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QCD phase diagram at finite isospin chemical potential and temperature in
an IR-improved soft-wall AdS/QCD model”
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Abstract: We study the phase transition between the pion condensed phase and normal phase, as well as chiral phase

transition in a two flavor (Ny =2) IR- improved soft-wall AdS/QCD model at finite isospin chemical potential p;

and temperature 7. By self-consistently solving the equations of motion, we obtain the phase diagram in the plane of

u7 and T. The pion condensation appears together with a massless Nambu-Goldstone boson ny, (T¢, ) = 0, which is

very likely to be a second-order phase transition with mean-field critical exponents in the small y; region. When

T =0, the critical isospin chemical potential approximates to vacuum pion mass u{ =~ ny. The pion condensed phase

exists in an arched area, and the boundary of the chiral crossover intersects the pion condensed phase at a tri-critical

point. Qualitatively, the results are in good agreement with previous studies on lattice simulations and model calcula-

tions.
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1 Introduction

Quantum chromodynamics (QCD) at finite isospin
chemical potential u; has attracted an increasing amount
of attention in the study of chiral symmetry breaking
(xSB), as well as the color confinement mechanism of
strong interaction [1]. In the heavy-ion collision, it is still
unclear how the medium evolves through the QCD phase
transition with the finite baryon chemical potential ug
and isospin chemical potential y; at finite temperature
[2]. In astrophysics, the neutron star possesses large im-
balance between the density of neutrons and protons at
very low temperature, which also attracts the researchers'
attention on QCD at finite y; [3].

Several theoretical methods are available to study
QCD phase transitions at finite y;, including the chiral
perturbation theory (yPT) [4-12], Nambu-Jona-Lasinio
(NJL) models [13-21], quark-meson models [22-25], lin-
ear sigma models [26, 27], random matrix models [28,
29], and the perturbation QCD (pQCD) [30, 31]. These
theoretical methods provide us with comparable results of
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the meson condensed phase with non-zero y;. Lattice
QCD (LQCD) is usually considered as one of the most
powerful first-principle calculations to explore non-per-
turbative QCD at finite temperature. However, the notori-
ous negative sign problem of fermion determinant makes
it very difficult to study the system at finite baryon chem-
ical potential up [32, 33]. Fortunately, there is no such
sign problem at finite y; [34], and the LQCD is extens-
ively used in non-zero isospin systems [35-43]. These
studies provide numerical evidence for the proposed
meson condensation phase at finite y;. The u; axis can
roughly be divided into two parts by the point 2mg, with
mg the vacuum pion mass. In the region of 0 < u; < 2my,
the lattice results are consistent with other theoretical
analysis and model calculations. For example, it is shown
that the location of zero temperature critical isospin
chemical potential is u§=my, and it is a second order
transition from the normal phase to pion condensation at
low temperature. At the large yu; region, LQCD is diffi-
cult to control due to the lattice saturation effects [38].
However, we notice that both in the LQCD study [38]
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and NJL study [17], the large y; transition line in 7 — g,
plane would bend towards the y; axis, which is com-
pletely different from others that show tendencies to in-
crease or saturate. For a review on meson condensation
with finite y;, please refer to Ref. [44].

The experimental data and theoretical predictions
suggest that the QGP is probably strong coupled [45-51].
To handle the tough strong coupling problems, the holo-
graphy method [52-55] has been widely applied in many
fields, such as nuclear physics [56-58] and condensed
matter physics [59, 60]. To mimic QCD physics, in the
bottom-up framework, the hard-wall AdS/QCD model
Ref. [61] and soft-wall AdS/QCD model Ref. [62] have
been constructed. In the hard-wall model, the chiral sym-
metry breaking can be well described. However, the lin-
ear Regge behavior of the hadron spectrum is not depic-
ted in the model. The original soft-wall model can de-
scribe the correct Regge behavior of the meson spectrum
by introducing an infrared (IR) suppressed dilaton term.
Also, it is also quite natural to introduce chemical poten-
tial through the 5D gauge field, which is dual to the 4D
conserved current. Thus, it provides a good starting point
to study physics related to linear confinement and chiral
symmetry breaking, both at finite temperature and at fi-
nite densities. We also note a series of studies [63-71],
where holographic QCD was constructed with more
stringy ingredients. The properties of QCD thermody-
namics and chiral phase transition in the Veneziano limit
have been investigated in detail.

In this study, we attempt to investigate the QCD
phase diagram, more concretely, the properties of the pi-
on condensation and chiral condensation, at finite u; and
T in the framework of the soft wall model. The relevant
issues have been studied in the well-known Sakai-Sug-
imoto model in the probe approximation with an external
magnetic field [72, 73]. Actually, in the hard-wall
AdS/QCD model, the pion condensation has been stud-
ied by introducing a baryonic charge in the IR boundary
at zero temperature [74-76]. It has been shown that the
phase transition, between the normal phase and pion con-
densation phase, is of second-order with mean-field crit-
ical exponents and occurs at u§ =my. Efforts have also
been made in the soft-wall framework at finite temperat-
ure [77]. This shows that the phase transition is of first-
order with two both left and right critical y; ata particu-
lar temperature, which are quite different from the hard
wall results. This modified soft wall model is constrained
from the chiral phase transition, and the meson spectrum
of this model is still unclear. Therefore, it remains inter-
esting to investigate the phase transition in a model de-
scribing the experimental meson spectrum. We note that
an IR-improved soft-wall AdS/QCD model, proposed in
Ref. [78], can generate both the chiral spontaneous break-
ing and the linear Regge behavior of the hadron spec-

trum. In particular, the vacuum pion mass mg = 139.6
MeV is well described. Thus, we adopt such an IR-im-
proved soft-wall AdS/QCD model in this study, and we
compare our results with the results of the LQCD and
analytical theories or models.

