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Abstract: In this work, the existence of Borromean states is discussed for bosonic and fermionic cases in both the

relativistic and non-relativistic limits from the 3-momentum shell renormalization. With the linear bosonic model,

we check the existence of Efimov-like states in the bosonic system. In both limits a geometric series of singularities

is found in the 3-boson interaction vertex, while the energy ratio is reduced by around 70% in the relativistic limit

because of the anti-particle contribution. Motivated by the quark-diquark model in heavy baryon studies, we have

carefully examined the p-wave quark-diquark interaction and found an isolated Borromean pole at finite energy

scale. This may indicate a special baryonic state of light quarks in high energy quark matter. In other cases, trivial

results are obtained as expected. In the relativistic limit, for both bosonic and fermionic cases, potential Borromean

states are independent of the mass, which means the results would also be valid even in the zero-mass limit.
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I. INTRODUCTION

In classical physics, the three-body problem in gravit-
ation systems can be traced back to Galileo Galilei. Its
nonlinearity led to the research field of dynamical sys-
tems, founded by Henri Poincaré's works. Except for
some special and stable solutions [1, 2], a generic dynam-
ical system is usually too complicated to solve without
supercomputers. Ineluctably this situation passed on to its
descendants when married with quantum mechanics.
Nevertheless, there are also supposed to be some special
solutions in quantum systems, which are usually closely
related to low energy or long range properties of the sys-
tem [3]. The Efimov effect, which is found in the
quantum spectrum of a three-heavy-particle system, is
one of these special solutions. Intuitively, the three-body
states are also referred to as Borromean-ring states in
which any pairs of these three are bound infinitely
loosely. The geometric series of three-body bound states
(Efimov series) was first found in nuclear systems by
Efimov in the 1970s [4, 5]. Theoretically, the Efimov ef-
fect can easily be seen in the hyperspherical formalism
[6] where a scale-invariant —~2 potential emerges at long

distances, with » being the hyper radius. From the renor-
malization group (RG) point of view, it corresponds to a
limit cycle behavior of the RG flow [7]. The Efimov ef-
fect has been observed in hypernuclei [8], halo nuclei [9],
and helium-4 atoms [10, 11]. In the past two decades, it
has attracted renewed interest due to the fast develop-
ment of experimental techniques of ultracold atomic
physics, which offers an ideal platform for the study of
such an effect. Measurement of the loss rate of ultracold
Bose gases [12-14], which directly reflects the effect of
underlying Efimov trimers, is in good agreement with
theoretical predictions [7]. These few-body studies fur-
ther provide valuable input for the understanding of more
sophisticated quantum many-body problems.

Although the Efimov effect, or Borromean states in
general, is identified as a low-energy/long-range correla-
tion effect, the original non-relativistic (NR) model does
not apply to particles that do not have a proper non-re-
lativistic limit, such as the massless case. It is thus ap-
pealing to ask whether such exotic few-body states exist
in relativistic cases. Moreover, this question has much
realistic meaning in high energy nuclear physics, for the
following two reasons. First, in relativistic heavy ion col-

Received 24 December 2020; Accepted 29 January 2021; Published online 4 March 2021
* Supported by the National Natural Science Foundation of China (11875002, 11804376), Postdoctoral Innovative Talent Support Program of China (BX20190180).

Also supported by the Zhuobai Program of Beihang University
" B-mail: jiang_y(@buaa.edu.cn

