nuclei [10]. This
method can also nicely describe the resonant energy and
width in the continuum, especially taking into account the
contribution from the resonant width to the energy dens-
ity functional self-consistently [10-12]. Recently, the ca-
nonical states in the HFB model, corresponding to single-
particle states in the HF model but including the pairing
effects, were obtained via the diagonalization of the dens-
ity matrix constructed by the Green’s function method
[13, 14]. These canonical states can be used to investig-
ate the neutron numbers in the CF region in neutron-rich
nuclei.

II. FORMALISM

In the Skyrme HF model, the single-particle wave
function ¢;(ro”) satisfies the Schrodinger equation,
hei = €ip;, where the single-particle ~Hamiltonian
h=T+U,;+Us, includes the kinetic term 7 =

2
-V JT(FV’ the mean-field potential U, and the spin-
orbit term Uso = ,(r)-(-1)(Vx o). The explicit expres-
sions of the effective mass my(r), the mean-field poten-
tial U,(r), the spin-orbit form factor W,(r) for neutrons
(¢ =n) and protons (g = p) as a function of the densities
can easily be found in literature, such as in [7, 15].

With the assumption of a spherical symmetry for the
nucleus, the single-particle wave function for nucleons

. R;
can be written as ¢;(ro) = ﬂ Yijm(For), i = (nljm), where
R;(r) is the radial wave function, and Y;,(fo) are the

spinor spherical harmonics. As a result, the radial
Schrédinger equation can be obtained as follows:

_ B ER(r)  d B\ dRi(r)
2my  dr? dr dr

2 2
+{h l(l+1)+li(h )

* 2 *
2my r rdr\2my

"
2my

+U,(r) +

3(1
JG+D=I+1) - Z} ;Wq(r)}Ri(r)

=8,'R,'(r), (1)

where ¢; is the energy of the single-particle state. The
number of particles in the CF region for the single-
particle state i can be calculated as [7]

Ncp = f VZ(2j+ DR*(r)dr, ()

CF

where the occupation probability v? is determined by the
filling approximation in the HF model. As mentioned be-
fore, the starting point of the CF region rcp is defined as
the position at which the single-particle energy is equal to
its single-particle potential, i.e., & = U;(rcg). In Ref. [7],
the single-particle potential was determined from the
Schrodinger Eq. (1)

Ui(r) =

B oIl+1) 1 2
N ET LA
2my 12 rdr\2m;

)

+

311
j(j+1)—l(l+l)—‘—1};Wq(r).

However, one should note that the centrifugal term
n*I(l+1 1d(#

” @+1) and the surface term ——(-—
2my  r? o R rdr\2m .
come from the kinetic term 7. Here, the pure potential
energy should be

actually

311
Vi(r)=Uq + j(j+1)—l(l+1)—z};Wq(r), 4)

which only includes the mean-field and spin-orbit poten-
tials. In contrast, Ref. [9] worked in the deformed relativ-
istic Hartree-Bogoliubov theory, whereby they just used
the mean-field potential &; = U,(rcr) to define the bound-
ary of the CF region. In the following section, we will use
the neutron-rich nucleus ¥Ca as an example for calculat-
ing the number of neutrons in the CF region using the
Skyrme HF model with SkM* [16], and show the results
given by the different definitions of the boundary of the
CF region.

III. DISCUSSION

Figure 1 (a) shows the single-particle wave function
Ry,,.(r) for the state 1gg, in ®Ca. It has the energy
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(color online) (a) Single-particle wave function Ry, (r) (solid curve), (b) energy level &i,, (solid line) and the potentials for

the state 1go» in %8Ca calculated by the Skyrme HF model with SkM*. The dash-dotted and dashed curves in panel (b) denote the po-
tentials Uy, and Vj,, defined by Eq. (3) and Eq. (4), respectively. The corresponding vertical lines denote the boundary of the CF re-

gion r&. and rf. defined by the single-particle potentials U,,,
£1g,, = —2.33 MeV, which is the Fermi energy of this nuc-
leus with an occupation probability of v? =0.8. In Fig. 1
(b), we present the single-particle potential U,,, defined
by Eq. (3) and V,,, defined by Eq. (4). Obviously, one
can see that the potential U, diverges near the origin
and has a 6-MeV-high barrier at » ~ 7 fm due to the cent-
rifugal term for this state. The definition &1, = Uy, (r&s)
shows the boundary of the CF region at r&. = 5.7 fm. One
may notice that there is another point at r ~3 fm with
Elg,, = Ug,,. Therefore, the region 0<r<3 fm with
€1g,, < Uy,, is also "forbidden" by the huge centrifugal
term for a classical particle. However, according to Ref.
[7], only neutrons in the region r > 5.7 fm are counted as
being in the CF region, and the result is NJ; ~ 1.43.