This paper is organized as follows. In Section 2, we
review the IR-improved soft-wall model and introduce y;
to this model, then derive the effective Lagrangian. In
Section 3, we obtain the equations of motion of scalar,
pseudo-scalar and axial-vector fields, then study the chir-
al transition and pion condensation at finite y; and 7. In
Section 4, we provide a complete phase diagram of chiral
condensation and pion condensation in the y; — T plane.
At last, we present a conclusion and discussion in Sec-
tion 5.

2 IR-improved
with finite y;

soft-wall AdS/QCD model

The IR-improved soft-wall AdS/QCD model [78] is
constructed in the bottom up framework [61, 62] with a
quartic term of bulk scalar and a modified 5D conformal
mass of the bulk scalar field. The background spacetime
of this soft-wall model is the following AdSs spacetime
metric,

ds® = ezA(Z)(nﬂvdx”dx" —dz%), (1)

where " = diag{+1,-1,—1,-1}, z is the holographic radi-
al coordinate and A(z) = -In(z/L) with L the AdS
curvature radius, which will be set to unity for simplicity
in the following calculation.

On top of this background geometry, the soft-wall
AdS/QCD model with N;=2 is constructed with
SUQ)xSUQ2)gr gauge symmetry. The meson sector of
the 5D action can be written as

Sy = f d’x ge *OTH{IDXI> - mi(2)|XI* - X

1
- —(F1 +Fp)}, 2
4g§( 1+ FR)} 2
where g is the determinant of the metric gyy, O(2) = 32>
is the dilaton profile with u,, a constant mass scale ne-
cessary for the Regge behavior of the meson spectrum
[62]. |X>=X"X,|X|* = (XTX)?. g5 is the gauge coupling
that can be determined by comparing the large mo-
mentum expansion of correlator of vector current
Ji=qyut’q in both AdS/QCD and perturbative QCD
[61], where 1 (a =1,2,3) are the generators of SU(2). In
general, the field X, which is a complex 2 x2 matrix val-
ued bulk scalar field, can be decomposed into the pseudo-
scalar meson field n(x,z) = 7%(x,z)t“ and the scalar meson
field S (x,z) = S“*“ in the form of
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X = (Xto +S)62iﬂ+i’7, (3)
where ' = I,/2 and y(z) is related to the vacuum expecta-
tion value (VEV) of the bulk scalar field X by (X) = I,x/2
with I, the 2 x 2 identity matrix.

To obtain a consistent description of both the meson
spectrum and chiral symmetry spontaneously breaking,
the 5D mass mg(z), which relate to the quark mass anom-
alous dimension, can be modified by comparing the ultra-
violet (UV) boundary and infrared (IR) boundary expres-
sion of the equation of motion (EOM) of the VEV of bulk
scalar field [78], expressed as

m3(z) = -3 - .2, 4)
where p. is a free parameter fixed by fitting the meson
spectra. The leading constant term —3 can be determined
from the AdS/CFT dictionary m2(z) = (A—p)(A+ p—4) by
taking p=0 and A =3, which is the dimension of the
dual operator grqr[61].

The covariant derivative DM and chiral gauge field
strength FMY are defined as

L/R
DM = gMX —iAV X +iXAY, (5a)
MN _ aM 4N NaM _raM AN

Frig=0"Apr—0" AL r —ilAL R, AL R], (5b)

where A}, :A‘Z%tzm, and the chiral gauge fields A},
are dual to relevant QCD operators at the boundary by the
AdS/QCD dictionary [61, 62].

For convenience, one can redefine the chiral gauge
fields into the vector gauge field and the axial-vector
gauge field,

AP+AR o AL AR
R R ©
then one has the covariant derivative and transformed
chiral gauge field strength as,

VM

DMX=6MX_1[VM,X]_1{AM’X}9 (73.)

