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Abstract: We solve the condundrum on whether the molecules of the Reissner-Nordstrom black hole interact through
the Ruppeiner thermodynamic geometry, basing our study on the concept of the black hole molecule proposed in
[Phys. Rev. Lett. 115 (2015) 111302] and choosing the appropriate extensive variables. Our results show that the Re-
issner-Nordstrom black hole is indeed an interaction system that may be dominated by repulsive interaction. More
importantly, with the help of a novel quantity, namely the thermal-charge density, we describe the fine micro-thermal
structures of the Reissner-Nordstrom black hole in detail. Three different phases are presented, namely the free, inter-
active, and balanced phases. The thermal-charge density plays a role similar to the order parameter, and the back hole
undergoes a new phase transition between the free phase and interactive phase. The competition between the free
phase and interactive phase exists, which leads to extreme behavior of the temperature of the Reissner-Nordstrom
black hole. For the extreme Reissner-Nordstrom black hole, the entire system is completely in the inferactive phase.
More importantly, we provide the thermodynamic micro-mechanism for the formation of the naked singularity of the
Reissner-Nordstrom black hole.
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1 Motivation

With the advent of the first image of a black hole and
the observation of an increasing number of gravitational
wave events, black hole physics is playing an increas-
ingly prominent role in our understanding of gravity. It is
now generally believed that the black hole hides clues
about how to unify general relativity and quantum mech-
anics. The emergence of the thermodynamics of black
holes provides a powerful approach to explore their
secrets [1-4]. In particular, the introduction of the exten-
ded phase space [5,6] enriches the research of black hole
thermodynamics, enabling use of the analogy between the
charged AdS black hole and van der Waals fluid [7], ap-
plication of the Maxwell equal area law [7,8], microscop-

ic analysis of black hole phase transition [9-12], etc. A
large number of research results have revealed the micro-
structures of black holes. Nevertheless, describing the mi-
croscopic behavior of black holes remains a significant
challenge in the current gravitational problem.

Recently, a new concept, i.e., the black hole mo-
lecule, has been proposed, which provides a new per-
spective for a phenomenological study of the micro-
mechanism of black holes [9,11-13]. This new scheme is
mainly based on the Ruppeiner thermodynamic geometry,
which introduced a Riemannian metric structure to rep-
resent the thermodynamic fluctuation theory [14]. To
provide a mathematical description method of the ther-
modynamic theory in the geometric sense, Weinhold [15]
introduced a thermodynamic metric gl‘ff, = 92U/ (OXHDX")
in terms of the internal energy. However, the Weinhold
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geometry has no physical meaning in the context of pure
equilibrium thermodynamics. Subsequently, Ruppeiner
further developed the geometric theory of thermodynam-
ics, and put forward a theory later referred to as the Rup-
peiner thermodynamic geometry, which is based on the
second-order partial derivative structure of the entropy
with respect to other thermodynamic quantities and has a
physical meaning in the fluctuation theory of equilibrium
thermodynamics. The components of the inverse Rup-
peiner metric yield second moments of fluctuations. The
above two geometries prove to be conformally equival-
ent to the conformal factor 1/7. Subsequently, the Rup-
peiner geometry was widely used to explore micro-in-
formation of the black hole thermodynamic system and
the ordinary fluid thermodynamic system. Meanwhile,
the Weinhold geometry is incapable of such application.

Thermodynamic curvature is the most important para-
meter in the Ruppeiner thermodynamic geometry. For the
better understood statistical mechanical models in ordin-
ary thermodynamics, the sign of thermodynamic
curvature qualitatively reflects information on the charac-
ter of the molecular interaction for a thermodynamic sys-
tem. Empirical observations indicate that a positive (or
negative) thermodynamic scalar curvature implies a re-
pulsive (or attractive) interaction, and a vanishing ther-
modynamic scalar curvature corresponds to no interac-
tion [16,17]. Meanwhile, the absolute value of the ther-
modynamic scalar curvature reflects the strength of mo-
lecular interaction. A large absolute value of the thermo-
dynamic curvature implies strong interaction, whereas a
small one corresponds to weak interaction [18]. For black
hole systems, because there is no complete theory of
quantum gravity, the exploration of the microscopic
structure of black holes is bound to contain some specu-
lative assumptions. Owing to the well-established black
hole thermodynamics, as an analogy analysis and a
primary description of the micro-behavior of black holes,
the empirical observation mentioned above provides in-
formation about interactions of black holes, phenomeno-
logically or qualitatively [19-28].

