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Abstract: We explore the theoretical possibility that dark energy density is derived from massless scalar bosons in

vacuum and present a physical model for dark energy. By assuming massless scalar bosons fall into the horizon

boundary of the cosmos with the expansion of the universe, we can deduce the uncertainty in the relative position of

scalar bosons based on the quantum fluctuation of space-time and the assumption that scalar bosons satisfy P-sym-

metry under the parity transformation Pp(r) = —¢(r), which can be used to estimate scalar bosons and dark energy

density. Furthermore, we attempt to explain the origin of negative pressure from the increasing entropy density of

the Boltzmann system and derive the equation for the state parameter, which is consistent with the specific equa-

tions of state for dark energy. Finally, we employ the SNIa Pantheon sample and Planck 2018 CMB angular power

spectra to constrain the models and provide statistical results for the cosmology parameters.
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I. INTRODUCTION

Since 1998, when Riess et al. used SNIla data to stat-
istically indicate that the expansion of universe is acceler-
ating [1], physicists have been providing various theories
to explain this acceleration, including the f(R) theory [2],
Brans-Dicke theory [3], and dark energy theory [4]. At
present, the dark energy theory can be used to effectively
explain the cosmic microwave background (CMB) aniso-
tropies [5]; however, this study mainly focuses on the
physical nature of dark energy. Dark energy can be stud-
ied using two main approaches. The first is to focus on
the properties of dark energy, investigating whether or
not its density evolves with time; this can be verified by
reconstructing the equation of state w(z) for dark energy,
which is independent of physical models. The reconstruc-
tion of the equation of state involves parametric and non-
parametric methods [6], the latter including the Principal
Component Analysis [7, 8], Gaussian Processes [9-11],
PCA with the smoothness prior method [12-14], and PCA
based on the Ridge Regression Approach [15]. The
second involves dark energy physical models that are
presented from the physical origin of its density and pres-
sure, including scalar field models [16], preudo-Nambu-

Goldstone bosons for cosmology [17], holographic dark
energy [18], and age dark energy [19].

Currently, it may be difficult to judge which model,
method, or result is more persuasive; however, a model of
dark energy that concerns its physical nature is essential.
From the point of view of the models, Maziashvili
presented a method that uses the Krolyhazy relation and
time-energy uncertainty relation to estimate the density of
dark energy [19, 20], and the result is consistent with as-
tronomical data if the unique numerical parameter in the
dark energy model is taken to be on the order of one.

Based on this, to further explore the origin of dark en-
ergy density and pressure, we present the possibility that
dark energy density is derived from massless scalar bo-
sons in a vacuum. If the scalar boson field is the radi-
ation field that satisfies the Bose-Einstein distribution,
positive pressure would be generated; hence, we first ex-
clude this possibility based on the negative pressure of
dark energy. Therefore, we can deduce the uncertainty in
the position of scalar bosons based on the quantum fluc-
tuation of space-time and the assumption that scalar bo-
sons satisfy P-symmetry under a parity transformation,
which can be used to estimate the scalar bosons and dark
energy density.
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II. THE QUANTUM FLUCTUATION OF SPACE-
TIME AND P-SYMMETRY

The quantum fluctuation of space-time relates to the
quantum properties of objects. Using the Heisenberg pos-
ition-momentum uncertainty relations, Wigner derived a
quantum limit on the measurability of a certain length
[21]. If ¢ is the time required by the measurement proced-
ure, the uncertainty in the length measurement is

t~ L f— 1
1~ 35 M

where M, is the mass of the clock. We assume Ai=c=1
throughout this study.

