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Abstract: Mix-cumulants of conserved charge distributions are sensitive observables for probing properties of the
QCD medium and phase transition in heavy-ion collisions. To perform precise measurements, efficiency correction
is one of the most important step. In this study, using the binomial efficiency model, we derive efficiency correction
formulas for mutually exclusive and inclusive variables. The UrQMD model is applied to verify the validity of these
formulas for different types of correlations. Furthermore, we investigate the effect of the multiplicity loss and con-
tamination emerging  from the  particle  identifications.  This  study provides  important  steps  toward  future  measure-
ments of mixed-cumulants in relativistic heavy-ion collisions.
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I.  INTRODUCTION

µB

µB

Heavy-ion  collisions  at  relativistic  energies  produce
matter at  extreme energy density and temperature condi-
tions. This matter is likely to comprise deconfined quarks
and  gluons  and  is  called  quark-gluon  plasma  (QGP).  A
primary objective of heavy-ion collision experiments is to
explore the phase structure of the hot dense QCD matter.
The QCD phase structure can be expressed as a function
of  temperature  (T)  and  baryon  chemical  potential  ( )
[1].  QCD  based  model  calculations  predict  that  at  large

 values, the transition from hadronic matter to QGP is
of  the  first  order  [2, 3].  The  end  point  of  the  first  order
phase  transition  boundary  is  known  as  the  QCD  critical
point (CP),  after  which  there  is  no  genuine  phase  trans-
ition, except a smooth crossover from hadronic to quark-
gluon  degrees  of  freedom  [4, 5]. One  of  the  major  ap-
proaches to exploring the QCD phase structure is via the
measurements of  event-by-event  fluctuations  of  con-
served quantities,  such as net-baryon (B),  net-charge (Q)
and  net-strangeness  (S)  [6-10]. In  a  thermodynamic  sys-
tem, r-th  order  fluctuations  ("cumulants")  of  event-by-
event  net-multiplicity distributions are related to the r-th
order thermodynamic  susceptibilities  of  the  correspond-
ing conserved charges that diverge near the critical point
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√
sNN

[11-14].  Furthermore,  these  measured  cumulants  have
also  been  used  to  extract  freeze-out  parameters  (T and

) by comparing them with model calculations from lat-
tice QCD and hadron resonance gas (HRG) [15-19]. Ow-
ing to  the  experimental  constraints  on measuring neutral
particle  yields,  net-proton  and  net-kaons  are  adopted  as
experimental  proxies  of  net-baryon  and  net-strangeness,
respectively.  In  the  last  decade,  the  STAR and PHENIX
experiments  at  the relativistic  heavy ion collider  (RHIC)
have measured  the  second,  third,  and  forth  order  cumu-
lants  of  net-proton  [20-24],  net-charge  [25, 26]  and  net-
kaon [27] multiplicity distributions over a wide range of
collision energies to determine non-monotonic energy de-
pendence behaviours, as an indicator of the CP presence.
Within current statistical uncertainties, no distinctive sig-
natures of the CP have been inferred from the net-charge
and net-kaon  measurements.  However,  recent  measure-
ments  of  forth  order  to  second  order  cumulant  ratios  of
net-proton  multiplicity  distributions  exhibit  non-mono-
tonic energy dependence as a function of  [23]. Al-
though, before  drawing  any  substantial  physics  conclu-
sion  from  event-by-event  fluctuation  measurements,  we
need  to  carefully  investigate  the  different  background
contributions [28-33].