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-

tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP’ and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-

lishing Ltd

041006-1



Ziyue Wang, Shao-Jian Jiang, Yin Jiang

Chin. Phys. C 45, 041006 (2021)

lisions, the extremely hot quark-gluon plasma (QGP)
generated contains a huge number of particles and anti-
particles. In such a many-body system, a remarkable
number of novel states, which are too rare to be detected
in p+ p collisions, may be generated. For example, the
population of the very rare heavy state =}, could be 4 or-
ders of magnitude larger than in p+ p collisions [15]. The
light particles, such as the 7 meson, which serves as the
Goldstone boson corresponding to chiral symmetry
breaking, and light quarks, which can be treated as chiral
fermions in QGP, may form different kinds of novel few-
body states, and hence be observed. Second, the long-
range two-body color confinement potential would be
screened because of the finite temperature effect in the
QGP [16, 17], which enhances the probability of Bor-
romean state formation, such as more ordinary baryonic
states of light quarks. We hope the study can provide
some clues to the nuclear hadronization mechanism and
the underlying quark confinement problem. Obviously
these processes can only be studied in relativistic models.
In this work we will focus on 3-body Borromean states
because they are more model-independent and more non-
trivial than bound states of a 2-body molecule and one
particle, which is essentially more like a 2-body problem.
Its existence mainly depends on the qualitative or even
asymptotic behaviors of the interaction.

There are a few works concerning the Efimov-like ef-
fect or Borromean states in relativistic bosonic systems
[18-21] by straightforward Mandelstam variable replace-
ment and the Bethe-Salpeter equation. On the other hand,
fermions, which are believed to be trivial because of the
Pauli exclusion principle, have attracted much less in-
terest in the relativistic limit. Nevertheless, the potential
novel states and quark confinement problem motivate us
to reconsider the relativistic 3-body problem, especially
the fermionic systems, more seriously. In order to study
2-body and 3-body interactions simultaneously, we will
start from particle —di-particle models with only the 2-
body fundamental interaction, whose scattering amp-
litude is supposed to be much larger than the 3-body one.
The di-particle state, in particular the diquark [22-26],
which can be viewed approximately as a 2-body bosonic
bound state, is not only a useful effective degree of free-
dom in the model but also has important and realistic ap-
plications in the modelling of hadronization and phase
diagram studies of baryon-rich matter. In the fermionic
case we will more focus on a momentum-dependent 3-
body interaction which is motivated by heavy baryon
studies [27] with a similar model.

For the relativistic and fermionic case the Bethe-Sal-
peter equation and Dirac equation approaches are either
too tedious in both analytical and numerical computation
[28] or have difficulties in constructing a self-consistent
relativistic spin-dependent 2-body potential [15, 29]. In
this report we adopt an intuitive and self-consistent ap-

—

proach, the Wilsonian renormalization group [30], to
study both the bosonic and fermionic systems in the re-
lativistic limit. We start with an effective theory with an
initial ultraviolet (UV) 3-momentum cutoff Ay, i.e. a the-
ory defined at length scales A;'. During the RG process,
the cutoff is lowered by integrating out “fast modes”
whose 3-momenta lie in a momentum shell between
A(< Ag) and Ay, yielding an effective theory at mo-
mentum scale A. In real space, this realizes a coarse-
graining procedure from length scale Aj' to A™'. To
identify possible three-body bound states, we focus on the
running particle-di-particle coupling, whose divergence
signals the emergence of a bound state at the correspond-
ing energy scale. We will firstly confirm the Efimov ef-
fect in the linear bosonic model, as in Refs. [31, 32], with
the simplest coupling in both NR and relativistic limits.
For the fermionic case, the fermion — di-fermion model
will be introduced. It will be shown that there is an indic-
ator of a single Borromean state in the relativistic limit,
while the system becomes trivial in the non-relativitic
limit, as expected.

II. BOSONIC SYSTEM

We adopt a boson-di—boson model to study the three-
body problem. It is much easier to deal with than a fermi-
onic model because there is no Dirac structure in the ver-
tices. The Lagrangian density reads

