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Abstract: The solutions of the relativistic viscous hydrodynamics for longitudinally expanding fireballs are investig-

ated with the Navier-Stokes theory and Isracl-Stewart theory. The energy and the Euler conservation equations for the

viscous fluid are derived in Rindler coordinates, by assuming that the longitudinal expansion effect is small. Under

the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical

solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous ef-

fect and longitudinal acceleration effect in the longitudinal expanding framework are presented. The specific temper-

ature profile shows symmetric Gaussian shape in the Rindler coordinates. Further, we compare the results from the

Israel-Stewart approximation with the results from the Bjorken and the Navier-Stokes approximations, in the pres-

ence of the longitudinal acceleration expansion effect. We found that the Israel-Stewart approximation gives a good

description of the early stage evolutions than the Navier-Stokes theory.
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1 Introduction

The relativistic hydrodynamic theory provides a good
description of the space-time evolution and many non-
equilibrium properties of quark-gluon plasma (QGP) pro-
duced in heavy ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider
(LHC) [1-4].

There has been excellent progress in solving relativ-
istic viscous hydrodynamics equations analytically with
different approximations and special symmetries as well
as numerically in the recent years [5-36]. These analytic-
al solutions play a very important role in understanding
the evolution dynamics and are good testbeds for numer-
ical solutions.
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Recently, a series of interesting analytical solutions
for longitudinally expanding relativistic perfect fluid
were found by the Budapest and Wuhan group [16, 18,
21-23]. These ideal hydrodynamics solutions combined
with the Buda-Lund model [37] have been utilized for
simulating QGP medium dynamic evolution and readily
reproduced the observed final state multiplicity distribu-
tion and its dependence on beam energy, collision sys-
tem, particle mass, and freeze-out temperature [14, 16,
19, 21, 23, 38, 39].

However, a substantial comparison between the ex-
perimental data and the viscous hydrodynamic simula-
tions found that QGP is a nearly perfect fluid, but it con-
tains a small specific shear viscosity. The shear viscosity
ratio of QGP is very close to the lower bound 1/47 com-
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puted for N =4 super-Yang-Mills (SYM) theory in the
AdS/CFT correspondence [40-43]. In this study, we will
go beyond both the Csorgd-Nagy-Csanad (CNC) solu-
tions and the Csorg6-Kasza-Csanad-Jiang (CKCJ) solu-
tions of the relativistic perfect fluid for longitudinally ex-
panding fireballs [16, 18, 22] and present a perturbation
analytical solution of the longitudinally expanding first-
order (Navier-Stokes limit) viscous hydrodynamic equa-
tions. Furthermore, we present the numerical results of
the second-order (Israel-Stewart limit) viscous hydro-
dynamics equations as a part of the longitudinally ex-
panding fireballs theory based on the assumption of a
small relaxation time [44]. We find that small shear pres-
sure tensor relaxation time 7, approximation solves the
instability problem of the first-order approximation, in-
dicating the stability of the second-order numerical res-
ults. This study provides a self-consistent first-order and
second-order viscous hydrodynamics with longitudinally
expanding dynamics. It can provide a better understand-
ing of the relationship between the viscosity effect and
longitudinal acceleration effect for the medium evolution
in future phenomenological studies.

The remainder of this paper is organized as follows.
In Sec. 2, the 2nd viscous hydrodynamic equations are re-
constructed in Rindler coordinates according to the Land-
au-Lifshitz formalism [11], and perturbation solutions are
presented. In Sec. 3, numerical results of viscous hydro-
dynamics for longitudinally expanding fireball are invest-
igated. Brief summary and discussion are given in Sec. 4.