Recently,  the  STAR  experiment  reported  the  first
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measurement  of  second-order  mixed-cumulants  between
net-charge, net-proton, and net-kaon multiplicity distribu-
tions  in  the  first  phase  of  the  beam energy scan (BES-I)
program  at  RHIC  [34]. These  mixed-cumulants  are  re-
lated  to  the  off-diagonal  thermodynamic  susceptibilities
that  carry  the  correlation  between  different  conserved
charges of  QCD [35-41].  The importance of  the second-
order mixed-cumulants  was  first  highlighted  in  the  con-
text  of  normalized  baryon-strangeness  susceptibilities
( )  in  Ref.  [35],  which  are  expected  to
exhibit  a  rapid  change  with  the  onset  of  deconfinement.
These quantities can be investigated by measuring the en-
ergy dependence ratios of off-diagonal over diagonal cu-
mulant  ratios  between  net-baryon  and  net-strangeness
( ). Another research objective originates from the
comparisons  between  the  ideal  HRG  model  and  lattice
QCD  calculations.  The  baryon-charge  susceptibility
( ) exhibits  a  significant  difference  between  the  lat-
tice  and  ideal  HRG  calculations  above  the  crossover
transition  temperature,  even  in  at  the  lowest  order  [42,
43].  A  similar  difference  between  the  lattice  and  HRG
calculations can also be observed in higher-order baryon
susceptibilities  (( )), which  is  more  statistically  chal-
lenged in the experimental  measurement [44].  Similar  to
diagonal cumulants,  the  mixed-cumulants  are  also  lim-
ited  by  the  lack  of  neutral  particle  detection  capability.
The  measurements  of  charge-baryon  or  charge-strange-
ness mixed-cumulants are less affected by such an experi-
mental limitation,  as the neutral  particles do not contrib-
ute to such charge correlations, and can be approximated
by  and  [40]. In contrast, baryon-
strangeness mixed-cumulants cannot be approximated by
the  proton-kaon  off-diagonal.  However,  the  relationship
between these cumulants have been studied in Refs. [40,
45].
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Recent  measurements  of  second-order  mixed-cumu-
lants  at  the  RHIC energy  range  (  =  7.7-200  GeV)
agree  well  with  different  model  predictions  for  the  net
proton-kaon  off-diagonal  correlator  ( ).
However,  the  charge-proton  ( )  and
charge-kaon ( ) correlators significantly de-
viate  from the  model  predicted  values.  In  this  study,  we
demonstrate  that  the  deviations  observed  in  charge-pro-
ton and  charge-kaon  correlators  are  owing  to  the  effi-
ciency double counting. We argue that, to correct the ef-
fects of efficiency for the charge-proton and charge-kaon
mixed-cumulants,  the  particle  identification  for  charge
needs to be performed with the estimation of correspond-
ing  efficiencies.  However,  a  significant  number  of
charged  tracks  are  missed  for  particle  identification  as
different  detectors  used  [34].  In  this  study,  we  focus  on
the 2nd-order  mixed-cumulant  for  two  variables  to  elu-
cidate and  simplify  several  important  points  on  the  effi-
ciency  correction.  Although  the  points  also  apply  for

higher-order  mixed-cumulants,  including  more  than  two
variables cases,  these  extensions  should  be  straightfor-
ward and are expected to be investigated in future studies.

This paper  is  organized  as  follows.  In  Sec  II,  cumu-
lants,  mixed-cumulants,  and  their  efficiency  corrections
are introduced.  The  formulas  for  the  efficiency  correc-
tion  of  the  2nd-order  mixed-cumulant  is  discussed  for
two types of correlations. In Sec. III, we perform numer-
ical analysis  using  the  UrQMD  model  to  verify  the  im-
portance of adopting appropriate formulas, depending on
the correlation type. Here, the effects of double-counting
are discussed, and the potential effects of the multiplicity
loss owing  to  particle  identification  are  investigated.  Fi-
nally, we summarize this study in Sec. IV. 

II.  EFFICIENCY CORRECTION
 

A.    Cumulants and mixed-cumulants

G(θ)

In  statistics,  any  distribution  can  be  characterized  by
different order moments or cumulants. The rth-order mo-
ment of variable N is  defined by the rth order derivative
of moment generating function : 

G(θ) =
∑

N

eNθP(N) = ⟨eNθ⟩, (1)

 

⟨Nr⟩ = dr

dθr
G(θ)
∣∣∣∣
θ=0
, (2)

P(N) ⟨·⟩

T (θ)

where  is a probability distribution function, and 
represents an average over events. Cumulants are defined
by  the  cumulant  generating  function ,  which  is  the
logarithm of moment-generating function: 

T (θ) = lnG(θ), (3)
 

⟨Nr⟩c =
dr

dθr
T (θ)
∣∣∣∣
θ=0
, (4)

⟨·⟩cwhere  represents  the cumulant  of  the variable inside
the bracket.

From  Eqs.  (1) –(4),  the  1st  and  2nd-order  cumulants
are expressed in terms of moments 

⟨N⟩c = ⟨N⟩, (5)
 

⟨N2⟩c = ⟨N2⟩− ⟨N⟩2, (6)

Similarly,  the  multivariate  moments  and  cumulants  are
defined  by  the  multivariate  generating  function.  In  this
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study,  we focus  on the  two-variable  case,  which we call
"mixed-" moments or cumualnts, where the moment gen-
erating function is given by 

G(θ1, θ2) =
∑
N1,N2

eθ1N1 eθ2N2 P(N1,N2) = ⟨eθ1N1 eθ2N2⟩, (7)

 

⟨Nr1

1 Nr2

2 ⟩ =
∂r1

∂θr1

1

∂r2

∂θr2

2
G(θ1, θ2)

∣∣∣∣
θ1=θ2=0

. (8)

Mixed-cumulants are then defined as 

T (θ1, θ2) = lnG(θ1, θ2), (9)
 

⟨Nr1

1 Nr2

2 ⟩c =
∂r1

∂θr1

1

∂r2

∂θr2

2
T (θ1, θ2)

∣∣∣∣
θ1=θ2=0

. (10)

From Eqs.  (7)–(10),  we obtain  the  2nd-order  mixed-
cumulant in terms of moments and mixed-moments: 

⟨N1N2⟩c = ⟨N1N2⟩− ⟨N1⟩⟨N2⟩. (11)
 