For the Reissner-Nordstrom (RN) black hole, we
already know that its thermodynamic behaviors and the
temperature of the black hole exhibits a maximum.
However, a series of studies [29-31] using the Ruppeiner
thermodynamic geometry have suggested that the RN
black hole is a non-interacting system. In contrast, the
study presented in Ref. [32] pointed out that the results of
the RN black hole must be reduced from those of the
Kerr-Newmann-AdS black holes, and the coordinate
space of the thermodynamic geometry of the RN black
hole adopted in Refs. [29-31] may be incomplete. Their
results indicated that the RN black hole is an interacting
system. Thus, there is a divergence in claims on whether
molecules of the RN black hole interact. Intuitively, as an

independent thermodynamic system, the coordinate space
of the thermodynamic geometry of the RN black hole
must be complete, and its metric of the thermodynamic
geometry is well described (as presented in the following
analysis). The reasoning behind the claim of non-interac-
tion between RN black hole molecules in Refs. [29-31]
deserves further investigation. Moreover, as a charged
black hole, interaction between its molecules must occur,
in the form of electromagnetic interaction. Hence, we be-
lieve that the RN black hole is a complete and interacting
system. These are the main motivations of this study.

In the present study, by choosing the appropriate ex-
tensive variables, we show that the black hole has repuls-
ive interactions. More importantly, with the help of a new
quantity, namely the thermal-charge density, we describe
the fine micro-thermal structures of this black hole in de-
tail. It has three different phases, the free phase, bal-
anced phase, and interactive phase. More meaningfully,
we provide the thermodynamic micro-mechanism for the
formation of the naked singularity of the RN black hole.
Throughout this paper, we adopt the units h=c=
k=G=1.

2 Fine micro-thermal structure

For the RN black hole, its mass M, charge ¢ and the
horizon radius r.. satisfy the following relationship

Fe =M=+ | M?—qg2. @)

The black hole has two horizons, and r, > r_. Hence,
the event horizon is marked as r, = r,.. When M = ¢, two
horizons merge into one. This is the extreme black hole,
and the condition M>gq is also known as the
Bogomol'nyi boundary.

The basic thermodynamic properties of the RN black
hole assume the following forms in terms of the event ho-
rizon radius r;, [29-31],

2

Internal energy : U =M = Dy q—, 2)
2 2rh
1 7
Temperature : 7= — - —, 3)
dnry Anry
Entropy : S = 727%. 4)

In previous discussions, the internal energy U of the
black hole was defined as a function of entropy S and
charge ¢, i.e., U = U(S,q). Correspondingly, the first law
of thermodynamics is written as dU = TdS +¢dgq, where
the ¢ = g/ry, is the electrostatic potential. In the coordin-
ate space {S,q}, the RN black hole is a non-interacting
system [29-31]. Furthermore, Ref. [32] suggested that the
RN black hole is an interacting system according to the
degeneration of results of the Kerr-Newmann-AdS black
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holes and indicated that the coordinate space {S,q} is not
complete. Our current view is that the RN black hole is a
complete and interacting system. It is likely that the di-
vergence of previous studies regarding the interaction
between molecules of the RN black hole could be attrib-
uted to the selection of the coordinate space for the Rup-
peiner thermodynamic geometry.

Inspired by the result of Ref. [33], where the authors
used ¢’ as an independent thermodynamic quantity to
analyze the critical behavior and microscopic structure of
the charged AdS black hole for the first time, and where
the black hole exhibits the van der Waals-type phase
transition behavior in the new phase space, without exten-
ded phase space. Similar phenomena also appear in the
Gauss-Bonnet gravity, as well as in higher dimensional
spacetime [34]. In this study, we find that the coordinate
space {S,Q} is appropriate to eliminate the above diver-
gence, where the new thermodynamic quantity thermal-
charge Q is taken as ¢>. Then, we have

) oU 1
ese T"(@Q)s_%h’ ©
and the first law of thermodynamics and Smarr relation
can be written in terms of the thermodynamic quantities
mentioned above as follows:

dU =TdS +¥dQ,  U=2TS +¥Q). (6)

The following comments concern the above descrip-
tion:

e For the phrase "the coordinate space" mentioned
above, let us make a simple explanation. In classical
mechanics, a system with n degrees of freedom has a 2n
dimensional phase space. In analogy, in a thermodynam-
ic system, the phase space must contain both the conjug-
ated extensive and intensive quantities (or generalized co-
ordinates and their conjugate generalized forces). Here,
the phase space of the RN black hole in our scheme must
be {T.¥,S,0}. For the theory of thermodynamics geo-
metry, we employ a space of generalized coordinates,
such as {T,¥}, {S,0}, {T,Q} and {S,¥} for the RN black
hole.