In contrast, the potential V,,, does not have such an
obvious barrier. The main contribution comes from the
mean-field potential U,, while the spin-orbit potential
Us,o. is almost negligible. If we define the boundary of
the CF region by &1y, = V,, (1), one could get a further
starting point at r’.=6.9 fm. Using the same single-
particle wave function Ry, ,(r) as shown in Fig. 1(a), the
calculated neutron number in the CF region is Ny, ~ 0.32,
much smaller than NJ.~ 143 as defined by the full
single-particle potential Uy, , .

For other bound single-particle states in ®*Ca, the en-
ergy and the occupation probability, the neutron numbers
in the CF region N& and Ny, calculated by using differ-
ent boundaries rd; and r{;; defined by the single-particle
potentials U; and V; are listed in Table 1. It is easily ex-
plained that for the s, states, the two results NgF and
N are identical, as there is no centrifugal barrier. As the

and V,

20,2 » TESPeECtively.

angular momentum / increases, the difference between
the two results becomes more obvious. The growth of the
centrifugal barrier draws the boundary of the CF region
rée closer to the origin than ), and thus results in a lar-
ger neutron number NZ.. By summing all the contribu-
tions from NZ. of the occupied single-particle states, the
total number of neutrons in the CF region is N ~ 6.5,
which is consistent with the result shown in Ref. [7] but
almost twice that of N~ 3.6 determined by summing
N/ Therefore, the boundary of the CF region defined by
different single-particle potentials will lead to quite dif-
ferent neutron numbers in the CF region. It is worth men-
tioning that Ref. [9] used the mean-field potential U, to
define the boundary of the CF region, which is rather
close to the present single-particle potential
Vi=Uyy+Us,.. Indeed, when we consider a neutron-rich
or neutron halo nucleus, the centrifugal barrier is quite es-
sential in determining whether the neutron’s wave func-
tion can extend far outside or not. When counting the
number of neutrons in the CF region, one should better
clarify the definition of the CF region and whether the
centrifugal barrier is included or not.

In the following discussions, we will use the single-
particle potential V; to define the boundary of the CF re-
gion and explore the influence of the pairing correlation
on the neutron number in the CF region using the HFB
model with the same SkM* functional as for ®Ca. We
use the density-dependent delta interaction (DDDI) for
the pairing field,

1 a
AQr) = zVo[l—U(p ;’for)) ]ﬁqm, g=norp. (5
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Table 1.  Single-particle energies & (MeV) for neutrons in %8Ca, their occupation probabilities v?, and contribution to the number of
neutrons in the CF region as calculated by the HF model with SkM*, HFB model with SkM* and DDDI pairing force. In the HF calcu-
lation, the value Ngév) denotes the number of neutrons in the CF region defined by potential U(V);, respectively. In the HFB model, the

results N%* and NS are calculated by the canonical single-particle states obtained by the box-discretized and Green’s function meth-

ods, respectively. The last two lines N& and N&* are the total number of neutrons in the CF region and those contributed from the pos-

itive-energy canonical states.

HF HFB
state
&i v N Neg &i v Ney NG

Isiy2 —40.489 1 0.2307 0.2307 —40.334 0.9999 0.2267 0.2266
25172 -17.477 1 0.2076 0.2076 -17.370 0.9982 0.2035 0.2034
3512 —0.011 0 0 0 0.655 0.0686 0.1372 0.1384
1piy —28.961 1 0.2555 0.2024 —28.557 0.9996 0.1907 0.1907
2p12 —5.900 1 0.3450 0.3110 —5.750 0.9727 0.2928 0.2929
1p3p -31.134 1 0.4389 0.3429 —30.930 0.9997 0.3401 0.3401
2p3n —7.952 1 0.6106 0.5429 —7.823 0.9868 0.5438 0.5438
1d3)» -16.778 1 0.4848 0.2623 -16.382 0.9981 0.2490 0.2490
2d3)2 1.245 0 0 0 2.755 0.0283 0.1131 0.1138
1ds/» —21.437 1 0.6194 0.3704 —21.225 0.9988 0.3889 0.3888
2ds > —0.024 0 0 0 0.279 0.1266 0.7593 0.7614
1fs)2 —4.635 1 0.8749 0.3540 -4.376 0.9432 0.3324 0.3326
1f7/2 -11.778 1 0.9994 0.4934 —11.547 0.9938 0.4941 0.4941
1g72 3.373 0 0 0 6.575 0.0131 0.1052 0.1054
lgos2 —2.333 0.8 1.4271 0.3243 —2.075 0.6992 0.2255 0.2255
N 0 0 1.5826 1.6007
Ng’é 6.4939 3.6419 5.0699 5.0884

where p,(r) and p,(r) are the local particle and pair dens-
ities, respectively. The parameters V= -458.4 MeV
fm=3, 7=0.73, @ =0.61, and the energy cut-off 60 MeV
are adjusted according to the experimental gaps of the Ca
isotopes [17, 18].