B.    Binomial model
The  particle  detection  efficiency  of  each  detector  is

always  limited.  The  event-by-event  particle  multiplicity
distributions  are  convoluted  owing  to  this  finite  detector
efficiency. The  efficiency  correction  needs  to  be  per-
formed  to  recover  the  true  multiplicity  distribution.  For
simplicity, we assume that the detection efficiency can be
approximated by  the  binomial  efficiency  response  func-
tion [46, 47]. The mean value (first-order moment/cumu-
lant) can be easily reconstructed by division with the bi-
nomial  efficiency  response;  however,  its  influence  on
higher-order  cumulants  is  complicated  and  depends  on
the  probability  distribution  of  efficiency  [48-50].
Throughout this paper, we focus on a simple assumption
of the binomial distribution given by 

P̃(n) =
∑

N

P(N)Bε,N(n), (12)

 

Bε,N(n) =
N!

n!(N −n)!
εn(1−ε)N−n, (13)

εwhere  represents the efficiency, while N and n are gen-
erated  and  measured  particles,  respectively.  In  this  case,
the correction  formulas  can  be  derived  in  a  straightfor-
ward  manner,  as  discussed  in  the  literature  [46, 47, 51-
56].  The  efficiency  correction  for  the  2nd-order  mixed-
cumulant is given by [55, 56] 

⟨⟨K(x)K(y)⟩⟩c = ⟨κ(1,0,1)κ(0,1,1)⟩c+ ⟨κ(1,1,1)⟩c−⟨κ(1,1,2)⟩c, (14)

with 

K(x) =

M∑
i

xini, K(y) =

M∑
i

yini, (15)

 

κ(r, s, t) =
M∑

i=1

xr
i y

s
j

εt
i

ni, (16)

⟨⟨·⟩⟩
ni

εi xi yi

where  represents  the  efficiency  correction, M is  the
number  of  efficiency  bins,  indicates  the  number  of
particles,  is  the  efficiency,  and  are  the  electric
charges of the particles at the ith efficiency bin. Notably,
Eqs. (15) and (16) can be rewritten in track-by-track nota-
tions as 

K(x) =

ntot∑
j

x j, K(y) =

ntot∑
i

y j, (17)

 

κ(r, s, t) =
ntot∑
j=1

xr
jy

s
j

εt
j
, (18)

ntot =
∑M

i niwhere  is the number of measured particles in
one  event,  and  the  other  variables  are  now  track-wise
with j running over the particles in the summation.

ε1 ε2
n1 n2

In the rest of this section, we consider two efficiency
bins  for  simplicity.  Particles  for  each  bin  have  the  same
efficiency values,  and , respectively. The number of
particles will be denoted by  and . 

C.    Mutually exclusive variable
Let's  consider  the  correlation  between  two  mutually

exclusive  variables.  From  Eq.  (10),  the  mixed-cumulant
of generated particles are expanded in terms of moments
as 

⟨N1N2⟩c = ⟨N1N2⟩− ⟨N1⟩⟨N2⟩. (19)

To perform the efficiency correction relative to measured
particles, we suppose 

x = (x1, x2) = (1,0), (20)
 

y = (y1,y2) = (0,1), (21)

⟨⟨K(x)K(y)⟩⟩c K(x) = n1 K(y) = n2to consider  with  and . From
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Eq. (14), we get 

⟨⟨K(1,0)K(0,1)⟩⟩c =⟨κ(1,0,1)κ(0,1,1)⟩c+ ⟨κ(1,1,1)⟩c
−⟨κ(1,1,2)⟩c =

⟨n1

ε1

n2

ε2

⟩
c

=
1
ε1ε2
⟨n1n2⟩−

1
ε1ε2
⟨n1⟩⟨n2⟩,

(22)

which is the basic formula of the efficiency correction for
the 2nd-order mixed-cumulant of two variables. 

D.    Mutually inclusive variables
 

1.    Problem

N1
N1+N2

N1

Next,  we  consider  the  correlation  between  and
, i.e, when the two variables are not mutually ex-

clusive. It is clear that we have the self-correlation of .
The 2nd-order mixed-cumulant can be expanded as 

⟨N1(N1+N2)⟩c = ⟨N1N2⟩− ⟨N1⟩⟨N2⟩+ ⟨N2
1 ⟩− ⟨N1⟩2, (23)

⟨N2
1 ⟩c

n1 n1+n2

where  the  last  two terms represent  the  variance  (2nd-or-
der cumulant, ). If we employ Eq. (22) for the effi-
ciency correction, we can just replace  to  as 

⟨⟨K(1,0)K(0,1)⟩⟩c =
1
ε1ε
′
2
⟨n1(n1+n2)⟩− 1

ε1ε
′
2
⟨n1⟩⟨n1+n2⟩,

=
1
ε1ε
′
2
⟨n1n2⟩−

1
ε1ε
′
2
⟨n1⟩⟨n2⟩

+
1
ε1ε
′
2
⟨n2

1⟩−
1
ε1ε
′
2
⟨n1⟩2,

(24)