e The RN black hole has a zero thermodynamic
curvature in the coordinate space {S,q}, indicating that it
is a non-interacting system. This seems to be inconsistent
with our intuitive understanding of the RN black hole. To
address this problem, we introduce a new scheme. By ob-
serving the form of solution of the RN black hole and the
expressions of its related basic thermodynamics quantit-
ies, we find that the parameter of charge appears in the
form of ¢*. Therefore, for simplicity, we regard Q = ¢* as
an independent thermodynamic quantity. Its conjugate
quantity is ¥ = 1/(2r;,) with the simplest form (it is only a
function of the horizon radius r;,, while the electric poten-
tial ¢ = ¢/r; 1s a function of ¢ and r,.). With the help of
such a pair of new quantities, as shown in the following,

we obtain that the RN black hole is indeed an interacting
system in the new coordinate space {S, Q}.

e The new physical quantity ¥ conjugated with Q
does not depend on the charge ¢, which is different from
the electric potential ¢. However, their contributions to
the internal energy of the system are the same, i.e.,
2QY = go. In contrast, according to the idea of the black
hole micromolecule introduced by Wei and Liu in Ref.
[9], we see clearly that ¥ is equal to the number density
of black hole micromolecules in natural units, which is
the inverse of the specific volume defined in Ref. [7].

In the new coordinate space {S,Q}, we show that the
RN black hole is indeed an interaction system and also
provide some fine microstructures of the RN black hole
completely from the thermodynamic point of view, with
the help of the Ruppeiner thermodynamic geometry. The
metric can be written in the internal energy form

2
where X* represents independent thermodynamic quantit-
ies. For the RN black hole, X* are S and Q. The line ele-
ment takes the form

dﬂzidshz or deQ+l o do?, (8
S T S

8uv

C T\60 90

Q
where C,:=T(0S5/dT),=25(S —nQ)/3nQ~S) and we
have used the Maxwell relation (07/0Q), = (0¥/dS),
based on the first law of thermodynamics of the RN black
hole (see Eq. (6)). The line element d/* measures the dis-
tance between two neighbouring fluctuation states in the
state space.

Naturally, we obtain the thermodynamic scalar
curvature

1

R=— o
According to the above formula, we note that the
curvature is not zero, which indicates that the RN black
hole is indeed an interacting system. This is also consist-
ent with our understanding of the electromagnetic interac-
tion between charged black hole molecules. Meanwhile,
this also verifies the rationality of the coordinate space
{S,0} we choose. In light of Egs. (3) and (4), because of
the non-negative requirement of temperature for the black
hole, we have R > 0, which may be related to the inform-
ation of repulsion interactions between black hole mo-
lecules for the RN black hole, i.e., electromagnetic repul-
sion interactions.

We provide some further explanations of the above
obtained results.

A series of studies [29-31] suggested that the RN
black hole has zero thermodynamic curvature. Mean-
while, in Refs. [32,35,36], the authors reported that the
RN black hole has a non-zero thermodynamic curvature.

)
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With regard to the condundrum on whether the thermody-
namic curvature of the RN black hole is non-zero, our
present results are qualitatively consistent with those in
Refs. [32,35,36]. The results show that the RN black hole
has a non-zero and positive thermodynamic curvature.

In Ref. [32], authors calculate the thermodynamic
curvature of the Kerr-Newmann-AdS black hole in the
coordinate space {S,q,J} and subsequently take the zero-
limit of cosmological constant A and angular momentum
J to obtain the non-zero thermodynamic curvature of the
RN black hole. This is a possible approach to solve the
problem of the RN black hole as a non-interacting sys-
tem. Meanwhile, the authors have pointed out that the co-
ordinate space of the thermodynamic geometry of the RN
black hole itself is incomplete. However, the evidence
provided to the above conclusion, stating that the co-
ordinate space of the thermodynamic geometry of the RN
black hole is incomplete according to the degenerated
result of the Kerr-Newmann-AdS black hole, seems in-
sufficient and is questionable. In this study, we treat the
RN black hole as an independent thermodynamic system
instead. We propose another approach, in which a novel
thermodynamic coordinate Q = ¢* is adopted to achieve a
non-zero thermodynamic curvature for the RN black
hole, without the help of the degenerated case of the
Kerr-Newmann-AdS black hole.