1
P 3 - )
=M AN — N AM —i[vM AN —i[AM VN],  (7b)

1
FYN =§(FQ4N + MYy
=oMyN —gN VM _i[vM yN1—i[AM AN].  (Tc)
Taking the temperature and isospin chemical poten-
tial effects into account, instead of the pure AdSs space,
the AdS/Reissner-Nordstrom (AdS/RN) black hole
should be considered as the bulk background, such that
the metric ansatz is
2 _ 2A®) 2 i dz?
ds? = 2 (f(z)dt —dxdx ——). ®)
f@
For simplicity, we assume the following metric solution
with finite yy,

A(z) = —In(z), (9a)
2.2 2t 2Z6
f@=1=-+yuiz)— +vui - (9b)
Zp Z
2
= 3 = — Z_
v= V3@ = 1 - ) (%)

where y is related to the coupling of V; with gravity,
which can be taken as a free parameter, and we set y = 1.
In contrast to Refs. [74, 75], we will take VS as a back-
ground field other than a dynamical field in the follow-
ing discussion. The temperature can be introduced if there
is a horizon z = z;, where f(z) = 0. The temperature is re-
lated to zj, by the formula

_ 1 |df@
4| dz

where we employ the solution in Eq. (9). By all these
definitions, it is demanded that the outer horizon

Zn < +/2/yu3 toensurepositivetemperatureandz, = /2/yu?

at T =0 other than f=1.

In the case of finite u; and 7, one can verify that S¢,
n*, and n vanish if there are no surplus sources of the cor-
responding operators. The theory indicates the U,(1)
symmetry, which is a subgroup of the isospin S U;(2). As
discussed in Ref. [74], using this U;(1) symmetry,
Vi =A; =0 by choosing the special angle with vanishing
condensation of the n? field and maintaining only the !
condensation. Furthermore, the iso-triplet scalars do not
condense, S“=0. We let I=x', Vj=V;=0,
A} =m=0,n=0, and AJ =0. Under these assumptions,
the effective Lagrangian in the 5D space becomes

A0 (a1’2+a2’2) 1

o= -3 fedA-o (XZH'Z + sz)

1 1
_e3A-0 (Emgxz + §/1X4) +

B 2-— wt%z,%

T =
=2 2nzy,

; (10)

Leff =

KRe3A-0 ( ,
a
2f
— apvsin(2I1) + as? cos*(II) +v* sinz(H)), (11)
where v, a, and a, instead of VJ, A}, and A}, respect-
ively, and ’ indicates the derivative with respect to z.

3  QCD phase transition

In this section, we study the phase transitions among
the pion condensation phase, normal chiral symmetry
breaking phase (ySB), and normal chiral symmetry re-
stored phase (ySR). First, we derive the equations of mo-
tion (EOMs) of the scalar field, pseudo-scalar field, and
axial-vector fields (x(z), II(z), and a;2)(z)). Second, we
numerically solve the EOMs and extract the value of chir-
al condensate and pion condensate according to the holo-
graphic dictionary. Finally, we analyze the properties of
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phases and phase transitions in detail.
3.1 Equations of motion and boundary conditions

In the equilibrium state, the system is homogeneous
everywhere, therefore it is always sufficient to neglect the
fluctuation in the coordinate space. By performing the
functional derivative of the action in Eq. (11), the corres-
ponding EOMs of x(z), I1(z), and a;(2)(z) are extracted as

% (a2 cos?(IT) — azvsin(2ID) + v sin(IT) ~ 112 £?)

eZAX P , f/
—T(m5 2X) (3A - 7x)+x ~0, (12a)
2 —ay? a,vcos(2IT) f
sin(2IT) — —+H’(3A’—(D +
2f2 f? f
el J+11 =0, (12b)
X
24, 2.2
_Ssxa gSfX Do a (A=) +a” =0,  (12¢)
XieHgs (v sin(2I1) - 2a, COSZ(H))
ta’ (A= @) +ay’ =0.
2f
(12d)

No explicit source exsits for the axial vector current, and
a1(z) does not appear in other equations, such that we can
simply set a;(z) =0 [77].

Equations (12a), (12b), and (12d) are coupled nonlin-
ear second order differential equations with multi-singu-
lar points, and they do not have exactly analytical solu-
tions. However, we can numerically solve them. Because
z and f(z) appear in the denominators in Egs. (12), there
are solutions, diverging at UV or IR. However, a physic-
al solution should be finite. Therefore, we will impose the
regularity condition of the fields at both UV and IR.
Around the UV boundary (z=0), we obtain the expan-
sion solutions of x(z), I1(z), and a»(z) as

3

oz 1 1
X(Z) :mq§Z+ T + qug(_#cz + 2,Ug2 + Emééa)

pl
x 22 In(z) + —mq{(yc 2/12 - Emégz)

34
x (ui — 6y~ gmﬁfz)f In(2)+0(), (13a)
2 l 2 2_/_1 2,2\ 4
(z) =m 1z + 57 Ke 2u Sl )2 In(z)
1 A
+g[a26u1+m(—ug+6,u§—u%+Emég“z
8o
(2)]z +OE), (13b)
q

1
ax(2) =ax 2" + 3 (azcgﬁmﬁ{z +4arp; — ﬂ18§ﬂ1m2§2)24

+0(2),
(13c¢)

where m,{, o/, m1, and ay. are integral constants. Ac-
cording to the holographic dictionary, we identify the
coefficients m,, o, and n; as the quark mass, chiral con-
densate, and pion condensate, respectively. The normaliz-
ation constant ¢ = vN,/2x is introduced to match the two
point function {gq(p),gq(0)) from holographic calcula-
tion and 4D calculation [79]. Notice that the external
source is not considered in this work, such that the con-
stant terms of I1(z) and a,(z) are equal to zero. On the IR
boundary (horizon with z=z,), we obtain expansions
solutions as