2 The perturbation solutions to the longitud-
inally expanding flow

We focused on the so-called Rindler-coordinates for
which 7= Vi2-r2 is the proper time and 5;=0.5In
[(A+r/5)/(A—r/t)] is the space-time rapidity, where
X =(,ry,...,rg) and r = \/;rlz [16, 18, 22]. We consider
(1+1) dimensional fluid flow in (1+3) dimensional space-
time since we focus on the perturbation solutions of a
longitudinal expanding fireball with shear viscosity. The
flow 4-velocity field #* in the cartesian coordinates (the
Minkowski flat space-time) for this system is

' = (coshQ,0,0,sinh Q), €))

where flow rapidity Q is a function of space-time rapid-
ity 15 and is independent of proper time 7 [18], with the
4-velocity normalized as u'u, = 1. The second-order hy-
drodynamic equations without external currents are
simply given by

8,T" =0, )

with the energy-momentum tensor T+" = su*u” — pA* + 7+,
where ¢ is the energy density, p is the pressure, g, =

diag(1,—1,—1,—1) the metric tensor, and A*” = g"” —uHu”
the projection operator which is orthogonal to the fluid
velocity. The shear pressure tensor 7*” represents the de-
viation from ideal hydrodynamics and local equilibrium,
it satisfies w7, = 0 and is traceless ﬂj',‘, =0 in the Landau
frame.

The energy density and pressure are related to each
other by the equation of state (EoS),

£=Kp, (3)
where « is usually related to the local temperature [44], in
this case we assume « to be a constant and independent of
the temperature.

The fundamental equations of viscous fluid dynamics
are established by projecting appropriately the conserva-
tion equations of the energy momentum tensor (Eq. (2)).
The conservation equations can be rewritten as,

De = —(g+p)0+o,n”, 4)
and
(e+p)Du® =Vp + 7 Du, — A" V¥, ®)

respectively, where D = u”9, is the comoving derivative
and 0 = 9, is the expansion rate.

In terms of the 14-moment approximation result from
[7, 45], 8,s* >0 reduces the corresponding thermody-
namic forces. The general traceless shear tensor 7 is [7,
41],

1
o =2t -1, [A’;A;MV P+ gﬂ”"H]

— 4 M = or Q0 - 4,0 4,
with the symmetric shear tensor o*” and the antisymmet-
ric vorticity tensor Q*” defined as

1 1
o = (E(AﬁiA;g +AGAL) ~ §A‘“’Aaﬁ)8‘yuﬁ, (6)

(2

1
QY = EM"M(VQW; — Vi), (7)

where 1, 1., 11, A2, A3 are positive transport coefficients
in the flat space time. 5 is the shear viscosity coefficient,
and 7, is the relaxation time for shear pressure tensor cor-
responding to the dissipative currents, respectively. Shear
viscosity ratio n/s of the QGP is very close to the lower
bound of 1/4n computed for a strongly coupled gauge
theory (N =4 SYM) in the AdS/CFT correspondence.
Relaxation time 171, is in fact approximately
(2-1n2)/(2nT) [40-43], where s is the entropy, s# is the
entropy four-current, and T is the temperature. It is cus-
tomary to split 7#”order-by-order in terms of ¢* into a
traceless part. The contribution from higher-order term is
suppressed by the relaxation time 7., and assuming trans-
port coefficients 4, = A, =43 =0 [7, 45], and neglecting
the contribution from higher order 7, terms, one can

084107-2



Chinese Physics C Vol. 44, No. 8 (2020) 084107

show that Eqgs. (4)-(5) can be cast into,

1
De = —(e+p)0+200" 0y = 20770y [A’;A;Da“ﬁ + 504”9} ,
(3)

and
1
(e+p)Du® =Vp+2n (0'““ — T, [AgAﬁDo’yp + 50"’“0]) Du,

1
—2nA®VH (o-,“, — Ty [AZA{,’DO’W + 307“,«9]) )
©

Here, the CKCJ solutions [22] and the perturbation
solutions, both are characterized by the flow velocity
field Eq. (1) in the Rindler coordinates. It is straightfor-

ward to find that co-moving derivative D and expansion
rate 6 can be expressed as [23],

0 1 0
D = cosh(Q —1,)— + —sinh(Q — ;) —, (10)
or 7 ong
and
o 1 0Q
6 = sinh(Q —ny) — + —cosh(Q —n,) —, (11)
or 7 677.?
respectively.