In Ref. [35], the geometrothermodynamic scheme
was proposed to obtain non-zero thermodynamic
curvature of the RN black hole. In Ref. [36], authors em-
ployed the redefinition of the internal energy of the sys-
tem to realize non-zero thermodynamic curvature for the
RN black hole (there is a sign difference in the Christof-
fel symbol between this study and our work in the calcu-
lation of the thermodynamic curvature).

Next, we introduce a new quantity, the thermal-
charge density

3rQ
o= 5 (10)

The main reasons behind the introduction of the
thermal-charge density are as follows:

e Because the entropy of a black hole is proportional
to its horizon area, we call this quantity a kind of density
(specifically, surface density).

e Using the thermal-charge density o, we clearly de-
scribe the microstructure of the RN black hole. Mean-
while, the new physical quantity plays a role similar to
the order parameter.

Evidently, 0 <o <3, and at o =3 the temperature
equals zero (extreme black hole). The term 37Q in the
numerator implies the existence of electromagnetic repul-
sion interaction. Meanwhile, the denominator S denotes
the disorder of molecules in a black hole system. The lar-
ger the entropy S, the stronger the disorder of the system,
which leads to more violent irregular thermal motion of

molecules. In the following analysis, we consider the case
of fixed thermal-charge Q. Then, the temperature Eq. (3)
and the thermodynamic scalar curvature Eq. (9) for the
RN black hole can also be expressed as rescaled temper-
ature T, and rescaled thermodynamic scalar curvature R,

T, =4n\JOT = \/g(l—%)

R, =nQR = 2. (11)
3-0

Hence, we obtain three different situations:

e When o = 1, the temperature 7, reaches its maxim-
um 7, = Tiax = 2/(3V3), and the thermodynamic scalar
curvature R,-; = 1/2.

® When O<o <1, we have T,:0— T and R, :
0-—-1/2.

e When 1<o0<3, we have T,:Tpnix—0 and
R, :1/2 — +oo. In particular at o =3, we have T, =0 and
R, = +o0. This situation corresponds to the extreme black
hole.

Here, along the direction of increasing thermal-charge
density o, we show the curve of the temperature 7, and
curvature R, in Fig. 1. We clearly observe that there is an
inflection point in the T,-R, plot, i.e., the maximum
point. Simultaneously, we can observe the existence of
three different phases.

Case 1: free phase— With the increasing of thermal-
charge density o from O to 1, according to Eq. (10), we
deduce that the irregular thermal motion of molecules
plays a major role. We call this situation the free phase.
In contrast, the thermodynamic curvature increases with
the increasing thermal-charge density, which may indic-
ate that the repulsive interaction between black hole mo-
lecules is enhanced. The repulsive interaction between a

0.4} balanced phase

0.31
y
~ 0.2} | free phase
At
0 A
0.0, )
0 2 4 6 8
R
Fig. 1. (color online) Diagram of rescaled temperature 7,

with respect to rescaled thermodynamic scalar curvature R,.
Arrows indicate the direction of the thermal-charge density
increase.
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large number of molecules leads to the existence of inter-
active phase, which suppresses the fiee phase. Thus, there
will be a competitive relationship between the two
phases. However, at the interval o € (0, 1), the firee phase
dominates the whole black hole system, and thus the tem-
perature of the black hole increases.

Case 2: balanced phase— At o =1, the competition
between the free phase and the interactive phase is bal-
anced, such that the temperature of a black hole can reach
a maximum. This also reflects the microscopic mechan-
ism behind the existence of a maximum temperature of
the RN black hole.

Case 3: interactive phase— With the increase in the
thermal-charge density o from 1 to 3, the thermodynam-
ic curvature rapidly increases, which may imply that the
repulsive interaction between black hole molecules is in-
creasing rapidly. At this time, the interactive phase dom-
inates the entire black hole system, which leads to a de-
crease in the temperature of the black hole.

When o =3, we have T, =0 and R, = +oco. This is the
extreme RN black hole, i.e., M =g¢g. At this moment, a
strong repulsive interaction dominates between the black
hole molecules. The entire black hole system is com-
pletely in the interactive phase, and the temperature
equals to zero. Next, we consider the near-extreme cir-
cumstances, i.e., o — 3, where we have the following re-
lation with the help of Eq. (11),

1 3 31, T?