As a result of the above relation, when M, — oo,
6t — 0. To solve this situation, the quantum fluctuations
of space-time itself is presented [22-25]. It also results in
uncertainty in distance measurements. Thus, at very short
distance scales, space-time is foamy, and the limitation of
space-time distance measurements can be given by

5,~{ (tpt):  r>t, @
tp r<t,
where 1, is the Planck time and ¢, = VAG. This limita-
tion of space-time measurements can be interpreted as the
result of quantum fluctuations of space-time. Meanwhile,
Eq. (2) can be derived for massless particles in the frame-
work of x-deformed Poincare symmetries [26, 27].
Krolyhazy derived another method for describing the
quantum fluctuations of space-time, known as the Kroly-
hazy relation

5t~ 1,731, (3)

We consider that this quantum fluctuation effect is
also applicable to the expanding universe. If the scalar
boson field is the radiation field that obeys the Bose-Ein-
stein distribution, positive pressure would be generated.
Hence, we first exclude this possibility based on the neg-
ative pressure of dark energy. By assuming massless scal-
ar bosons fall into the horizon boundary of the cosmos
with the expansion of the universe, scalar bosons satisfy
P-symmetry under the parity transformation, which can
be expressed as

Po(r) = —¢(r), “

where ¥, is the wave function of the scalar bosons. If r,¢
are the horizon size and age of the universe, from the P-
symmetry and quantum fluctuation equations of space-
time (2) or (3), the former can correlate the uncertainty in

the relative position of two scalar bosons with the hori-
zon size or age of the universe; hence, the uncertainty in
the positions of scalar bosons is

6tscalar ~ 0t. (5)

We hypothesise that the mean distance between scal-
ar bosons is no less than the uncertainty relation &g caar,
and as a result, we obtain the number density of massless
scalar bosons

N =613, (6)

If the quantum fluctuation of space-time provides
scalar bosons with nonzero energy, we can consider the
wave function ¥, for the massless scalar bosons is non-
stationary state. Its wavelength can be determined by the
uncertainty relation 6¢; hence, Wy can be written as the
superposition of at least » stationary states ¢, ¢z, ..., ¢,

Yo = Z akpre ™, (7)
%

where wy = 27k/6t. It is easy to see that the state compon-
ents ¢,e”’ are orthogonal in space and time, respect-
ively.

Alternatively, the wavelength of scalar bosons can be
determined by the age of the universe ¢, hence, the wave
function of scalar bosons ¥, can be written as

n
W= e, ®)
k

where wy = 2nk/t. The wave function ¥, will be further
discussed using the Higgs potential or Yukawa interac-
tion.

By assuming scalar bosons or Goldstone bosons exist
in a vacuum, Higgs proposed the existence of the Higgs
scalar boson field, which can be described by the field
equation [28]

V, VAD+V' (QD")D = 0, 9)
and when
V' (Dy®y") =0, (10)

the massless-zero spin scalar boson field equation be-
comes

od = 0. (11)
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We consider this massless scalar field to contain zero-
spin and zero-charge bosons and the scalar boson
couples, or it undergoes Yukawa interaction with itself,
which can be quantified in the simple potential energy
form —f2®yd,*, resulting in its massless state. If the
Higgs singlet potential @, is substituted with the Yukawa
potential U, the massless scalar bosons can interact with
each other through propagator bosons provided they have
weak isospins, which can be described by the Yukawa
potential. Using Eq. (7) or (8), we incorporate a separa-
tion of the variable U

U=U'(r)e (12)
and the Yukawa potential U’(r) satisfies
{A=mo* ~wiH U’ = -4ngerq, (13)

where wy = wi —wy, mg is the mass of the Higgs or scalar
boson, and g is the coupling constant. Solving the above
equation yields

e HIr=rl
U'(r) =gfm90k(”/)¢l(”')d”', (14)

where H= \H’)’l()2 - Wklz.

III. THE DENSITY AND NEGATIVE PRESSURE
FOR A BOLTZMANN SYSTEM

When all scalar bosons are in the ground state &, that
is

g=06t" or !, (15)

we can use Eq. (2) or (3), (6), and (15) to obtain the
internal energy per unit volume for massless scalar bo-
sons

u=goN ~ (t,0) 2. (16)

Next, we use the increase in entropy to derive the exist-
ence of negative pressure.