With the help of Gibbs thermodynamic relation and
CNC solutions [16] for systems without bulk viscosity
and net charge current (net baryon, net electric charge or
net strangeness), the hydrodynamic conservation equa-
tions (Egs. (8), (9)) for a longitudinal expanding fireball
in the presence of shear viscosity in the Rindler coordin-
ate can be written as,

T or ' T, Q7 7,
2 ptanh(Q - )2 + ST =420 cosh(Q = 1y) — —LZ Q' [~6.cosh(2(Q = 17,)Y’
or s « K T 6kT2
+(1+7cosh(2(Q = )2 + sinh(2(Q - 7,))Q"], (12)
and
oT or 11
tanh(Q—ny) [T— +TQ' [+ — :—d(ZQ’(Q’ - 1)+ Q" coth(Q — 1)) sinh(Q — 17)
ot ons T
HdTJT ’
+—( tanh(Q — n,)Q" (12 + 24 cosh(2(Q — 7175))
6kT

+Q'(—28 — 46 cosh(2(Q —175)) + 3(5 + 7 cosh(2(Q — 7,))Q))
+ (18 cosh(2(Q — 1)) + (1 =23 cosh(2(Q — 77,)HQHQ”
—-6Q" - 3sinh(2(Q-1,))Q?), (13)

4n . . . .
where I1; = 21 is related to the shear viscosity ratio, Q'
S

approximately characterizes the longitudinal acceleration
of flow element in the medium, and ', Q”, Q® are de-

o . - . 0Q
rivative function of flow rapidity with, Q' = e
s
8’Q »Q
Q" =—,and Q¥ = —.
a3 o

Case A. Bjorken solution, CNC solution, CKCJ solu-

tion under the velocity field Q = An;.

A comprehensive study of the longitudinally expand-
ing fireballs for ideal hydrodynamics was carried out by
Csorgd, Nagy, and Csanad (or CNC family of solutions)
in Refs. [16, 18]. According to the results from the CNC
solutions, the fluid rapidity Q(r,7;) depends on the space-
time rapidity n; alone. For ideal hydrodynamics, one
finds that Q7 =0, Q® =0, [I;=0 and 7,=0, and the
conservation equations, i.e. Egs. (12), (13) reduce to,

oT or
T— +tanh(Q—n,)— + —T =0, (14)
or ons

and

T T
tanh(Q — ;) 2T |+ 9T o, (15)
or on;
(a) For boost-invariant Hwa-Bjorken flow where
Q =ny, tanh(Q-n,) =0, and Egs. (14, 15) have follow-
ing exact solution,
1
T =To(2)", (16)
where T, defines the values for temperature at the proper
time 7¢ and coordinate rapidity n, =0. This is the fam-
ous boost-invariant Hwa-Bjorken solution [12, 13] and
other hydrodynamics variables are functions of the prop-
er time 7.
(b) For a perfect fluid with longitudinal acceleration,
Q(n;), shear viscosity I1; = 0. Egs. (14), (15) reduce to,

70T oT
h(Q - — QY =
tanh( ns) [TBT + ]+ Tan, 0,

:>61nT _ 1-ktanh®(Q—-7n,)
dlnt 1—tanh®>(Q-7n,) K

(17
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For « =1, one finds that the Q' could be either an arbit-
rary constant [16] or a function of n, [22, 39]. For the
former case, one finds that Q(n,) = An,+1n9, here A is an
arbitrary constant and 1 =Q’, 5o is the space-time rapid-
ity shift. The solution of Eq. (17) case is

olnT , T\t 1

g - X = TO= To(?) vy 1Y
this is the well-known CNC exact solutions case (e) that
presented by Csorgd, Nagy, and Csanad in Refs. [16, 18].
Here V(S) is an arbitrary function of scaling function S,
where S can be obtained from the scaling function defini-
tion 19, S =0. The properties and detailed discussion of
this S can be found in Ref. [18] for CNC exact solutions
and in Ref. [46] for Hubble-type viscous flow.