_ - _Zir_Tr 3
Re=7 -5 5 +O(T). (12)

Hence, we obtain

lein()T,R, =1, or AI}anTR = W (13)
That is to say, when the Bogomol'nyi boundary is satur-
ated, although the temperature 7 tends to zero and the
thermodynamic scalar curvature R tends to infinite, the
combination TR of the two is a finite value.

When the thermal-charge density exceeds 3, this situ-
ation corresponds to the case M <g for the RN black
hole. In light of Eq. (1), it is clear that the event horizon
of a black hole does not exist, and the RN black hole be-
comes a naked singularity. From our current point of
view, at that moment of o > 3, according to Eq. (9) or Eq.
(11), we see that the thermodynamic scalar curvature
tends to be negative infinite, which implies that a strong
attraction interaction dominates between black hole mo-
lecules. This causes the entire system to collapse into one
point, i.e., the naked singularity. In this manner, we
provide the thermodynamic micro-mechanism for the
formation of the naked singularity.

At the end of this section, we investigate whether the
black hole has a phase transition. We know that the mi-
cro-mechanism of the phase transition results from the
competition between the interaction among the mo-

lecules that make up the system and the irregular thermal
motion of the molecules themselves. Employing the Rup-
peiner thermodynamics geometry, we can reflect the mi-
cro-mechanism of the black hole phase transition to a cer-
tain extent. According to the theory of the molecular
thermal motion and the significance of the thermodynam-
ic curvature [11,18], the temperature can be regarded as a
measure of irregular thermal motion, while the thermody-
namic curvature can be regarded as a measure of the mo-
lecular interaction.

According to Fig. 2 shows a gap between the free
phase and the interactive phase, where "gap-1" indicates
that the black hole system is dominated by thermal mo-
tion, while "gap-2" indicates that the system is domin-
ated by the interaction. Hence, the RN back hole under-
goes a new phase transition between the free phase and
interactive phase, and the phase transition point is ex-

----- Interaction Thermal motion
2.0 T r ,i :
0
I’
J
1.5F Y ]
" Y,
£ ¥ gap-2
x
o
0.0 0.5 1.0 15 2.0 25
ag
Fig. 2. (color online) Behaviors of dimensionless measure-

ment T,/Tma Of thermal motion and dimensionless meas-
urement R,/R,-; of interaction with respect to thermal-
charge density o

actly at the balanced phase, i.e., the thermal-charge dens-
ity o =1.

3 Summary and discussion

By choosing the appropriate extensive variables, we
show that the RN black hole may contain repulsive inter-
actions. More importantly, with the help of a new quant-
ity, the thermal-charge density, we describe the fine mi-
cro-thermal structures of the black hole in detail. The RN
black hole has three different phases, the fiee phase, bal-
anced phase, and interactive phase. The thermal-charge
density plays a role similar to the order parameter, and
the back hole undergoes a new phase transition between
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the free phase and interactive phase. We also observe that
the competition between the free phase and the interact-
ive phase exists for the RN black hole. In the balanced
phase, the temperature reaches its maximum value. For
the extreme RN black hole, the entire system is com-
pletely in the interactive phase, and the temperature
equals to zero. Furthermore, when the Bogomol'nyi
boundary is saturated, i.e., M = ¢, we obtain an interest-
ing constant, see Eq. (13). Meanwhile, we provide the
thermodynamic micro-mechanism for the formation of
the naked singularity for the RN black hole. This is be-
cause of the strong attraction interaction when M <gq,
which leads the entire system to become a naked singu-
larity.

When o =0, i.e.,, Q =0, the scenario degenerates to
that of the Schwarzschild black hole. For this black hole,
its first law of thermodynamics is dUschwarzschild =
T'schwarzschilddS schwarzschild> @nd the coordinate space of the
thermodynamic geometry has only one quantity
S Schwarzschild - 1 his renders the metric of the thermodynam-
ic geometry singular, and consequently the micro inform-
ation of the associated black hole is not revealed from the
thermodynamic geometry. From this point of view, it is
quite possible that the coordinate space of the thermody-
namic geometry of the Schwarzschild black hole is in-
complete, and we have to analyze some of its micro-be-
havior with the help of the results of other black holes,
such as the RN black hole. According to Egs. (3) and (9),
at Q =0, we obtain the expression of the thermodynamic
scalar curvature with respect to the temperature for the
Schwarzschild black hole

_ 2
Rschwarzschild = 167G o e hitg- (14)

From above formula, we see that the thermodynamic
scalar curvature is positive, i.e., Rschwarzschiid > 0, Which
may be related to the information of repulsive interaction
between black hole molecules for the Schwarzschild
black hole. Because the black hole is not charged, there
will be no electromagnetic interaction, hence the repul-
sion interaction of the black hole is likely to reflect short-
range repulsion between molecules. Details require fur-
ther analysis and discussion.