(/l)(o -2ulz - )(z = Zn)
4z, (u,zh - 2)

_ 2
- X()(Z—Zh)z{zi [a2azn cos(TTo)
2)

X)) =xo +

1627 (,u%zi -

, 3
+2u; sin(Tlp) ) - : Yo+ 232212 + 4

+ (2= i) + 1+ At

— gyl + 8ulpg + 1207 (uf — 1)

— 622 (2 + 42 + 8122 + 15} +0lz-2)’],  (14a)
(z—z1)°
II(z) =l + 5 {[ a3,2; — 43| sin(21p)
32(322 -2)
~ dasaprzcos(2lo) b+ Ollz - 1)) (14b)
(z—z1)°
ax(2) =azi(z—zp) + # {au [g3x52n cos®
4z, (u,zh - 2)
X (To) + 4pigut; 2y, — 8z, + 272, — 42
+ g sinMo) )+ Ol - 2)°) (140)

where xo, Ilp, and apy; are integral constants. In IR
boundary expansions, the factor 1/(u7z; —2) exists in all
the terms except for the leading one, which is related to
the expression of temperature in Eq. (10). When the tem-
perature approaches zero, it will lead to the divergence of
coefficients in IR boundary expansions. Therefore, to ob-
tain reliable results at low temperature, more higher-or-
der terms must be considered, and the numerical steps
must be properly chosen.

By using the UV and IR boundary expansion solu-
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tions, we can numerically solve the EOMs from both
sides with the "shooting method". From the numerical
solutions, we extract all integral constants o, 7y, asc, X0,
Iy, and ap,; from the solutions according to the holo-
graphic dictionary. Through preliminary analysis, we find
that the EOMs contain two independent solutions, corres-
ponding to zero pion condensation 7y =0 (II(z) =0) and
finite pion condensation m; #0 (I(z) #0), respectively.
Other than that, there is a intermediate temperature re-
gion, where it is relatively too high to form pion condens-
ation, but chiral condensation can arise. Hence, it is ne-
cessary to separately discuss these two different solu-
tions in the following contents.

3.2 Chiral condensation

When the pion condensation channel is turned off, in
other words Il(z) = 0, combining EOMs in Egs. (12b) and
(12d), one has that a;(z) must be zero, too. The EOMs
will degenerate to a simple EOM of x(z) as

/ 2A
)(”+(3A’ - - f7) = 67(—3X—y§z2)(+ g)ﬁ) =0. (15)
The UV and IR asymptotic forms of the VEV y(z) near
z=0 and z = z; can be derived as

3
oz 1
X (@2) =mylz+ v + qu§z3 ln(z)( — i+ 2,u§

+§m§§2)+0(z4), (16a)

x0(@—2) (34— 21222 - 6)
4z (1322 -2)

By using the "shooting method", we can numerically
solve Eq. (15) with the boundary conditions given in Eqs.
(16a) and (16b) to study the crossover from the ySB
phase to ySR phase in terms of T at fixed y; r. Then, one
can obtain the profiles of scalar VEV x(z) from the nu-
merical solutions.

For the IR-improved soft-wall AdS/QCD model pro-
posed in Ref. [78], there are two different sets of para-
meters, including my, pg, pte, A, and gs, Case I and Case
II, as shown in Table 1. Using the parameters of Case I,
the meson spectrum is well reproduced. With regard to
Case II, the meson spectrum except for the scalar meson
spectrum is well matched, other than that the 7—p coup-
ling constant and the decay constants of n, p, and a; are
more consistent with experimental data.

For these two cases, we separately study the behavi-
ors of chiral condensation o(u;s,T), as shown in Figs.
1(a) and (b). In Fig. 1(a), the curves of o(uz s, T) almost
maintain a saturated value in the low temperature region
along with small unphysical bumps, and then smoothly
decrease while T increases. Notice that the small unphys-

+O0l(z—z)*]. (16b)

X@) =xo+

ical bump behaviors also can be found in other holo-
graphic models [80]. Because the small bump also exists
in the small y; region, the curves of o(u; r,T), with a set
of different y; s, cross each other in the low temperature
region. The pseudo critical temperature of the chiral cros-
sover transition is identified by the position of the peak of
the susceptibility, d?c-/dT? = 0. The measurement results
are 7.=0.079, 0.100, and 0.117 GeV for p; s =0.400,
0.250, and 0.050 GeV, respectively. There is a tendency
that the higher the pseudo critical temperature, the smal-
ler u; s, which obeys the mechanism that y; and T are
both in favor of restoring the chiral symmetry.

Table 1.
and the relevant decay constants in the IR-improved soft-wall

Parameters insure the self consistence of the meson spectra

AdS/QCD model. Case I accompanies a strange rising-up in the
chiral condensate behavior. Case II is derived without considering
the scalar meson spectrum. Parameters are provided by Ref. [78].