(c) A finite, accelerating, and realistic 1+1 dimension-
al solution of relativistic hydrodynamics was recently
given by Csorgd, Kasza, Csanad and Jiang (CKCJ) with
the condition H(r,) = Q(ny) —n,. For details, see review in
Refs. [22, 39].

Case B. Perturbation solution with Navier-Stokes ap-
proximation.

For a relativistic hydrodynamic in the Navier-Stokes
(first-order) approximation, fluid flow rapidity Q=
Ans = (1+A%)n,, shear viscosity tensor 7*” = 2no*”, shear
viscosity ratio I1; = 4n/3s, the relaxation time 7, = 0. The
last terms in the right side of Egs. (12), (13) disappear
automatically as follow,

oT 0T 1+ I, 1422+ 2*2
T— +tanh(2*,) — + T4 77
or on;

cosh(1*ny)
(19)

K T
and

oT .
tanh(2*n;) [T— +T(1+2%)
or

T oy sinhatny)
on, 1
(20)
However, the reduced conservation equations i.e.,
Egs. (19), (20), including the first-order approximation
are still a set of nonlinear differential equations, which
are notoriously hard to solve analytically. Fortunately,
based on the results from the ideal hydro [21, 38], we
found that the longitudinal acceleration parameter 1* ex-
tracted from the experimental data is pretty small
(0 < A* < 1), which results in a simple antsaz or perturba-
tion solution here.
We assume the longitudinal rapidity perturbation A*n;
is a pretty small numbers here. Usir;g the Taylor series
expansion tanh(1*n,) = A*n, — @) ,

Q1 2 A* 3
() and sinh(A*n,) = A*ns+ (A7)

order O(1*), Egs. (19), (20) yields a partial differential
equation depending on 7 only,

cosh(1*ny) = 1+

, up to the leading

or (A +AHT Iy 1+22*
ST ROT_Talean
or K K T

and the exact temperature solution T'(t,7,) of above equa-
tion is

=5ty (ro)%

(k= Do

700 =Ti1)(2) :

1 _ 1+
X [1 - (T—O) ‘
T
where 7 is the value of proper time, 7T1(n,) is an un-
known function constrained by Eq. (20).

Putting Eq. (22) back to the Euler equation Eq. (20),
up to the leading order O(1*), one gets the exact expres-

sion of T(n;) as follow,
(l—exp [—l/l* (1—1)77%}) I1,
]_ 2 k)

(k=1Do

; (22)

(1
Tl(m)=ToeXP[—§/l (l—z)nf

where T, defines the value of temperature at the proper
time 7y and coordinate rapidity n, = 0. Here if one places
the perturbation solution Eq. (22) back to the energy con-
servation equation Eq. (19), up to the leading order O(1%),
one can obtain the same results.

Finally, substituting Eq. (23) into Eq. (22), the per-
turbation solution of the 1+ 1 D embeding 1+ 3 D relativ-
istic viscous hydrodynamics can be written as,

o\t 1 1
T =To(22) * [exp(——ﬁ*(l——)n?)
T 2 K
1
1 1
__/l* 1—— 2

+ %(2/1* +exp
k=A"—1

—
—QA+ 1)(7—:) “ )] (24)

. 1T
where the Reynolds number is R; — [7, 47].

From the perspective of the pert?fr%ation solution's
structure, the above conditional perturbation solution is
very nontrivial because it is only satisfied when the lon-
gitudinal accelerating parameter 1* < 1 and 7; is not very
large (|ns| < 5); furthermore, it involves two different
transport coefficients and many nonvanishing compon-
ents of the longitudinal expanding properties. To invest-
igate the stability of perturbation solution Eq. (24), we
numerically solved the energy equation Eq. (19) and
Euler equation Eq. (20) with the conditions IT; =0 and
7, = 0, longitudinal accelerating parameter 1* = 0.05, grid
length of proper time A7 = 0.05, grid of space-time rapid-
ity An, = 0.05, and range space-time rapidity n, from 0.0
to 5.0. The perturbation solution and the numerical solu-
tion are compared in Fig. 1 left panel. The difference
between the above two solutions appears to be small,
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(color online) Temperature profile in the Navier-Stokes approximation for different longitudinal acceleration parameters 1*.