We consider the Boltzmann system to be composed
of massless scalar bosons in vacuum; the bosons have a
quantum state number W, for an energy level at the
ground state &y, where W, is considered the momentum

W,
degree of freedom. The momentum is py= Z piz.
i=1

When W, =3, po= /p>+p?+p?, and it is clear that the

microstate numbers of the Boltzmann system are 3V;
hence, the system has statistical entropy per unit volume

s=kgln3", (17)

where kp is the Boltzmann constant.

Using the thermodynamic entropy definition 7dS =
dU + pdV, where T is temperature, and the equations
dS = sdV and dU = udV with Egs. (2), (6), (16), and (17),
we get

T =(nT,) kg™ (t,r)"2. (18)

Because u(t,,t)2 is constant, 7T is also constant.

We assume the degeneracy of energy W, is increas-
ing gradually with the expanding universe, which can be
expressed as

W,:1-52-53, (19)

Hence, with the rise in W,, the entropy density will
increase, which can generate negative pressure. From
Egs. (16), (17), and (19), we easily discover that the neg-
ative pressure p, = w,u satisfies

TInW,N = (1+w,)u, (20)

and solving above equation yields

InWw,

w,=—-1+ .
InT,

2

This is the equation of state for a scalar field in vacuum,
and it contains an interesting feature. We set 7, = 3, and
when W, — 1, one has w, —» -1; if W, -2, w, - -1/3.
As a result, the vacuum energy moves from the ordered to
disordered state with time and cannot violate the prin-
ciple of entropy increase. In other words, negative pres-
sure can be derived from the increasing entropy, which
prevents the universe from maintaining expansion in the
future.

IV. DARK ENERGY DENSITY AND PRESSURE

A. The dark energy density and the evolution
of ground state energy

We assume that dark energy is composed of massless
scalar bosons in vacuum, using Eq. (16), and obtain the
dark energy density pge = (t,£)"2. We introduce a numer-
ical constant to ensure the equals sign satisfies Eq. (2) or
(3), and choose the conformal time # as the time scale ¢
[29, 30]. Hence, the energy density can be written as

247 2
:3n M,
7

Pde (22)
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where M, =8xG, n? is the introduced numerical con-
stant, and # is the conformal time, which is given by

ar

oa’

n= (23)

where a is the scale factor of our universe. We take the
present scale factor ap =1, and ¢ is the age of the uni-
verse.

Suppose the universe is spatially flat and the fraction
of dark matter energy density is defined as
Qi = pm/3M,*H? and Qe = pae/3M,*H?, Q= 1-Qy, is
obtained from the Friedmann equation. Using Eq. (22),
Q4. can be written as

2

Qqe (24)

- H2n2 >

where H =a/a is the Hubble parameter. Using the en-
ergy conservation equation pg.+3H(0ge + pae) =0 with
Egs. (22) and (24), the equation of state for the energy
density wge = pae/pae can be obtained as

2 VO
14—

T 3 a 25)

Wde =

Meanwhile, using the Friedmann equations with equa-
tion Eq. (25) as well as p,, «ca™®, Qg can be obtained,
which satisfies [30]

Qde 2 VQde
n a |

), = a1 —%)(3 -= (26)

where the prime represents the derivative with respect to
Ina.

This has some interesting features for the equation of
state for dark energy. In the dark energy dominated
phase, the energy density can drive the accelerated expan-
sion of the universe if wy <—1/3. From Eq. (25), it is
easy to see that when a — o0, Qg — 1; thus, wg, — -1 at
a later time. Moreover, in the matter dominated era,
ao*3, from Egs. (22) and (23); thus, pg ca™'. Then,
using the dark energy density conservation equation,
wge = —2/3 can be obtained.