First, one should notice that in the HFB model, the
"single-particle state" corresponding to the HF single-
particle state is actually the "canonical state", which is
obtained by diagonalizing the density matrix and in-
cludes the effect of the pairing correlation on the single-
particle state [19-21]. The eigenvalues of this diagonaliz-
ation are the occupation probabilities v of the canonical
states, and the eigenvectors lead to the canonical wave
functions. The energy &; is the expectation value of the
single-particle Hamiltonian / on the canonical wave
function. The density matrix can be constructed from the
quasiparticle wave functions obtained by either discretiz-
ation under the box boundary condition [20, 21] ("box-
discretized method" for short in the following), or expan-
ded on the Woods-Saxon basis [9, 22, 23]. The density
matrix can be also calculated directly from the contour in-
tegration of the Green’s function on the complex energy
plane [13, 14]. In this way, the asymptotic wave function

can be properly described for the continuum states, and
the bad asymptotic behavior under the box boundary con-
dition can be avoided.

Taking the canonical state 2ds,, as an example, its
wave function obtained by the box-discretized method
and the Green’s function method are shown in Fig. 2 (a).
One can see that the wave functions obtained by the two
methods are almost the same but different in the asymp-
totic region, as shown in the inset. The energy of this
state and its single-particle potential V, are shown in
Fig. 2 (b). The energy &4, = 0.28 MeV is rather close to
and above the continuum threshold. According to the ex-
planation in Ref. [9], although the energy is higher than
its single-particle potential V,, ,, this state cannot be occu-
pied by a classical particle; otherwise, this particle will be
scattered out from the potential. Therefore, all particles in
this state should contribute to the number of particles in
the CF region, i.e., the boundary of the CF region in Eq.
(2) starts from the origin rcg = 0. Using the different ca-
nonical wave functions obtained by the box-discretized
and Green’s function methods shown in panel (a), one
can determine the neutron numbers in the CF region as
NEX =0.7593 and NGE = 0.7614, respectively. Indeed, the
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(color online) (a) Canonical single-particle wave function, (b) energy level ey, (solid line) and the potential Vg, (dashed

curve) for the state 2ds;, in %3Ca calculated by the HFB model with SkM* and DDDI pairing force. The dash-dotted and solid curves
denote the canonical single-particle wave functions obtained by the box-discretized (box) and Green’s function (GF) methods, respect-

ively, in panel (a).

result given by the Green’s function method is slightly
larger as its wave function decays slowly in the asymptot-
ic region; however, actually, the difference between the
two results is negligibly small.

For other canonical states, the energies &; and the cor-
responding occupation probabilities 12 obtained by the
HFB model with the box-discretized method are listed in
Table 1. These results obtained by the Green’s function
method are almost the same and thus not listed here. Us-
ing the boundary of the CF region defined by the single-
particle potential V; but different canonical wave func-
tions obtained by the two methods, the calculated neut-
ron numbers in the CF region N2* and NGF are listed.

Compared with the single-particle energies &; given
by the HF model, all canonical energies given by the
HFB model are slightly raised up due to the pairing cor-
relation. As a result, using the almost unchanged single-
particle potential V; for the bound single-particle states,
the neutron numbers Ncg calculated by the HFB model
are a bit smaller than those by the HF model. More inter-
estingly, the states 35, and 2ds;, are rather weakly
bound and not-occupied states in the HF model, while
they have positive energies in the HFB model and can be
occupied due to the pairing correlation. Moreover, states
2d3;, and 1g7/» also have positive energies in both the HF
and HFB models. These positive-energy canonical states
can be occupied and contribute to the particle number in
the CF region only due to the pairing correlation. Their
total contributions are summed up as N&' ~ 1.6. As a res-
ult, the total neutron number in the CF region given by
the HFB model is N& ~ 5.1, which is approximately 40%
higher than the result of the HF model, N ~ 3.6, due to

the pairing correlation. Comparing the neutron numbers
NgX and NSF calculated by the box-discretized and
Green ’s function methods, there are some visible but
small differences for the canonical states with positive
energies. Therefore, the asymptotic wave functions given
by the box-discretized and Green’s function methods do
not result in any obvious differences in the neutron num-
ber in the CF region.