Equation of state ¢ = 3p, shear viscosity ratio n/s = 1/4x. Black solid curve is the ideal Bjorken flow for reference, blue solid curve is
the 1st order Bjorken flow. Left panel: The proper time 7 evolution with temperature for n, = 0. Right panel: space rapidity n, evolu-
tion with temperature for r =2 fm/c. Purple curve shows the comparison between the perturbation solution (dashed) and the numeric-
al solution (solid) for ideal flow with A* =0.05, the accuracy is acceptable in the range 0.0 <n, <5.0. Results from the perturbation

solution Eq. (24) and numerical solution for Egs. (12), (13).

which implies that the perturbation solution is special but
a stable one.

The profile of Eq. (24) is a (1+1) dimensional scaling
solution in (1+3) dimensions, and the 7, dependence of
temperature density is of the Gaussian form, see Fig. 1
right panel. Such perturbation solutions implies that for a
non-vanishing longitudinal acceleration parameter 1%, the
cooling rate is larger than that for the ideal case. Mean-
while, a non-zero shear viscosity n makes the cooling rate
smaller than the ideal case [38], see Fig. 1 left panel.
Note that, when 2* = 0 and RS] =0, one obtains the same
solutions as same as the ideal hydrodynamic Bjorken
solution [13]; when A* =0 and R; 1'£0, one obtains the
first-order Bjorken solutions [7, 45]; if A*#0 and
R;' =0, one obtains a special solution which is consist-
ent with the CNC solutions' case (e) in [16, 18], and when
Egs. (14), (15) are solved directly with R;'=0 and
A* #0, one obtains the CKCJ solutions [22].

Case C. Perturbation equations with Israel-Stewart
approximation.

The temperature profile from Eq. (24) shows a peak
at earlier proper time 7 in the Navier Stokes approxima-
tion, see Fig. 1. The source of this acausality can be un-
derstood from the constitutive relations satisfied by the
dissipative currents n#” =2no*”. The linear relationship
between the dissipative currents and the gradients of the
primary fluid-dynamical variables imply that any in-
homogenity of «#, immediately results in dissipative cur-
rents. This instantaneous effect causes the first-order the-
ory to be unstable at earlier times.

The Israel-Stewart (second-order) approximation was
found to be suitable for describing the physical process

happening at earlier times; it describes the counteract of
the acceleration effect and viscosity effect well. However,
it is difficult to solve the the differential equations Egs.
(12), (13) analytically with the Israel-Stewart approxima-
tion. Therefore, we numerically solve the temperature
time dependence Eq. (12) first at n, = 0.0 with the initial
condition 7(0.2,0.0) = 0.65 GeV; here the grid length of 7
is At =0.05 fm. Then, for each 7,, we solve the temperat-
ure rapidity dependence Eq. (13) step by step with the
results from the Eq. (12), and solve these equations to-
gether; the grid length of 7 is A7 = 0.05fm. The temperat-
ure distribution of the thermodynamic quantities (&, 7, p)
in whole (1, 7,) coordinates with initial condition
T (7o, 1150) 1s a Gaussian shape, see Fig. 2. Furthermore, to
compare with the perturbation results from the first-order
approximation, Egs. (12), (13) can be rewritten up to the
leading order O(1*) as follows,

T _ QU+DIy ('+DT  2-In2)M(1 +61°)

TE 3t 3 onTt? ’
(25)
or . [ 2T Ty (-2
L Il G e 26
ons s 3 37 OnT 12 (26)