L=0"¢" 3,0 +m*¢* + 3N 9, A+ M*A?
+h(AT¢? + Ap™) + g7, (D

where A and ¢ are both bosonic fields. Obviously the A
field can be viewed as a two-¢ composite field because of
the field equation A = h¢? in the static limit. We will fo-
cus on poles of the 4-point vertex which represents poten-
tial bound states in the 3¢ — 3¢ scattering process. In or-
der to obtain the flow equation of g we follow the proced-
ure in Refs. [33, 34] by computing the perturbative cor-
rections to the 2, 3 and 4-point vertices with the 3-mo-
mentum shell renormalization, rather than the usual 4-
momentum integration used in high energy physics. In
this work we will treat field masses as free parameters
and tune them to achieve two energy-scale limits and thus
neglect the tadpole diagrams. Because of charge conser-
vation there is no one-loop correction to the 3-point ver-
tex. Hence the flow equation of /4 is given by the wave

PN
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L

(@) (b)
1-loop corrections to propagators of A (a) and ¢ (b).

Fig. 1.
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function renormalization of A and ¢ fields in Fig. 1 at
leading order, i.e. 6Sh=h852¢+§h6sZA. The arrows of

the propagators represent the charge direction. In non-re-
lativistic models there is no diagram (b) because of the
absence of anti-particles. Here we will see that in the NR
limit the contribution of diagram (b) is suppressed by
mass.

The flow equations of wave function renormalization,
Zy and Z,, and vertices in the NR limit, i.e. A <m and
Er ~m+k*/(2m), are calculated as follows:

2 B2 2 B2
02 =, 0 Zy= s
SEAT T30 mA S0 T T3 A2 @)
B 1 R 1 @A 5
EZ R mA 3 mA 127 m

where A = Age™ is the running 3-momentum cutoff. We
consider 1-loop corrections to the 4-point vertex coup-
ling g as presented in Fig. 2. In the NR case, diagram (¢)
is negligible at leading order. In the computation, the
mass of the two-body field A is chosen as M =2m. This
is justified by the fact that 4> = 16x°>mA approaches zero
in the infrared limit A — O(large s), which means that in
this limit the two-body state is quite loosely bound. Mak-
ing use of the result of / in this limit, the flow equation of
coupling g gives the following solution,

2
g= 4’1’" [— @Tan(?s+co)+5 , %)

whose poles correspond to the spectra of potential 3-body
states. Obviously the ratio between binding energies of
two neighboring 3-body Borromean states is given by
e?, with the step of singularities &s~0.487 for this
simple model. Besides the expected Efimov-like behavi-
or, we find that the dimensionless 4-vertex coupling g be-
haves as a dimensionful quantity scaling with A~! as the
unit of mass. The same results can be obtained in an ex-
plicit NR model by replacing the propagators with
(ko —k2/(2m) +in)~".

In the relativistic limit, the diagrammatic representa-

(d) (e)
1-loop contributions to the renormalization of g.

Fig. 2.

tions of 1-loop corrections are the same as those in Fig. 1
and Fig. 2. The difference is that in the limit A > m, dia-
gram (b) in Fig. 1 and diagram (e) in Fig. 2, due to anti-
particles, will be at the same order as the others, and
hence contribute equally to the corrections of vertices.
Taking this anti-particle contribution and the relativistic
dispersion relation Ej ~ k+m?/(2k) into account, the flow
equations are:

4 p? 2 K2
0.7 . 8z Sy 5
ST T3 A2 SEAT TR A2 )
2 4 2
asgziﬂ_ih__g_' ©6)
16712 A2 472 A4 472

Again we take M =2m in the computation because

32 L. . .
h? = = 72A? tends to vanish in the IR limit. Since there is

no mass dependence in these equations, their solution
would not be changed even in the zero mass limit. As ex-
pected, the wave function renormalization Z, is at the
same order as Z,. This antiparticle contribution also ap-
pears in the g* term of Eq. (6). In the infrared limit,
namely small A and large s, solutions read

+ 35—67r2. (7)

g:

4+~239 , V239
——5 m-Tan 5 s+co

Although the A dependence of / and g has changed be-
cause of the relativistic dispersion relation, the structure
of solution is qualitatively the same. We get the Efimov-
like series of poles with the energy step reduced to
os = 0.323m.