Parameter my/MeV Hg/MeV He/MeV A &5
Case I 3.366 440 1180 33.6 2m
Case I 3.22 440 1450 80 27

0.007f — 11=0.050 GeV ]
0.006F 1=0.250 GeV 4
& 0.005f — u=0.400 GeV
>
8 0.004F o
~ 0.003F 5 02
b ] 0.15
0.002} oo
0001 o (a) 0.05 T(ngv) 0.15
0.000— L .
0.05 0.10 0.15 0.20 0.25
T (GeV)
0.014F — 1=0.195 GeV ]
0012 [ IJ/=O.340 GeV ]
— ! — u=0.450 GeV ]
Fo m
9 . N 04
5 0.006} 5
0004 [ 0.1
0002 L (b) 0.06 0.08 oon(o(;iv)ou 016 018
0.000% . .
0.05 0.10 0.15 0.20 0.25
T (GeV)
Fig. 1. (color online) (a) and (b) dependence of chiral con-

densation o(u; ¢, T) and susceptibility do-/dT (the inside fig-
ure) on temperature with the parameters in Case I and Case
II, with three different fixed isospin chemical potential y; ¢,
respectively. The pseudo-critical point is determined by the
position of the peak of susceptibility, d2o-/dT? = 0
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In Fig. 1(b), the behavior of o(u;f,T) is generally
consistent with with Case I, except for the strange rising-
up behavior in the low temperature region. The pseudo-
critical temperatures are 7.=0.122, 0.139, and 0.155
GeV for urr= 0.195,0.340, and 0.450 GeV, respect-
ively. However, when p; s is lower, the peak susceptibil-
ity is larger; however, there is no such significant differ-
ence in Case I. In addition, when up and y; are both zero,
the pseudo critical temperatures are T.; =0.117 GeV in
Case I and 7., =0.164 GeV in Case I, where the latter is
consistent with results from LQCD simulations [81, 82].
All these behaviors indicate the parameters of Case II
more self-consistently. Therefore, we choose parameters
in Case II for our following studies presented in this pa-
per.

3.3 Pion condensation

When py; is large enough, the U;(1) symmetry is
spontaneously breaking with a massless Goldstone boson
[17]. Although symmetry analysis yields a profile of the
phase transition, the detailed properties with finite yx; and
T are still ambiguous. In this subsection, we study pion
condensation and chiral condensation, as well as their in-
terdependent behaviors.

In Fig. 2, we numerically solve the complete EOMs
of Egs. (12a), (12b), and (12d) to study the properties of
the pion condensation m;(u; ¢, T) and chiral condensation
o(urr,T) in terms of T with fixed pu; r. The behaviors of
mi(uzrf,T) are shown in Fig. 2(b), and along with the in-
crease of T, mi(urs,T) continuously decreases all the way
down to zero at critical points 7., , where T, =0.096
and 0.121 GeV correspond to pu;r=0.202 and 0.450
GeV, respectively. This seems to be a second order phase
transition; to verify the universality classes of the pion
condensation, we numerically fit out the critical expo-
nent, and the results are 8 =0.499 and 0.487, correspond-
ing to py=0.202 and 0.450, respectively, as shown in
Fig. 2(c). These results are very close to 1/2, which in-
dicates that pion condensation in this model belongs to
the class of 4D mean field. There are two probable reas-
ons for this. On the one hand, the exact holographic dual-
ity is based on the assumption of the large N, limit,
however N, =3 is just a rough approximation; on the oth-
er hand, the back reaction of condensations to the back-
ground is also ignored in this AdS/QCD model, and treat
the solution of AdS/RN black hole as the bulk back-
ground. The curves of o(u;f,T) are shown in Fig. 2(a),
where solid lines and dashed lines represent for the solu-
tions with or without pion condensation, respectively.
Compared to 7 (uz¢,T) in Fig. 2(b), we can divide the 7-
axis into two regions by T, . When T > T, , these two
solutions collapse into one; when 0 < T < T, ,, these two
solutions rise up and drop down, respectively, with the pi-