At constant wyg,, the deceleration factor gg is given by
qgo = 0.5+ 1.5(1 - Q,)wge; we select Q,, =0.3 of the cur-
rent universe, which is taken from ACDM cosmology and
SNIa Pantheon samples [31]. It is clear to see that when
wge S —1/2, go <0, which implies that the energy density
can drive the accelerated expansion of the universe if
wge < —1/2 for the current universe.

Morecover, we consider the case where the time scale ¢
is replaced by the future event horizon Rj,, which was
proposed by Li [18]. The future event horizon is

g
Ri :af & 27)
t

a

therefore, the dark energy density is

217 2
_3nMp

pie == (28)

By combining this with the dark energy density con-
servation equation, the equation of state for energy dens-
ity can be given by [18]

1 2
=2 Jom 29
Wy 3 3, Ve 29

At an earlier time, when Qg — 0, wgze — —1/3, and at
a later time when Qg —> 1, wge — -1 forn=1.

B. The invariable ground state energy for scalar
bosons and energy density

If we consider another case, where the expected en-
ergy value for scalar bosons &. does not change with
time, &, is constant; hence, Eq. (16) becomes

u=got>. (30)

When we consider the dark energy density to be con-
strained by the expected value of the Higgs potential, Eq.
(30) becomes more persuasive.

From Eq. (3), Eq. (30), and the introduction of the nu-
merical constant n?, we obtain

2

Qde = [[_1—2

€2

Then, we can use the SNIa Pantheon sample and the
Planck 2018 CMB angular power spectra to constrain the
parameters of dark energy models, based on Egs. (24) and

31).
V. THE USED OBSERVATION DATA

A. SNIa Pantheon sample and the Plank 2018 CMB
angular power spectra

In SNIa data, the Pantheon sample is a combination
of SNe Ia data from Pan-STARRSI1 (PS1), the Sloan Di-
gital Sky Survey (SDSS), and SNLS as well as various
low-z and Hubble Space Telescope samples. The Panor-
amic Survey Telescope & Rapid Response System (Pan-
STARRS or PS1) is a wide-field imaging facility built by
the University of Hawaii's Institute for Astronomy. It is
used for a variety of scientific studies of the nearby to the
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very distant Universe and has provided 279 SNe Ia for
the Pantheon sample [32]. The Supernova Legacy Sur-
vey Program detected approximately 2000 high-redshift
Supernovae between 2003 and 2008, and the Pantheon
sample contains approximately 236 SNe Ia, based on the
first three years of data; these can be used to investigate
the expansion history of the universe and improve the
constraint of cosmological parameters as well as the
study of dark energy [33].

In 2014, the SDSS Survey released a large catalogue
containing the light curves, spectra, classifications, and
ancillary data of 10,258 variable and transient sources
[31, 34, 35-38]. The release generated the largest sample
of supernova candidates, and 500 of this sample have
been confirmed as SNe Ia by a spectroscopic follow-up.
335 SNe Ia in the Pantheon sample are taken from this
spectroscopic sample. Others in the Pantheon sample are
from the CfA1-4, CSP, and Hubble Space Telescope
(HST) SN surveys [33]. This extended sample of 1048
SNe Ia is called the Pantheon sample.

Planck 2018 CMB angular power spectra data are
based on observations obtained using Planck
(http://www.esa.int/Planck), an ESA science mission with
instruments and contributions directly funded by ESA
Member States, NASA, and Canada.

B. SALT?2 calibration for the Pantheon sample

When correcting the apparent magnitude of the Pan-
theon sample, considering the prior dark energy equation
of state is unknown, we use SALT2 and a Taylor expan-
sion of the dy—z relation to directly calibrate the dis-
tance modulus, which can simplify the problem.

The Taylor expansion of the dy—z relation can be

given by
y3},

(32)

1 qo—1 5 [3q0—2q0—jo —% +2
dy = - + +
H.th 1 {y B y 6 6

where y=z/(1+z). To reduce the calculation error of
high redshift data, we use this variable substitution. gg is
the deceleration parameter, jy is the jerk parameter, and
, is the curvature term.