ε′2 N1 N2with  being the averaged efficiency for  and  giv-
en by 

ε′2 =
⟨N1⟩ε1+ ⟨N2⟩ε2

⟨N1⟩+ ⟨N2⟩
, (25)

N1 N2
⟨N1⟩ = 4 ⟨N2⟩ = 6

⟨Nr⟩c = ⟨N⟩c
⟨N2⟩c = ⟨N2⟩− ⟨N⟩2

⟨N1(N1+N2)⟩c = 4
⟨N1N2⟩ = ⟨N1⟩⟨N2⟩

which is  not  an  appropriate  efficiency  corrected  expres-
sion for mutually inclusive variables. To confirm this, we
suppose  that  two  independent  variables  and  fol-
low the Poisson distribution with  and . It
is known that the relation  holds for Poisson
distributions;  thus, ,  which  leads  to

,  from  Eq.  (23).  The  relationship
 was adopted for the independent vari-

ables.  We  then  consider  the  efficiency  correction  for

ε1 = 0.5 ε2 = 0.4 and . Accordingly, 

ε′2 = 0.44, ⟨n1⟩ = 2, ⟨n2⟩ = 2.4, (26)
 

⟨n2
1⟩c = ⟨n

2
1⟩− ⟨n1⟩2 = 2, (27)

 

⟨n1n2⟩ = ⟨n1⟩⟨n2⟩, (28)

which  leads  to  the  efficiency  corrected  mixed-cumulant
value 

⟨⟨K(1,0)K(0,1)⟩⟩c = 4.55. (29)

Hence, Eq. (22) is not valid for the self correlated or mu-
tually inclusive case. 

2.    Solution

⟨⟨K(x)K(y)⟩⟩c
K(x) = n1 K(y) = n1+n2

The solution is  to adopt the appropriate indices for x
and y in Eqs. (16) and (15). To consider  with

 and , the indices should have been 

x = (x1, x2) = (1,0), (30)
 

y = (y1,y2) = (1,1), (31)

thus 

⟨⟨K(1,0)K(1,1)⟩⟩c =⟨κ(1,0,1)κ(0,1,1)⟩c
+ ⟨κ(1,1,1)⟩c−⟨κ(1,1,2)⟩c

=
1
ε1ε2
⟨n1n2⟩−

1
ε1ε2
⟨n1⟩⟨n2⟩+

1
ε2

1

⟨n2
1⟩

− 1
ε2

1

⟨n1⟩2+
1
ε1
⟨n1⟩−

1
ε2

1

⟨n1⟩, (32)

⟨⟨K2
(x)⟩⟩

where we determine two additional terms compared with
Eq. (24). It is inferred that the last four terms in Eq. (32)
represent  the  efficiency  correction  of  the  variance  (2nd-
order  cumulant), ,  which  corresponds  to  the  last
two terms in  Eq.  (23) 1).  This  indicates  that  the  variance
term has  to  be  correctly  considered  for  the  mutually  in-
clusive  variable  case,  which  cannot  be  handled  by  Eq.
(22).

We summarize this section as follows. The efficiency
correction formula for the 2nd-order mixed-cumulant was
fully expanded for two cases: one is for two mutually ex-
clusive  variables,  and  the  other  case  assumes  that  one
variable is a subset of the other, to consider the self-cor-
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relation,  as  expressed  in  Eqs.  (22)  and  (32).  Both  cases
were determined to be incompatible with each other. The
proper correction  formulas  needs  to  be  obtained  by  sub-
stituting appropriate indices into Eqs. (14)–(16). This im-
plies that  the efficiency values  have to  be handled prop-
erly for  each  variable,  without  averaging  them,  espe-
cially when considering the self-correlation.  It  should be
noted  that  the  risk  of  using  the  averaged  efficiency  has
already been pointed out in Ref. [55] for higher-order cu-
mulants  of  single-variables.  The  efficiency  bins  always
need to  be  carefully  handled.  The  track-by-track  effi-
ciency  via  the  identified  particle  approach  expressed  in
Eqs.  (17)  and  (18)  would  be  a  better  way  to  handle  all
possible  variations  of  efficiencies  [56].  However,  the
particle  identification  needs  to  be  applied  to  determine
the efficiencies for  different  particle species,  which does
not discard a small amount of particles, depending on the
overlapping area of the variables for the particle identific-
ation. This  effect  will  be  studied  by  numerical  simula-
tions in the next section [25, 57]. 