The above differential equations (25), (26) cannot be
solved analytically. Using the same numerical method as
for the Egs. (14), (15), we solve the above second-order
viscous hydrodynamic equations (25), (26) with the con-

formal equation of state & = 3p and relaxation time

Ty = 22_ 1;2 [40-43] directly in the Rindler coordinates.
T

The numerical results are presented in Fig. 3.
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(color online) Temperature profile in the Israel-Stewart approximation. Left panel: proper time r evolution of temperature for

n, = 0. Black solid curve is the ideal Bjorken flow for reference. Right panel: The space-time evolution of temperature in (7 -n,) co-

ordinates, the longitudinal acceleration parameter 1* = 0.1. Numerical results from Egs. (14), (15).
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(color online) Proper time evolution of temperature density for given primary initial conditions. Left panel: Perturbation res-

ults of temperature profile in the Navier-Stokes approximation (1st) and in the Israel-Stewart theory (2nd). The longitudinal accelera-

tion parameter A1* =0.10. Black solid curve is the ideal Bjorken flow for reference. Right panel: Temperature profile comparsion

between the completely numerical solution (solid curve) with perturbation solutions (dashed curve) in the Israel-Stewart theory for

different 2*, the grid of 7 is Ar =0.05 in the numerical code.

3 Results and discussion

The temperature profiles obtained in the previous sec-
tion are now applied to study the longitudinal expanding
dynamics, the initial condition 7'(7, 150) can be arbitrar-
ily chosen. Following the result from [7], the initial prop-
er time 719=02 fm/c, and initial temperature
To(0.2, 0.0) = 0.65 GeV are used in the calculation.

Figure 1 showed the longitudinal expanding effect de-
pendence on temperature evolution in the Navier-Stokes
approximation. Left panel of Fig. 1 showed the time-de-
pendence of the temperature for different viscosity and
the longitudinal acceleration parameter A*. The black
curve is the ideal Bjorken flow. It was seen that the lar-
ger the longitudinal acceleration parameter A*, the faster

the medium cools down. However, the viscosity effect
slow downs the medium cooling. It is important to note
that there is a peak at early time in 7 in the case of first-
order approximation. Right panel of Fig. 1showed the
space-time rapidity dependence on the temperature at 7 =
2 fm/c. The temperature distribution of ideal Bjorken
flow (black curve) and the Bjorken flow under Navier-
Stokes limit (blue curve) show a flat-plateau shape. The
effect of the longitudinally accelerating expansion,
however, alters the temperature distribution to a Gaussi-
an shape (red and orange curve). In addition, the differ-
ence between the numerical solution (purple solid curve)
and the perturbation solution (purple dashed curve) for
I, = 7, = 0 are presented. One finds that the difference in
the range 0.0 <7, < 5.0 is acceptable.

Figure 2 showed the complete temperature evolution
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for different longitudinal acceleration parameter A* in the
Israel-Stewart approximation. Left panel of Fig. 2 showed
the time-dependence of the temperature. One finds no
peak at the early time of T, the first-order theory signific-
antly underpredicts the work done during the expansion
relative to the Israel-Stewart approximation. One also
finds that the effect of viscosity compensates the effect
from longitudinal acceleration when n/s=1/4r and
A* =0.05; at larger proper time of evolution, the viscous
curve (red dashed) almost overlaps with the Bjorken flow
(black solid). The longitudinal expansion effect make the
medium cool down fast and there is no peak at early time
in T. In the right panel of Fig. 2 shows the temperature
distribution in (7, 7,) coordinates with 2* =0.1.

Thus far, we focused on the study of the temperature
evolution of perturbation solutions through the Navier-
Stokes theories and Israel-Stewart theories independently.
Now, we analyze the difference between these two theor-
ies under the same longitudinal acceleration effect. We
numerically solve the differential equations Eqs. (25),
(26) together with the initial condition T7((0.2, 0.0) =
0.65GeV. The left panel of Fig. 3 showed the comparis-
on of the second-order perturbation solutions, the first-or-
der perturbation solutions and Bjorken solution. The right
panel of Fig. 3 compares the second-order perturbation
solutions and the completely numerical results. For small
A*, we found that the perturbation solutions are stable and
show good agreement with numerical results at large
time.