Meanwhile, the relationship between the distance
modulus ¢ and luminosity distance dy can be written as

11 = Slog,ody +25 - Slog, Ho. (33)

We use SALT2 and a Taylor expansion of the dy —z
relation to directly calibrate the Pantheon sample. The
distance modulus y,, correction formula is given by the
SALT?2 model [39, 40]

MB.ob = mB—MB+cx><x1+,B><C+AB, (34)

where mp corresponds to the observed peak magnitude in
the rest frame B band, x; describes the time stretching of
the light curve, ¢ indicates the SN color at maximum
brightness, AB is a bias correction based on previous sim-
ulations, and a and S are nuisance parameters in the dis-
tance estimate. Mp is the absolute B-band magnitude,
which depends on the host galaxy properties [31]. Notice
that Mp is related to the host stellar mass (M stellar) by a
simple step function

M} if Mgenar < 101°M
Mp = (3%5)

ML+Ay  otherwise

Here, M, is the mass of the Sun.
From Egs. (33) and (34), the y? of the Pantheon data
can be calculated as

X =0 A, (36)

where Ay = p—py. C, is the covariance matrix of the dis-
tance modulus u, and we only consider the statistical error

Cy,stat = Vm,, + (},’2 Vx\ +B2 Vc + 2anﬁ,x| - Zﬁth - zaﬂvx, C-

(37

From Eq. (36) combined with the Pantheon sample, we
obtain the statistical average and error of the distance
modulus u and the parameters gy and jy. Then, we use
the calibrated Pantheon sample to constrain the dark en-
ergy model parameters.

VI. USING THE PANTHEON SAMPLE TO FIT
THE MODEL PARAMETERS

A. The fitting of model I parameters
For model I, in which Qg ="""/ , we first select the
universe age T as the time scale ¢ and consider a Taylor

expansion of the T — z relation in near flat space to obtain

T-To=-—/|y-

1 q0 > 290> —jo 3
402, 290 7JO 3] 38
H, Zy 6 Y (38)

where y = z/(1 +z). To reduce the calculation error of the
high redshift data, we use this variable substitution. T} is
the present age of the universe.

Then, the Hubble parameter in near flat space can be
written as

n2
EQ) = \/Qm(1+z)3+QR(l+z)4+ T (39)
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where E(z)="@4 . From Egs.
Ty = ”ZHU’Z/(I_QM) when Qp < Q.

We use the y? statistic fitting method to constrain the
parameters as follows:

(38) and (39),

X pantheon = AT Cu ™ A+ Aqo* oy, 2+ Ajo ;2 (40)

where Au=p—pm. Ago=qo —{q0,prior» Ajo = Jo _jO,prior>
qo.priors Joprior are given by the SALT?2 calibration method
in Section V.B.

Following this, we combine Pantheon data with Eq.
(39) to constrain the parameters and then use MCMC
technology and the y? statistic fitting method to obtain
the statistical mean values and the minimum chi-square
values without systematic errors of the parameters
Q. n2Hy™, qo, jo, toHy, which are shown in Table 1.
The confidence regions of the (Q,,n*Hy~") plane are
68.3%, 95.4%, and 99.7%. (see Fig. 1)

Moreover, we can select the conformal age nr as the
time scale 7 and consider a Taylor expansion of the 7 —z
relation in near flat space to obtain

1 go—1 5 |390—2q90—jo| 3
= —y- + . (@l
nr —nr, Ho {y 7Y G y 41)

where 77, is the currently conformal age of the universe.
The Hubble parameter in near flat space can be ex-

pressed as

2
E<z>=\/9m<1+z>3+QR<1+z>4+ . @)
nrHo

Then, from Egs. (41) and (42), ny, satisfies 57, =

nzHoiz/
1-Q,) -

Similarly, we use Eq. (42) with the Pantheon sample
to fit the model parameters; the statistical results are
shown in Table 1. Fig. 1 shows that the confidence re-
gions of the (Q,,,n’Hy~") plane are 68.3%, 95.4%, and
99.7%.