III.  NUMERICAL ANALYSIS IN UrQMD MODEL
 

A.    Closure test using UrQMD model

√
sNN

To validate the discussion from the previous section,
we  have  analyzed  the  second-order  mixed  cumulants
from the  UrQMD event  generator  at  =  200  GeV.
The UrQMD is a microscopic transport model, where the
space-time evolution of the fireball is considered in terms
of the excitation of color strings that fragment further in-
to hadrons, the co-variant propagation of hadrons and res-
onances that undergo scatterings, and finally the decay of
all the resonances [58, 59]. The collision energy depend-
ence of the baryon stopping phenomenon is dynamically
incorporated  in  the  UrQMD model.  The  UrQMD model
has  been  relatively  successful  and  widely  used  in  the
heavy-ion phenomenology [59, 60]. Previously, this mod-
el  was  adopted  to  study  several  observable  fluctuations

√
sNN

⟨Npart⟩
|η| < 0.5 0.4 < pT < 1.6

0.5 < |η| < 1.0

pT

and cumulants  [28, 40, 61-65].  More  information on the
UrQMD  model  can  be  found  in  Refs.  [58, 59].  In  this
study, we have adopted approximately one million events
for  Au+Au collisions  at  =  200  GeV to  probe  the
efficiency correction effect on mixed cumulants. The ob-
tained results are presented for 9 different centrality bins
represented by  the  average  number  of  participant  nucle-
ons ( ). In this study, we have applied the same kin-
ematic  acceptance  and  GeV/c as
STAR data [34]. The collision centrality is defined using
RefMult2 (charged  particle  multiplicity  within  the  pseu-
dorapidity  range )  to  reduce  the  centrality
auto-correlation  effect  [28, 29]. Figure  1 illustrates  the
centrality  dependence  of  second-order  mixed-cumulants
of net-charge, net-proton, and net-kaon multiplicity distri-
butions  from  the  UrQMD  model.  The  gray  solid  points
represent the 'true' mixed-cumulants values. To introduce
the detector efficiency effect, we passed the binomial fil-
ter to the counted particles number in each event. We ad-
opted two -bin and positive-negative separate efficien-
cies, similar to real data analysis. We took this approach
because  different  detector  subsystems  are  used  for
particle identification in a high or low momentum region
[34]. These subsystems have different efficiencies, and it
is always better to use their proper efficiency values over
their  average  efficiencies  [55]. Subsequently,  we  estim-
ated  the  mixed-cumulants  with  filtered  particle  numbers
represented by red square points, which are analogous to
efficiency uncorrected values.

CQ,k = σQ,k/σ
2
k

In the next step, we correct the efficiency using input
efficiency  values.  In  this  case,  we  adopted  unidentified
charged particles for the net-charge (Q),  and applied Eq.
(22),  similar  to  the  STAR  measurement.  The p-k mixed
cumulant "true" value can be reproduced via this method,
as they are mutually exclusive variables. However, the ef-
ficiency correction for Q-p and Q-k fails to reproduce the
"true" values, as we discussed in Sec. II. We end up with
a  higher  value  for  unidentified  charge  correlators.  This
leads to a higher value in cumulant ratios 

Q = NQ+ −NQ−

p = Np −Np̄ k = Nk+ −Nk−

Fig.  1.    (color  online)  Centrality  dependence  of  second-order  mixed-cumulants  of  net-charge  ( ),  net-proton
( ),  and net-kaon ( )  multiplicities  for  Au+Au collisions  at  200 GeV, using the UrQMD model.  The efficiency
corrections are performed assuming variables are mutually exclusive (Eq. (22)).
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CQ,p = σQ,p/σ
2
p

Cp,k

CQ,k CQ,p

Q = π+ k+ p

and  obtained  from  "true"  values,  as
presented in Fig. 2. This shows that Eq. (22) is not valid
for overlap or mutually inclusive variables. The observa-
tion is qualitatively consistent with the fact that  val-
ues in Ref. [34] agree well with model calculations, while

 and  are significantly above the model calcula-
tions.  However,  for  mutually  exclusive  variables  (like
protons-kaons), there is no issue. As we discussed before,
to correct the mixed cumulant for mutually inclusive vari-
ables, Eq. (32) is required. To apply Eq. (32) for Q-k and
Q-p mixed  cumulants,  it  is  necessary  to  identify  the
charged particles with their efficiencies. In Figs. 3 and 4,
we  solely  consider  identified  charged  particles
( ). Then, Eq. (32) becomes 

⟨⟨NQNk⟩⟩c =⟨⟨(Nπ+Np+Nk)Nk⟩⟩c
=

1
ε1ε3
⟨NπNk⟩−

1
ε1ε3
⟨Nπ⟩⟨Nk⟩

+
1
ε2ε3
⟨NpNk⟩−

1
ε2ε3
⟨Np⟩⟨Nk⟩

+
1
ε2

3

⟨N2
k ⟩−

1
ε2

3

⟨Nk⟩2+
1
ε3
⟨Nk⟩−

1
ε2

3

⟨Nk⟩, (33)

ε1 ε2 ε3where , ,  and  represent the efficiencies for pions,

kaons, and protons, respectively. Now, we can reproduce
the "true" values, as presented in Figs. 3 and 4.