0.015F==z2=====-~ i ]
~~~\\ -_— IJ/If=O.450 GeV
\\ — 1;=0.202 GeV
«; 0.010} N\
[0 ‘\
Q \
© 0.005}
a
0.000 L 1 . i
0.05 0.10 0.15 0.20
T(GeV)
0.015¢
T
o 0.010}
2
K 0.005}
0.000p========m=—mmmmmm— = - (b)
0.04 0.06 008 010 0.12 0.14
T(GeV)
0.008 ) § ' o
o Data p1=0.202 GeV PPl
0.006| o Data u1=0.450 GeV ’ﬁ/’
_____ Fitted Line _~"" AAAAAA
- 0.004 . a
K
0.002
. . . O
0.0005 0.001 0.002 0.004
(T-T)/ T,
Fig. 2. (color online) Chiral condensation (a) and pion con-

densation (b), with fixed isospin chemical potential uy .
The dashed and solid lines correspond to 7 =0 and 7; #0,
respectively. The critical temperatures of pion condensa-
tion are T, =0.0961 and 0.121 GeV for u;y=0.202 and
0.450 GeV, respectively. (c) Red lines fit the data in the crit-
ical region with & =504704 (0.096-T)"4°  and
w1 =343.333(0.121 - Y%7 for p;r=0.202 and 0.450 GeV,
respectively.

on condensation channel turned on or off, which means
that the chiral condensation is depressed by the pion con-
densation. Actually, if more of the quarks and anti-quarks
form the pion condensation, the numbers of them to form
chiral condensation would be lower. This might be the
physical explanation of this effect.

However, pion condensation can also be studied
through another perspective, investigating the depend-
ence of m(u;,Tr) on y; with different fixed temperatures

083106-6



Chinese Physics C Vol. 44, No. 8 (2020) 083106

T¢. The numerical results are shown in Fig. 3, where sol-
id and black dashed lines represent turning on and off the
pion condensation channel, respectively. In Fig. 3(b), pi-
on condensation possesses two critical points (uf, and
i g)> Which divide the figure into three areas, one non-
zero pion condensate region (uj, <py <pj,) in the
middle and two zero pion ‘condensate regions
(O<uy<u§, and p;>pu§,) on both sides. The critical
points are ,[sz =0.170, O.’181, and 0.251 GeV on the left
and Hig= 0.457, 0.777, and 0.891 GeV on the right for
Ty =0.060, 0.075, and 0.120 GeV, respectively. We find
that along with the increasing of Ty, i, and uj, are
close to each other, and the pion condensate is gradually
decreasing, which indicate that there is a critical temper-
ature at which the pion condensate just disappears in all
uy regions, and the pion condensation phase should pos-
sess a raised area in the space of y; and T. In the corres-
ponding middle region (non-zero pion condensation re-
gion) of Fig. 3(a), the chiral condensate is depressed, and
the degrees of depression are relatively proportional to
the strength of pion condensation. In the regions on both
sides, o1 (ur,Ts) behaves the same as the ordinary chiral

0.015 ——-l-\-.n.___L___.__ — 7,=0.060 GeV ]
N.:,;t.\_\ T:=0.075 GeV
7 S — T4=0.120 GeV
o
> 0.010 |
)]
Q
© 0.005
0.000
0.015
Cf§\
2 0.010
e
K 0.005
(b)
0.000 - — Tt T 1- 1 - S
0.2 0.4 0.6 0.8 1.0
u/(GeV)
Fig. 3. (color online) Chiral condensation (a) and pion con-

densation (b), with fixed temperature 7. The dashed and
solid lines correspond to = =0 and x; # 0, respectively. The
left and right critical points of pion condensation are uf, =
0.170, 0.181, and 0.251 GeV, and uf,=0.457, 0.777, and
0.891 GeV, corresponding to 7y =0.060, 0.075, and 0.120
GeV, respectively.

crossover without pion condensation. Finally, we note
that the behavior that m(u;,Ty) with both left and right
critical points also shows in Ref. [38], calculated by
LQCD, and Ref. [77] by a soft-wall AdS/QCD model.
The chiral and pion condensations were separately
studied in the preceding part of this section. However,
there is mutual-interaction between themselves. There-
fore, it is necessary to investigate their interdependence
relationships. Figure 4 shows the dependency between
o, Tp)/oo and m(u, Ty)/og, where oo =o(uy,.Ty),
depicted by the dashed black curve, represents the unit
circle o/og =1, and the absolute chiral condensation is

defined as o = 1/o-2+7r%. With the increase in y;, the

green curve (Ty =0.120 GeV) falls into the circle, the red
and blue curves (T, =0.060 and 0.075 GeV) first show
the enhancement behavior and then drop sharply to zero
when g, is large enough. These curves indicate a tend-
ency that when the temperature is infinitely close to zero,
the dropping line will be infinitely close to the m/0%-
axes, and the enhancement tends to increase infinitely as
yy increases. Moreover, this enhancement only arises
when the temperature is low enough. From the expres-
sion of action and dilaton, we know that when temperat-
ure tends to zero, the dilaton term will approach one as z,
approaches infinity, the soft wall boundary will back to
the hard wall cut, therefore the zero temperature asymp-
totic behaviors qualitatively coincide with the hard wall
results in Ref. [74].

10k-- — T#=0.060 GeV 1
' [7 — 7,=0.075 GeV
~~~~ T/=0.120 GeV
0.8
EO 0.6}
3
0.4}
T=0
(_
0.2}
0.0 e R S E"- =
0.0 0.2 0.4 0.6 0.8 1.0
oloy
Fig. 4. (color online) Interdependence relationship between

o/oog and m1/oo, where oo = (g, Ty). The dashed black
curve represents the unit circle /o = 1. The sharp decreas-
ing line infinitely tends to the y-axis as T — 0.
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4 Phase diagram

To obtain the complete phase diagram on the y; and T
plane, we can let the fixed T, ergodic the entire 7- axis,
and case by case solve the EOMs in Eqs. (12) at a fixed
T;. Then, we can extract the critical point of pion con-
densation, as well as the pseudo critical point of the chir-
al condensation from the solutions, as we did in Secs. 3.2
and 3.3.