Finally, we must emphasize several points on the cal-
culation contents of the current paper. First, there is a
general lore that if the microscopic dynamics of a system
are known, its thermodynamical properties can be de-
rived from statistic physics of the system, while the in-
verse process does not hold in general, i.e., the micro-dy-

namics of the system cannot be known from its thermo-
dynamics. However, for black hole systems, because a
complete theory of quantum gravity does not exist (al-
though the most likely candidate theories, string theory
and loop quantum gravity theory, have achieved good
results to some extent), the exploration of the microscop-
ic structure of black holes is bound to speculative as-
sumptions. Meanwhile, the constituents of black holes are
unclear. Hence, in comparison to the methods of study-
ing the usual statistical models, we believe that the in-
verse process mentioned above may be feasible for the
black hole system as a primary description. Second, ow-
ing to the well-established black hole thermodynamics, as
an analogy analysis and a primary description of the mi-
cro-behavior of black holes, the empirical observation,
i.e.,, a positive (or negative) thermodynamic scalar
curvature, implies a repulsive (or attractive) interaction.
Moreover, a vanishing thermodynamic scalar curvature
corresponds to no interaction, and it can provide informa-
tion about interactions of black holes phenomenologic-
ally or qualitatively. Third, the Ruppeiner thermodynam-
ic geometry is based on the Hessian matrix describing the
black hole entropy, in which the thermodynamic poten-
tial plays an important role in the second-order partial dif-
ferential of other independent thermodynamic quantities.
This leads to a completely different result when g or ¢ is
used as an independent thermodynamic quantity. Pos-
sibly, when we treat the charge ¢ as a thermodynamic
quantity, some information may be cancel each other,
while when we treat the charge square ¢> as a thermody-
namic quantity, this information can be displayed. The
Appendix provides the comparison of thermodynamic
metric of the RN black hole under the two schemes.

Furthermore, we hope that our current analysis can be
extended to other types of black holes, especially those
with AdS background, where we can predict that the AdS
background will place the black hole in a new phase. As
reported in the literature [9,11-13,18,37], the Schwarz-
schild AdS black hole contains attractive interactions,
while the charged AdS black hole has both repulsion and
attraction. These issues likewise need to be further ex-
plored in the future.

This research was supported by the Double First-
class University Construction Project of Northwest Uni-
versity. The authors would like to thank the anonymous
reviewers for the helpful comments that significantly im-
proved this work.
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Appendix A: Comments on thermodynamic curvature of RN black hole

In Refs. [29-31], the thermodynamic metric of the RN black
hole in coordinate space {S,q} is

_28(S —ng?) 4nq 4nS

d2 ds?+ dSdg+ dg?. Al
a 3ng*-S ng*—S a4 S —ng? q (A
With the new coordinate
u:@, “1<u<l, (A2)
the above thermodynamic metric reads as in diagonal form
1 48
2__ 1 2 2
Al = =5 d8% + - du. (A3)
Then, under the proper coordinate transformations
g
7= V2§, sin—=u, (A4)
V2
and
t=7cosho, x=r7sinho, (AS)

the thermodynamic metric is finally turned into a Minkowski one

dif = —dr* +7°do? = —dr* +dx°, (A6)

which impiles vanishing scalar curvature in terms of the coordin-
ate space {S,q}.

In our study, the thermodynamic metric of the RN black hole in
the coordinate space {S,Q} is

288 -7Q) .y
dr? = ds
3nQ0-S *

V4
~o-gdsde (A7)

Using the above introduced coordinate u, we can write the thermo-
dynamic metric as

1 2u
dP = ——ds?-
28 1-u?

ds du. (A8)

In comparison with Eq. (A3), we can clearly see that because of
the introduction of Q = ¢* and its conjugated quantity ¥ = 1/(2r;) (it
is only a function of the horizon radius r;,), the thermodynamic
metric that we obtain is always off-diagonal. Hence, the Ruppeiner
geometry in our present scheme is non-trivial. In this manner, we
obtain a non-zero thermodynamic curvature and deduce that the

RN black hole is an interaction system.
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