B. The fitting of model II parameters

When considering model 11, in which Qg ="/,
we can also select the universe age 7 as the time scale ¢,
and the Hubble parameter in near flat space can be writ-
ten as

E(z) = \/Qm(l +2° +Qr(1+2)* + (43)

T2Hy?

Alternatively, if we select the conformal age 17 as the
time scale 7, the Hubble parameter in near flat space satis-
fies

Table 1. Statistical mean values of the cosmological parameters from SN Ia Pantheon sample observation data combined with Model
L
Qu =17, Qn n*Hy™! 40 Jjo toHo(to = 11, T0) X2 ldo.f.
t=nr 0.23+0.013 3.3+0.5 —0.57+0.28 -0.242.7 4.3+0.7 1040/1050
t=T 0.236+0.012 2.84+0.56 —0.44+0.31 —0.95+2.8 3.7+0.74 1044/1050
5 2
J— 13
as) Sk = TH?
| 4
1 35
- 3
] e
< 25
1 2
15
| 1
0 : : : 05 : : : : :
02 025 03 035 018 02 022 024 026 028 03
Q. e,
Fig. 1. (color online) 68.3%, 95.4%, and 99.7% confidence regions of the (Q,,, n?Hy!) plane from Pantheon observation data com-

bined with Model I. The + signs in their corresponding colors represent the best fitting values for Q,, and n>Hy~!.
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2

n
el (44)

E(z) = \/Qm(l +23 + Qr(1+2)* +

Using the pointing models Egs. (43) and (44), we ob-

tain statistical results for the parameters, which are shown

in Table 2. Fig. 2 shows that the confidence regions of the
(Q,1,n) plane are 68.3%, 95.4%, and 99.7%.

If we consider the current age of the universe to be T =

13.5+0.5Gyr, which is inferred from globular clusters

[41], the Hubble constant is Hy=73.5+1.4km s~ Mpc™!
using the NGC 4258 distance measurement [42]. By com-
bining this with the fitting results obtained from the Pan-
theon sample, presented in Tables 1 and 2, we discover
that selecting nr as time scale may be more persuasive.
Furthermore, for the mean value of Q,,, Conley et al.
provided a statistical result of matter density for the con-
stant wCDM model, Q,, = 0.19*09%, from a combination
of SNLS, HST, low-z, and SDSS data [33]. Our result is
in agreement with this value.

Table 2. Statistical mean values of the cosmological parameters from SN Ia Pantheon sample observation data combined with Model
II.
Que=""1"/, Qy n 90 Jo toHo(to = 11, T0) X2 /do.f.
t=nr 0.19+0.016 4.4+0.44 —0.64+0.27 -1.1£2.6 5.5+0.62 1042/1050
t=T 0.22+0.01 4.5+0.4 —0.48+0.3 -0.7+2.8 5.7+0.7 1044/1050
6.5
6 Qde = TZ%Z
55
5
c c 45
4
35
3
2812 014 016 o.‘mQ 02 022 024 026 %816 o018 02 o.‘zzQ 024 026 028 03
Fig. 2. (color online) 68.3%, 95.4%, and 99.7% confidence regions of the (Q,,, n) plane from Pantheon observation data combined

with Model II. The + signs in their corresponding colors represent the best fitting values for Q,,and n.

7000

6000

5000

ag Que =" H Q= 0.235, ho= 0.74,n2H, ' = 6.24

Qe ="H ) 0 0, =0.245 ho=0.73,n =52
——— ACDM, 9, =0.305, hy=0.685

4000

3000

U+ 1)Crry /(2m) (uk?)

-1000 L L

500 1000

Fig. 3.