dE/dx

dE/dx

nσX

However, owing to the particle identification with op-
timal purity,  we  may  lose  a  few  pions,  protons,  and  ka-
ons. We also studied the effects of these tracks for mixed
cumulants  via  UrQMD  simulations.  Charged  particle
identification  is  performed  using  the  ionization  energy
loss  inside  the  time  projection  chamber  (TPC)  detector
subsystem. We mimic the ionization energy loss curve in
UrQMD  simulation  using  the  STAR  TPC  resolution.
Figure  5(a) presents  the  measured  distribution
after passing the UrQMD input through the TPC simula-
tion. The measured values of  are compared to the
expected  theoretical  values  which  is  an  extension  of  the
Bethe-Bloch formula [66] (shown as dashed lines in Fig.
5(a)). To identify particles X, a quantity  is defined as 

nσX =
1
R

ln
[dE/dx]obs

[dE/dx]th,X
, (34)

[dE/dx]obs

[dE/dx]th,X

dE/dx

where  represents the  energy  loss  in  the  Ur-
QMD  simulation  and  is  the  corresponding
theoretical  value  for  particle  species X. R represents  the

 resolution,  and  we use R = 7.5% within  our  ana-

Fig.  2.    (color online) Centrality dependence of second-order off-diagonal  to diagonal  cumulant  ratios for  Au+Au collisions at  200
GeV, using the UrQMD model. The efficiency corrections are performed assuming the variables are mutually exclusive (Eq. (22)).

 

Q = (Nπ+ +Nk+ +Np)−
(Nπ− +Nk− +N p̄) p = Np −Np̄ k = Nk+ −Nk−

Fig.  3.    (color  online)  Centrality  dependence  of  second-order  mixed-cumulants  of  identified  net-charge  (
),  net-proton  ( ),  and  net-kaon  ( ) multiplicity  for  Au+Au  collisions  at  200  GeV,  using  the  Ur-

QMD model. The efficiency corrections are performed assuming the variables are mutually inclusive (Eq. (32)).
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nσ
p(p̄) π± k± nσp < 2
p(p̄) nσπ < 2 nσk < 2

dE/dx
2σ

lysis  range. Figure  5(b) presents  the  distributions  of
,  and .  Typically,  are  adopted  for  the
 selection.  Similarly,  and  are adop-

ted  for  pion  and kaon selections,  respectively.  However,
from Fig. 5(a), we can deduce that at high momenta, the

 bands  for  different  particles  are  overlapped.  We
have  also  adopted  the -rejection  cut  to  improve  the
purity.

nσ
nσ

Figure  6 presents  the  event-by-event  average  of  net-
charge, net-kaon, and net-proton multiplicities as a func-
tion of . Similarly, Fig. 7 presents mixed-cumulants as
a function of the  cut for three cases as follows (refer
to Table 1):
 

nσ
S1 : Information on the particle species is provided by

UrQMD. The  cut is applied.
 

nσ 2σ
S2 : Information on the particle species is provided by

UrQMD. Both  and -rejection cuts are applied.
 

nσ 2σS3 : Particles are identified by both  and -rejec-
tion cuts. This is the only possible cut in the experiment-

al data analysis.
 

2σ
nσK > 2.0 nσπ > 2.0

nσp < −2.0 nσπ > 2.0
nσK < −2.0 nσp < −2.0

nσ

We note that "Q" is defined as the summation of the iden-
tified π, K, and p. The " -rejection cut" indicates the re-
quirement  of  and  for proton  identi-
fication,  and  for kaon identification,
and  and  for  pion  identification.
Furthermore, two  baselines  are  calculated  with  the  fol-
lowing conditions, which are independent of the  cut:
 

B1 :  Information  on  the  particle  species  is  provided
by UrQMD.
 

2σ
B2 :  Information  on  the  particle  species  is  provided

by UrQMD. The -rejection cut is applied.
 

2σ
2σ

The  difference  between  two  baselines  is  owing  to  the
particle multiplicity. There are more particles for B1 than
B2  becuase  the -rejection  cut  is  applied  to  the  latter
case.  Depending  on  whether  the -rejection cut  is  ap-
plied, S1 can be compared to B1, while S2 and S3 need to
be  compared  to  B2.  The  descriptions  of Fig.  7 are sum-

Fig. 4.    (color online) Centrality dependence of second-order off-diagonal to diagonal cumulant ratios of identified charged particles
for Au+Au collisions at 200 GeV, using the UrQMD model. The efficiency corrections are performed assuming the variables are mutu-
ally inclusive (Eq. (32)).