However, if we just want to determine the phase
boundaries, case by case solving the full EOMs may be
not necessary. Here, we introduce a more direct method.
From the EOMs in Eq. (12) and the UV expansions solu-
tion in Eq. (13), we know that I1(z) and a»(z) are vanish-
ing small when m; and ay. approach zero. In addition,
through the research in Sec. 3.3, we know that 7; and
ar” change continuously from zero to non-zero values
around the critical point (uf, T.), such that we can ex-
pand TI(z) and a(z) in the critical region, based on the
background of yx(z). Thus, when there is an infinitesimal
perturbation near the critical point (Su;,67T) = (ur — u5,
T -T,), we expand Il(z) and a,(z) and just keep to linear
terms, which is good enough to satisfy the EOMs, and
then the boundary EOMs are derived as

r_

2\ v(6as— 6Tl
STI” + 811 (347 + <D’+i)—v(az—zv):0, (17a)
X f
26241 2(6as — STIv)
5] +6ay (A — )= 557X fz —0.  (17b)

From Eq. (17), we obtain IR-boundary conditions as

wi(z—zp)*(a21zn — 21 Tp) 2

oll(z) =Ily +
o 8(u22—2)

+0[(z-u)°], (18a)
Y
day(z) =ax (zp —2) - %{azﬂh [xoe3
4z; (uzzh - )
+2 (,u%z,% - 2) (2,u§z,% + l)] - ZX%ggull'Io}
+0l(z- )], (18b)

where Iy and ay; are integral constants.

The boundary EOMs in Eq. (17) is a set of linear
second order differential equations, such that we can set
Ilp = 1 and numerically solve the boundary EOMs by us-
ing the IR-boundary conditions in Eq. (18). Only when
(ur,T)=(u$,T.), the conditions of 6I1(z).-o =0 and
6ay(z)|;=0 =0 can be simultaneously satisfied. In Fig. 5,
we numerically test the dependence of the norm

0.035} — T=0.060 GeV
0.030F —— T=0.075 GeV
0.025}
W 0.020}
Z 0015
0.010f
0.005}
0.000bez=cx= cxmmrmmrn=cWenos zmmro= ro=ro- d
-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
(u=1i7);
Fig. 5. (color online) Norm N(e) = VoIl[e] +daz[e] is linearly

proportional to &uy = |(u —p$)/us|, where critical points
#i, = 0.170 and 0.181 GeV correspond to Ty = 0.060 and
0.075 GeV, respectively.

N(e) = /6I1(€)? + Say(€)? on Suy, where € is an infinitely
small number, and it behaves linearly proportional to
Opr = [(ur =5 /4 1|, where p§, ~0.170 and 0.181 GeV
correspond to T = 0.060 and 0.075 GeV, respectively.

In contrast, the U;(1) symmetry is spontaneously
broken by pion condensation, which generates a massless
Nambu-Goldstone boson. To identify the pion mass on
the phase boundary, we can analyze the goldstone mode
in the momentum space, g = (w,q). We expand the Lag-
range in Eq. (11) to squared terms to deduce the EOMs in
the momentum space as

g5%e 2 (ay +w—-v))

ay(A'=®")+al - 7 0, (19a)

H,,+H,(3A,+L’_®,+2i’)+ W-la+Mw-n] _,
f X 2

(19b)

in which we have used the condition that three dimen-
sional momentum ¢ = 0. The massless goldstone mode is
the eigenstate of EOMs in the momentum space [83-85]
with w =m, =0 and y; = uf. In other words, the pion be-
comes massless, and pion condensate forms when y; in-
crease to u¢. Under this condition, Egs. (19) indeed coin-
cide with the boundary EOMs in Eqgs. (17). This proves
that in the pion condensation phase boundary, the mass of
the pion equals to zero, my, (T, u$) = 0.

By solving the boundary EOMs, we obtain the com-
plete phase diagram on the u;-T plane, as shown in Fig.
6. The pion condensed phase region is surrounded by the
red line and x-axis and is a convex shape with a top point
(,u;“top,TC,top) =(0.333,0.129) GeV. The black triangle
points on the red line are obtained by solving the com-
plete EOMs, and this consistency proves that the two

1) The numerical results of ay. are gotten simultaneously with 71 and o, but we only concern about the properties of 7; and o and we just dismiss it in the main

text.
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0.15}
(0.333,0.129) xSR
(0.489,0.176)
< o10f
3 SB
o X BCS?
— . -
0.05k Pion condensed
phase (BEC)
0.00l 40.1460) ) ) )
0.0 0.2 04 0.6 0.8 1.0 1.2
H(GeV)
Fig. 6. (color online) Phase transition diagram of a chiral

crossover and pion condensation in y; -7 plane. The blue
curve is the boundary between the normal ySB phase and
xSR phase. The red curve and the y,-axis surround the pi-
on condensed phase. The gray dashed curve depicts the ex-
trapolated pion condensation boundary in the very low tem-
perature region, and the end point is the critical point,
Hf g =0.146 GeV, at zero temperature. The chiral crossov-
er boundary and the pion condensation boundary meet at
the tricritical point 5 o Tewi) = (0.489, 0.116) GeV. The
extreme point of the pion condensation boundary is
(5 1op> Teop) = (0.333, 0.129) GeV. We suppose the blue
curve below the tricritical point indicates a BEC-BCS cros-
sover. The black triangle points are the critical points of pi-
on condensation, which are obtained by the method in Sec.
3.3.