III. FERMIONIC SYSTEM

As a reducible 4-dimensional representation, the Dir-
ac spinor can be studied more straightforwardly and self-
consistently in relativistic quantum field theory. Al-
though it is well-known that the simplest 3-body Bor-
romean states do not exist in the NR fermionic system be-
cause of the Pauli exclusion principle, we will still exam-
ine its Dirac structure, i.e. spin-spin interaction, in detail
to find whether there is any non-trivial, such as Bor-
romean, 3-body state. Similar to the bosonic case, we in-
troduce a fermion—di-fermion model to study this prob-
lem,

L=9GF—myy+ A 0,A+ M*A*
—ih(ATP Y U+ AGY )
+ g1 (AP + AP
+ g (N Pidy + AP i), (8)
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where . = Cy" =iy?>y*y". This model is motivated by
the so-call quark-diquark model for studies of quark mat-
ter in high energy nuclear physics. Here we choose the
one-flavor and one-color quark field for simplicity, since
the static isospin and color charge will not change the
momentum dependence of the coupling constants which
play crucial roles in the structure of the 4-point vertex
flow equation. Effectively, ¢ +y,. — A will generate two
kinds of 4-point interaction, the s-wave g;A%Jay and the
p-wave gA%Wi Py, because of the Dirac structure. This
can easily be checked by straightforward perturbative
computation. Although in principle the s-wave part is
supposed to vanish in the one-flavor and one-color scen-
ario because of the Pauli exclusion principle, we still
keep it for the following two reasons. First, the Pauli ex-
clusion principle could be detoured by introducing more
static color or flavor numbers which will bring no
changes to the momentum dependence of the coupling
constants, up to some symmetric factors. Second, the di-
fermion is treated as a fundamental field in this model. As
a result this will not technically forbid the s-wave 3-body
interaction. It therefore gives us a chance to study its flow
equation qualitatively in this simple model. For simpli-
city we will neglect mixing processes, i.e. g;g» terms, and
calculate corrections to the flow of the two 4-point ver-
tices separately.

The contributing diagrams are the same as those in
Figs. 1 and 2 if we replace the solid propagators with fer-
mionic ones. In the NR case for the s-wave coupling we
get the flow equations as:

mh? A3
S T ©
Smh? 2t GA
by =~ - L D] (10)

C12m2A 12722A3 1272

Similar to the bosonic case, the Z, term, due to the anti-
fermion, is suppressed by the mass as m™3. By safely neg-
lecting the anti-fermion contribution and taking the small
A and large m limit, we obtain solutions as

g1 = 2‘//2\_1”2 {Tanh( ‘/2_” +co]— \%} (11)

where M has been set as 2m, since the two-body coup-

. A . .
ling h? =4n>— approaches zero in the small A limit.
m

When the system contains only s-wave coupling, there is
no singularity along s for the hyperbolic tangent function,
which means no 3-body state appears. This is a well-
known result in the NR fermionic system. As a byproduct
we also find that the 3-point vertex / is suppressed by m
as well, which agrees with the vanishing of the Ay term

in the NR model because of the fermionic anti-exchange
property. In contrast the bosonic result is enhanced by the
mass.

Although the p-wave vertex has a different mo-
mentum dependence, it does not give us any surprises
either. The flow equation of g, reads

_7mh2g2_ mh* _mg%A
1272A  12722A3  3g2

0582 = (12)

Only the g>4? and g3 terms are modified. We get a simil-
ar hyperbolic tangent solution,

82=—i[\/ﬁTanh(ES+Co)—5}- (13)
mA 3

In the relativistic case, i.e. m < A, the s-wave case is
trivial. The g7 and h* terms are proportional to m, there-
fore the flow of g; should be governed by the g A4” term
and results in a trivial solution g; ~ s~!. In the following
we focus on the p-wave interaction, whose flow equa-
tions are:

h2 2
07N = - Oy = -, 14
Za=-gm 0Zy=—7 (14)
Th? 5ht 3g3A?
Bygr = — 52 2 (15)

- + .
812 32m2A2  2x?