 

dE/dx
√

sNN nσ

Fig. 5.    (color online) (a)  from UrQMD simulations plotted against charge × momentum of individual particles for Au+Au col-
lisions at  = 200 GeV. (b)  distributions of protons, pions, and kaons.
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marized in Table 1.

nσ
nσ

It  is  determined  that  the  values  of  mixed-cumulants
are close to the corresponding baselines with a loose 
cut,  and  decreases  with  the  tightening  of  the  cut.  As

can be observed in Eq.  (19),  the mixed-cumulant  for the
mutually inclusive  case  comprises  second-order  cumu-
lants, as well as second-order mixed-cumulants. It is well
known  that  the  former  has  a  trivial  volume  dependence

nσ 2σ

Table 1.    This table describes the information that is used to select the particles for mixed-cumulant calculations in Fig. 7, in terms of
the particle species code given by UrQMD, , and -rejection cuts. Corresponding legends in Figs. 6, 7, and 8 are presented in the
second left row.

For Legend Particle Code nσ 2σ-rejection Baseline

Signal

S1 Used Applied N/A B1

S2 Used Applied Applied B2

S3 N/A Applied Applied B2

Baseline
B1 Used N/A N/A N/A

B2 Used N/A Applied N/A

nσFig. 6.    (color online)  acceptance dependence mean multiplicity of net-charge (Q), net-proton (p), and net-kaon (k) for Au+Au col-
lisions at 200 GeV, using the UrQMD model.

 

nσFig. 7.    (color online)  acceptance dependence second-order off-diagonal and diagonal cumulants for Au+Au collisions at 200 GeV,
using the UrQMD model.
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σ11
p,k nσ

nσ
σ
σ11

Q,k σ11
Q,p

[67], which can also be confirmed from the lower panels
in Fig. 7 for the second-order cumulants. In Fig. 7, there-
fore,  only  is  independent  of  the  cut. The differ-
ence between S2 and S3 would indicate the effect of con-
tamination.  This  can be confirmed from the fact  that  the
difference  becomes  small  with  the  tightening  of  the 
cut, in addition to the 2 -rejection cut. Consequently, we
observed  larger  values  of  and  for S3,  com-
pared to those for S2.

nσ

2σ
nσ

nσ

nσ

nσ

To cancel the trivial volume dependence, the normal-
ized  mixed-cumulants  are  also  calculated  in Fig.  8 as  a
function of the  cut. All the results for S1, S2, and S3
are inferred to be consistent with corresponding baselines
within uncertainties. This is because the probability of the
contamination  has  been  significantly  suppressed  by  the

-rejection  cut.  To  confirm this,  normalized  mixed-cu-
mulants  with  only  the  cuts  are  calculated,  where  the
significant deviations  are  observed from the  correspond-
ing baselines, owing to contamination. It should be noted
that the  dependence of mixed-cumulants and normal-
ized  mixed-cumulants  also  depends  on  how the  intrinsic
correlations between two variables change relative to the

 cut.  In  the  current  simulation,  the  energy  losses  of
particles are randomly smeared to implement  the resolu-
tion of the detectors. Therefore, the correlation terms (the
first term on the right hand side of Eqs. (19) and (23)) are
considered to be unaffected by the  cut. However, ex-
perimentally,  this  effect  needs to  be carefully  studied by
changing the criteria for particle identifications. 

IV.  SUMMARY

In  this  study,  we  discussed  the  efficiency  correction
problem  for  mixed-cumulants.  This  study  provided  a
comprehensive extension  of  the  binomial  efficiency  cor-
rection  formula  for  second-order  mixed  accumulators  in
two  different  cases:  one  case  is  for  mutually  exclusive
variables and the other is for mutually inclusive variables.
We  infer  that  different  efficiency  correction  formulas
need to be applied to mixed-cumulants, depending on the

type  of  variable  pairs.  To  apply  the  binomial  efficiency
correction for Q-k and Q-p mixed cumulants, it is neces-
sary to  identify  the  charged  particles  with  their  corres-
ponding efficiencies.

NQ Np

σ11
Q,p NQ

Np

NQ
NQ

It  should  be  noted  that  the  efficiency  correction  for
mixed-cumulants in  the  case  of  mutually  inclusive  vari-
ables has already been discussed in Ref. [68]. In the pro-
posed formulas,  two different  levels  of  efficiencies  were
implemented for each variable, such as  and  in the
case of . The tracking efficiency was applied to ,
while the proton identification efficiency was applied on
top of the tracking efficiency for . The method has the
advantage that we can keep charged particles as much as
possible without  identifying  each  particle  species  con-
tained in .  This  implies  that  the  averaged efficiencies
for pions, kaons, and protons were used for . However,
we  must  remember  that  using  the  averaged  efficiency
does not provide the true solution, which depends on un-
derlying  probability  distributions  of  the  number  of
particles and the difference in efficiency between particle
species [55].  It  is  also important to note that the identity
method would be useful for the measurements of mixed-
cumulants [69], which enables us to measure fluctuations
without the multiplicity loss, owing to particle identifica-
tion. It  would be desirable for novel ideas to address the
two-step efficiency based on the identity method [69].