4 Summary

We have investigated the relativistic viscous hydro-
dynamics for longitudinally expanding fireballs in terms
of the Navier-Stokes theory and Israel-Stewart theory by
embedding 1+1 D fluid into a 1+3 D space-time. The res-
ults obtained in this paper are summarized as follows.

(1) We expand the current knowledge of accelerating
hydrodynamics [16, 18, 22] by including the second-or-
der viscous corrections in the relativistic hydrodynamics
fluid with longitudinally expanding fireballs and general
equation of state. The effect of longitudinal acceleration
increases the thermodynamics evolution rate of the medi-
um while the viscosity effect decelerates the evolution in
the Minkowski space-time.

(2) The perturbation solution from the Navier-Stokes
approximation is explicit and simple in mathematical
structure, and it is consistent with the results from
Ref. [38]. Furthermore, we compared the perturbation
solution and the full numerical solution, which are
presented in Fig. 1 right panel. It shows that the perturba-
tion approximations for Az, are valid in the leading order
accuracy of the longitudinal acceleration parameter A*.
The temperature distribution here indicates a Gaussian

shape in the n; direction.

(3) For small perturbations along the longitudinal dir-
ections, as we presented in Fig. 1 right panel, the perturb-
ation solution from the Navier-Stokes approximation is
stable in the region with 7 > 7 , while it is unstable in the
region 7 < 7y.

(4) The numerical results from the Israel-Stewart ap-
proximation in longitudinal expansion relativistic vis-
cous hydrodynamics solve the causal problem and the
temperature profile in the Rindler coordinate are presented.

There are still many open questions about such per-
turbation solutions and results.

(1) For consistency and stability, the perturbation
solution is meaningful when A* is pretty small and
|1*ns| < 1. For arbitrary longitudinal acceleration para-
meter A%, e.g. [1*|> 1, such perturbation approximations
become unsuitable and we need to solve the differential
equations completely by other numerical method, such as
3+1D CLvisc [33]. In addition, if one treats the fluid
rapidity Q as an unknown function of both the proper
time 7 and space-time rapidity 7, the conservation equa-
tions will be extremely complicated, compared with the
current Egs. (12), (13) even for the Navier-Stokes ap-
proximation, and the analytical solution will be difficult
to arrive at (for more discussion about this issue, see
[18]). (2) To find the new exact solutions of hydrodynam-
ics, it is possible to use the method from the AdS/CFT
theory [48, 49], which provides a method that searches
the exact solutions by expanding in the small and large
proper time 7 limit. (3) The shear pressure tensor relaxa-
tion time 7, assumed above for the second theory is def-
initely oversimplified, and it is only valid for smaller val-
ues of 7,. We acknowledge that this method is imperfect.
(4) The transverse expansion cannot be neglected, espe-
cially during the later stages of the fireball, significantly
changing the observables at RHIC and LHC. In reality,
the expansion of the system will not be purely longitudin-
al, the system will also expand transversally [25, 28]. (5)
It is important to note that the QGP bulk viscosity ratio
Z/s is not zero from the lattice QCD calculation, the bulk
viscosity plays a curial role when the temperature is
greater than 37. [50, 51]. Recently, new solutions of
first-order viscous hydrodynamics for Hubble-type flow
are presented to study the bulk viscosity [52]; however,
the second-order theory of such fluid is still unknown. (6)
In principle, the second-order approximation should de-
pend on a larger number of independent transport coeffi-
cient, e.g. n, T, 41, 42, 43, and, the direction extension
results Egs. (8), (9) from the d,s* > 0 are, in fact, incom-
plete and ad-hoc. To determine these transport coeffi-
cients, microscopic theories, such as kinetic theory should
be studied [53]. (7) Chapman-Enskog expansion and
completely Grid's 14-moment methods [54] could be
used to study the higher order corrections. (8) Recently,
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the Duke group presented a novel method to study the ef-
fective viscosities [44], which points to a new way to
study the shear viscosity and bulk viscosity for QGP. In
the future, we plan to study the above aspects through
more accurate studies in the future.
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