There are no mass dependences, so the solution will not
be altered even in the chiral limit m = 0. In the small A
limit we find that the two-body coupling goes to zero as
h? = 472 /(3s). Furthermore, g, should satisfy

52 7 3
0,G=-26-——-—G+-—G>, 16
s 1852 65 212 (16)

where G = A%g,. The solution goes to —e~2* at large s and
converges to 7%(V61+1)s'/18 at small s. As a typical
Riccati equation, it is usually linearized with an auxiliary

. 2% 8, .
function u(s) as G(s)z—%a‘u. The corresponding
solution is

u(s) = c1e 5 coUP (25) + 17, (29)], (17)

where o =13+ V61)/12, B= V61/6+1, U is the
Tricomi confluent hypergeometric function, and 12 is the
generalized Laguerre polynomial. Obviously the zeros of
u(s) will generate singularities of G(s). When the integ-
ral constant ¢y > 0, there is an isolated zero of u(s) which
generates a 1st order pole of G(s) at finite s, and the cor-
responding pole increases with c,. When ¢ <0, the pole
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Fig. 3. (color online) The flow of G with integral constants

co=-3,-1,1,3.

approaches zero smoothly. The flow of G with different
co 1s presented in Fig. 3.

In the UV range (small s) all of the lines converge to
the same value 7°3/(3s), while in the IR range (large s),
different ¢y correspond to different values at the low en-
ergy-scale. However, it is not easy to tune the coupling in
the deep IR range to get the 3-body Borromean state,
since the value differences are quite small in this range.

IV. SUMMARY AND DISCUSSION

We have checked the existence of Efimov-like states
in bosonic systems with the linear bosonic model. In the
NR limit we confirmed, firstly, that the contribution from
antiparticles is negligible, as expected. Secondly, a series
of Efimov-like singularities is found in the flow of the 4-
point vertex. Although more detailed computations are
needed to reduce the deviation from the standard value of
és ~ mr, qualitatively the NR approximation is promising.
In the relativistic limit we find that the Efimov-like ef-

fect still exists but with a smaller energy ratio. Further-
more, the mass dependence disappears in the flow equa-
tions, which means the conclusion would hold even in the
massless limit. For the fermionic case the fermion—di-fer-
mion model, motivated by the quark-diquark model in the
quark matter phase diagram and heavy baryon studies, is
adopted. Because of the Dirac structure of fermions there
are two kinds of 4-point vertices that should be taken in-
to account, the s-wave and p-wave vertices. In the NR
limit both vertices are trivial. The 3-vertex is suppressed
by A/m and thus vanishes in the large mass limit. This
agrees with straightforward computations of NR models.

In the relativistic limit the result is more non-trivial.
Depending on the IR value of the p-wave 4-vertex coup-
ling, there may be one isolated pole at finite s. In quark
matter the quark-diquark coupling originates from the
fundamental strong interaction between color charge, so
this singularity may indicate a special baryonic state of
quarks. As in the bosonic case, this singularity has no
mass dependence, which means it would persist even for
chiral fermions. For both bosonic and fermionic systems,
all of the singularities appear in the IR range where the 3-
vertex approaches zero. They can therefore be identified
as Borromean states. Although it is an exciting clue that
there may be a single Borromean state in the chiral fermi-
on case, we should admit that detection is actually diffi-
cult by considering the full interaction of different kinds
of charges, such as color and isospin. The gauge fields
may easily destroy the bound state due to the large amp-
litudes of processes involving soft gauge bosons. In or-
der to determine the existence of the state, more work is
required, such as fitting the IR value of the model and es-
timating the scattering amplitude of different processes
from a more realistic model. We also believe that a more
definite answer could be obtained by solving the 3-body
Dirac equation with a suitable spin-dependent 2-body po-
tential, such as that in Ref. [15].
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