At this  stage,  the  identification  of  each  particle  spe-
cies and subsequent implemention of the appropriate effi-
ciency is the simplest approach. Therefore, we further in-
vestigated  the  effect  of  the  loss  in  multiplicity  owing  to
particle  identifications,  using  numerical  simulations.  In
the case of mutually inclusive variables, the mixed-cumu-
lants  exhibited  a  monotonic  decrease  as  the  cut  value  of
particle identification tightened. This can be explained by
a trivial  volume dependence.  In  contrast,  the  normalized
mixed-cumulants  were  determined  to  be  independent  of
the cut  value  for  the  particle  identification.  This  is  be-
cause the intrinsic correlations between different particle
species were assumed to be independent of the variables
of the particle identification, which could not be the case

nσFig.  8.    (color  online)  acceptance dependence second-order  off-diagonal  over  diagonal  cumulant  ratios  for  Au+Au collisions  at
200 GeV, using the UrQMD model.
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in real experiments. Therefore, it is recommended to veri-
fy  these  effects  by  changing  the  criteria  for  the  particle
identifications. This  work  provides  an  important  refer-
ence for  future  measurements  of  mixed-cumulants  in  re-
lativistic heavy-ion collisions. 
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APPENDIX A: EFFICIENCY CORRECTION FOR

HIGHER-ORDER MIXED-CUMULANTS

The  efficiency  correction  formulas  for  higher-order
mixed-cumulants are provided in Ref. [55] as

⟨⟨K2
(x)K(y)⟩⟩c =⟨κ(1,0,1)2κ(0,1,1)⟩c+2⟨κ(1,0,1)κ(1,1,1)⟩c−2⟨κ(1,0,1)κ(1,1,2)⟩c

+ ⟨κ(0,1,1)κ(2,0,1)⟩c−⟨κ(0,1,1)κ(2,0,2)⟩c+ ⟨κ(2,1,1)⟩c−3⟨κ(2,1,2)⟩c+2⟨κ(2,1,3)⟩c, (A1)
 

⟨⟨K2
(x)K

2
(y)⟩⟩c =⟨κ(1,0,1)2κ(0,1,1)2⟩c+ ⟨κ(1,0,1)2κ(0,2,1)⟩c−⟨κ(1,0,1)2κ(0,2,2)⟩c+ ⟨κ(0,1,1)2κ(2,0,1)⟩c

−⟨κ(0,1,1)2κ(2,0,2)⟩c+4⟨κ(1,0,1)κ(0,1,1)κ(1,1,1)⟩c−4⟨κ(1,0,1)κ(0,1,1)κ(1,1,2)⟩c
+2⟨κ(1,0,1)κ(1,2,1)⟩c−6⟨κ(1,0,1)κ(1,2,2)⟩c+4⟨κ(1,0,1)κ(1,2,3)⟩c
+2⟨κ(0,1,1)κ(2,1,1)⟩c−6⟨κ(0,1,1)κ(2,1,2)⟩c+4⟨κ(0,1,1)κ(2,1,3)⟩c
−4⟨κ(1,1,1)κ(1,1,2)⟩c+2⟨κ(1,1,1)2⟩c+2⟨κ(1,1,2)2⟩c
+ ⟨κ(2,0,1)κ(0,2,1)⟩c−⟨κ(2,0,1)κ(0,2,2)⟩c−⟨κ(2,0,2)κ(0,2,1)⟩c+ ⟨κ(2,0,2)κ(0,2,2)⟩c
+ ⟨κ(2,2,1)⟩c−7⟨κ(2,2,2)⟩c+12⟨κ(2,2,3)⟩c−6⟨κ(2,2,4)⟩c, (A2)

 

⟨⟨K3
(x)K(y)⟩⟩c =⟨κ(1,0,1)3κ(0,1,1)⟩c+3⟨κ(1,0,1)2κ(1,1,1)⟩c−3⟨κ(1,0,1)2κ(1,1,2)⟩c+3⟨κ(2,0,1)κ(1,0,1)κ(0,1,1)⟩c

−3⟨κ(2,0,2)κ(1,0,1)κ(0,1,1)⟩c+3⟨κ(1,0,1)κ(2,1,1)⟩c−9⟨κ(1,0,1)κ(2,1,2)⟩c
+6⟨κ(1,0,1)κ(2,1,3)⟩c+3⟨κ(2,0,1)κ(1,1,1)⟩c−3⟨κ(2,0,1)κ(1,1,2)⟩c−3⟨κ(2,0,2)κ(1,1,1)⟩c
+3⟨κ(2,0,2)κ(1,1,2)⟩c+ ⟨κ(3,0,1)κ(0,1,1)⟩c−3⟨κ(3,0,2)κ(0,1,1)⟩c+2⟨κ(3,0,3)κ(0,1,1)⟩c
+ ⟨κ(3,1,1)⟩c−7⟨κ(3,1,2)⟩c+12⟨κ(3,1,3)⟩c−6⟨κ(3,1,4)⟩c.

(A3)

The substitution of appropriate indices for x and y in Eq. (15) is required, as discussed in Sec. II.
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