1500 2000 2500
1

(color online) Blue dots represent Planck 2018 CMB TT angular power spectra. The red, yellow, and cyan lines are the CMB

theoretical values of angular power spectra from ACDM, Model I, and Model 11, respectively, using the best fitting values, which are

constrained by Planck 2018 data.
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If only Pantheon data are used to investigate dark en-
ergy density, the statistical results indicate that the dark
energy age models, including Qg ="""  and
Que = ”ZH’Z/,,,_z , have no evident superiority compared to
ACDM using minimum chi-square.

VII. USING CMB ANGULAR POWER SPECTRA
TO CONSTRAIN THE MODEL
PARAMETERS

In addition, we can use Planck 2018 CMB angular
power spectra data to constrain the model parameters.
When z>25, %494 o > 1; hence, we believe a
Taylor expansion of the nr —z relation is also applicable
to calculate CMB angular power spectra. A calculation of
C7r, that ignores the Sunyaev-Zeldovich (SZ) effect can
refer to Weinberg 2008 [43], and the SZ-effect can refer
to Bond et al. 2005 [44]. We use Planck 2018 data with
Models I and II to constrain the cosmology parameters.
The statistical mean values of the parameters are shown
in Table 3, and Fig. 3 shows the CMB theoretical TT
power spectra of the best fitting values from Planck 2018.

In Table 3, we provide the statistical mean value of
the Hubble constant Hy=73.2+ 1.3 km s~' Mpc~!, which is
consistent with the result obtained using the NGC 4258
distance measurement [42].

For the dark energy density, when using Planck 2018
CMB data, the statistical results indicate that the dark en-
ergy age models, including Qg =""",  and
Q. ="""/ ., have evident superiority, compared to
ACDM  using a  minimum  chi-square  of
I+ 1DCp (1 =30 ~ 1500).

VIII. CONCLUSIONS

Understanding the physical nature of dark energy is
important for our universe. In addition to the study of
particle physics, dark energy may also enable us to fur-
ther explore the nature of vacuum. Whether dark energy
is derived from scalar bosons, other particles, or neither
still needs to be further verified.

We explore a theoretical possibility that dark energy
density is derived from massless scalar bosons in vacu-

Table 3.
meters from Planck 2018 TT power spectra data combined
with Models I and II.

Statistical mean values of the cosmological para-

Qqe = nZH_Z/'iT Qe = " H_Z/UTZ
Qph? 0.0214+0.00012 0.023+0.0002
Q> 0.11£0.0014 0.1070.0014
10104727 1.29+0.016 1.316+0.027
ng 0.93+0.004 0.970.0025
Negr 3.45+0.13 3.5+0.35
ho 0.742+0.012 0.732+0.013
Qn 0.237+0.018 0.243+0.022
2Ho™'\n 5.540.33 4.85+0.54
90 —0.38+0.24 —0.7+0.59
jo 1.3£0.22 47+12
oy 1.1£0.011 1.06£0.012

um. Assuming massless scalar bosons fall into the hori-
zon boundary with the expansion of the universe, scalar
bosons satisfy P-symmetry under the parity transforma-
tion. P-symmetry with the quantum fluctuation of space-
time enables us to estimate dark energy density. Mean-
while, to explain the physical nature of negative pressure,
this is deduced from the increase in entropy density with
the rise in degeneracy in the Boltzmann system.

Next, we used the SNIa Pantheon sample and Planck
2018 CMB angular power spectra to constrain the spe-
cified models. The statistical results indicate that the dark
energy age models have evident superiority when using
only CMB data compared to ACDM using minimum chi-
square. Furthermore, we obtain a statistical mean value of
the Hubble constant Hy=73.2+ 1.3 km s~' Mpc~!, which is
consistent with the result obtained using the NGC 4258
distance measurement.

Finally, we extend our discussion to the future of the
universe. From Eq. (21), if W, satisfies W,:3 52— 1,
the universe may continue expanding in the future;
however, if W, :1— 2 — 3, this will change from expan-
sion to contraction. Thus, the property of dark energy will
dominate the future of the universe, and it will similarly
determine the future of humanity.
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