methods give the same results. Despite the divergence
problem of the expansion coefficients at zero temperat-
ure, we can still infer zero temperature critical point
M§ r_, from the low temperature phase boundary trend,
and we have i 7—o ~0.146 GeV, which is represented by
the end point of the gray dashed line. The zero temperat-
ure critical point coincides well with the results of
M 7_o = mo in the numerical LQCD [41], analytical chiral
pe’rturbation method [4, 12], as well as hard wall
AdS/QCD [74]. In the large u; region, the pion condensa-
tion boundary has a tendency of infinitely approaching to
zero temperature and infinite y;, which means pion con-
densation loses its right side critical point at zero temper-
ature and it is mutual verified with the tendency of en-
hancement studied in Sec. 3.3. The blue line denotes the
boundary of the chiral crossover, and it comes across the
pion condensation boundary at a tricritical point, at which
three phases (pion condensation phase, normal ySB
phase and ySR phase) coexistence terminates, (uf ., Tc.i)
=(0.489,0.116) GeV. The part of chiral crossover bound-
ary, which is in the pion condensation region, apart the
pion condensation region into left and right areas. The
chiral crossover accompanying the chiral symmetry res-
toration can be seen as a signal in the color deconfine-
ment transition (if one supposes that the two transitions

are coincident). This indicates that the left part is a pion
condensed phase (BEC). For the right part, we find that
the structure is quite similar to the study in Ref. [4],
where the right part is a kind of color deconfined
Bardeen-Cooper-Schrieffer (BCS) phase, a Fermi liquid
with cooper pairing formed as a consequence of an at-
tractive interaction between quarks in the isospin channel.
Compared to these studies, it is possible that the right part
in Fig. 6 might represent a kind of BCS phase. However,
we must verify this in a future study.

5 Conclusion and discussion

In this study, we investigated the pion and chiral con-
densations with finite y4; and finite T in the IR improved
soft-wall AdS/QCD model. Under a fixed Ty, we find
that pion condensation includes two critical points separ-
ately located in the small and large y; regions, and simil-
ar behaviors are exhibited in the LQCD in Ref. [38], the
NJL model in Ref. [17], and a solf-wall model in Ref.
[77]. The behaviors of the pion condensation continuous
changes from zero to non-zero and the measured values
of critical exponent B are very close to 1/2, which indic-
ates that the pion condensation is of the second order and
belongs to the 4D mean field class. To further confirm the
order of this phase transition, further studies on the relax-
ation phenomenon may be helpful. However, to obtain a
critical exponent beyond the mean field theory, on one
hand, the large- N, correction should be taken into consid-
eration [86, 87]. On the other hand, a full back-reaction
model including the interaction fo gluodynamics and
chiral dynamics should be considered in a more realistic
holographic model. The relationship between n; and o
indicate that the absolute chiral condensation,
o= Jor+m
tion at high temperatures. Instead, it is first enhanced by
pion condensation, then steeply decreases to zero along
the increasing of y; at the low temperature region. When
the temperature infinitely approaches zero, the enhance-
ment will approach the infinite large pion condensation
region, which coincides with the zero temperature holo-
graphy hard wall results in Ref. [74]. This is because
when the temperature tends to zero, the dilaton term will
approach one as z, approaches zero, such that the soft
wall boundary supports the hard wall cut.

After studying the condensation in detail, we obtain
the QCD phase diagram on the u;—T plane. Here, the
non-zero pion condensation exhibits a convex shape area;
the zero temperature critical point uj ._j ~ my is extrapol-
ated from the low temperature tendency, which coincides
well with the results in Refs. [41, 62, 74]; the chiral cros-
sover boundary interposes the pion condensation region
at the tricritical point, as chiral crossover can be seen as a

cannot be enhanced by the pion condensa-
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signal of the color deconfinement transition, and the chir-
al crossover boundary in the pion condensation region in-
dicates a crossover from BEC to BCS. In addition, the co-
incidence between the boundary EOMs and the mo-
mentum space EOMs at w =0 and y; = u, proves the pi-
on mass my (u5,T.) =0 on the pion condensation phase
boundary.

From the phase diagram, we know that the maximum
pion condensation temperature is Tip =0.129 GeV.
However, the LHC data indicate that the chemical freeze-
out temperature 7., is approximately 0.155 GeV [88],
which is larger than the maximum pion condensation
temperature. This means that no pion condensation forms
as the fire ball expands and cools down. Therefore, it

seems that the pion condensed phase would not affect
heavy-ion collisions at the current stage. However, the
thermal freeze-out temperature Ty, is estimated at
0.1-0.12 GeV [89-92], which is smaller than the maxim-
um pion condensation temperature. It means that the pi-
on condensation could form before the thermal freeze-
out. As a result of the pion condensation, more low en-
ergy spectra of pion would be found in final detection,
and the coherent fraction of pions would increase. Also,
compared to the zero isospin density situation, the equa-
tions of state at finite isospin density would provide cer-
tain corrections. It would be more realistic when apply-
ing the holographic method to neutron stars. We leave
this to a future study.
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