IV. SUMMARY

Neutrons in the neutron-rich nucleus ®*Ca tunneling
into the CF region were investigated using the Skyrme
HF and HFB models. First, the definition of the CF re-
gion was discussed by using different single-particle po-
tentials within the HF model for the bound states. It was
found that the centrifugal term will push the single-
particle potential up for states /> 0, and thus, the starting
point of the CF region was drawn closer to the origin.
This resulted in a much larger neutron number in the CF
region. Therefore, to count the number of neutrons in the
CF region, one should better clarify the definition of the
CF region insofar as to whether the centrifugal barrier is
included or not. Then, we discussed the effect of the pair-
ing correlation on the neutron number in the CF region by
comparing the results of the HF and HFB models. Some
unoccupied weakly bound and continuum HF single-
particle states were raised up to partially-occupied canon-
ical states with positive energies due to pairing. The neut-
rons in these states were also counted in the CF region.
Therefore, the pairing correlation can obviously result in
a larger neutron number in the CF region. Finally, we dis-
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cussed the influence of the different asymptotic wave
functions of these positive-energy canonical states given
by the box-discretized and Green’s function methods on
the neutron number in the CF region. However, this influ-
ence turned out to be not obvious. As our next step, we
will systematically investigate the neutron numbers in the
CF region of other isotopes using different Skyrme func-

tionals to further verify the abovementioned conclusions.

ACKNOWLEDGMENTS

The author Y. Z. would like to thank K. Y. Zhang, X.
Y. Qu, and J. N. Hu for helpful discussions during this
work.

References

[1] A. Messiah, Quantum mechanics Vol. 1 (Amsterdam:
North-Holland Pub. Co.) (1961)
[2] L Tanihata, H. Hamagaki, O. Hashimoto ef al., Phys. Rev.
Lett. 55, 2676 (1985)
[3] A.S. Jensen, K. Riisager, D. V. Fedorov et al., Rev. Mod.
Phys. 76, 215 (2004)
[4] B.Jonson, Phys. Rep. 389, 1 (2004)
[S] J. Meng, H. Toki, S. G. Zhou et al., Prog. Part. Nucl. Phys.
57,470 (2006)
[6] J.MengandS. G. Zhou, J. Phys. G 42, 93101 (2015)
[71 S.ImandJ. Meng, Commun. Theor. Phys. 34, 281 (2000)
[8] S.ImandJ. Meng, Phys. Rev. C 61, 047302 (2000)
[91 K.Y.Zhang, D. Y. Wang, and S. Q. Zhang, Phys. Rev. C
100, 34312 (2019)
[10] Y. Zhang, M. Matsuo, and J. Meng, Phys. Rev. C 83,
054301 (2011)
[11] Y. Zhang, M. Matsuo, and J. Meng, Phys. Rev. C 86,
054318 (2012)
[12] Y. Zhang and X. Y. Qu, Phys. Rev. C 102, 054312 (2020)

[13] X.Y.Quand Y. Zhang, Phys. Rev. C 99, 014314 (2019)

[14] X.Y.Quand Y. Zhang, Sci. China Physics, Mech. Astron.
62, 112012 (2019)

[15] M. Engel, D. M. Brink, K. Goeke et al., Nucl. Phys. A 249,
215 (1975)

[16] J. Bartel, P. Quentin, M. Brack ef al., Nucl. Phys. A 386, 79
(1982)

[17] M. Wang, G. Audi, F. G. Kondev et al., Chinese Phys. C
41, 030003 (2017)

[18] M. Bender, K. Rutz, P. G. Reinhard et al., Eur. Phys. J. A 8,
59 (2000)

[19] P. Ring and P. Schuck, The nuclear many-body problem,
Springer (2004)

[20] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A
422,103 (1984)

[21] J. Meng, Nucl. Phys. A 635, 3 (1998)

[22] S. G. Zhou, J. Meng, P. Ring et al., Phys. Rev. C 82,
011301(R) (2010)

[23] W. H. Long, P. Ring, N. Van Giai, ef al., Phys. Rev. C 81,
24308 (2010)

074104-6


https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/PhysRevLett.55.2676
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1103/RevModPhys.76.215
https://doi.org/10.1016/j.physrep.2003.07.004
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1088/0954-3899/42/9/093101
https://doi.org/10.1088/0253-6102/34/2/281
https://doi.org/10.1103/PhysRevC.61.047302
https://doi.org/10.1103/PhysRevC.100.034312
https://doi.org/10.1103/PhysRevC.83.054301
https://doi.org/10.1103/PhysRevC.86.054318
https://doi.org/10.1103/PhysRevC.102.054312
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308
https://doi.org/10.1103/PhysRevC.99.014314
https://doi.org/10.1007/s11433-019-9409-y
https://doi.org/10.1016/0375-9474(75)90184-0
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1016/0375-9474(84)90433-0
https://doi.org/10.1016/S0375-9474(98)00178-X
https://doi.org/10.1103/PhysRevC.82.011301
https://doi.org/10.1103/PhysRevC.81.024308

	I INTRODUCTION
	II FORMALISM
	III DISCUSSION 
	IV SUMMARY
	ACKNOWLEDGMENTS

