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Abstract: The A mass dependence of the M matrix and its influence on the NA — NN cross-sections are investig-

ated in the one-boson exchange model. Our calculations show that the A mass dependence of the momentum of the

outgoing A and the M matrix affects the calculations of o-ya—ny, especially around the threshold energy.
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1 Introduction

The production and absorption of the A resonance in
heavy-ion collision around the threshold energy has at-
tracted considerable attention in recent years because the
ratio of charged pions which arise from the decay of the
A resonance is assumed to be an observable sensitive to
the symmetry energy at the suprasaturation density [1-4].
Different conclusions concerning the constraints of sym-
metry energy have been obtained with different transport
models [2-7], which stimulate further study of the A pro-
duction and absorption mechanisms, as well as their sens-
itivity to the density region probed by the 7~ /x* ratio. Re-
cently, based on the IBUU calculations, Gao-Chan Yong
[8] claimed that the n~/x* ratio is sensitive to the sym-
metry energy around the normal density, rather than
around the suprasaturation density. The debate concern-
ing the constraints on the symmetry energy at suprasatur-
ation density based on the n~/n" ratio indicates that a
more careful study of the A production and absorption
cross-sections, as well as of the propagation of 7 in the
reaction, are urgently needed.

Generally, in heavy-ion collision at intermediate ener-
gies, the production and propagation of pions follow three
stages: 1) First, As are produced in NN — NA collisions;
2) after about 2 fm/c, which depends on the width of A-
resonances, As decay into nucleons and pions, and fol-
lowing them, As are absorbed through n+N — A pro-
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cesses; 3) As with a longer lifetime and higher energy
participate in the NA — NN reactions. The probability of
these processes is directly related to their cross-sections
or decay widths. Due to the complications in the high-di-
mensional transport models, most of the transport models
adopt Monte-Carlo cascade method to solve the collision
part where the nucleon-nucleon cross sections and decay
widths are the key inputs. For the stages 1) and 2), the
cross-sections and decay widths can be obtained from the
experiments, and there is less ambiguity. However, the
cross-sections of NA — NN in stage 3) cannot be meas-
ured directly, and they have to be calculated using the de-
tailed balance relationship.

One of the popular ways to obtain the NA —» NN
cross-sections is to calculate them from the measured
cross-sections of NN — NA using the detailed balance [9-
16]. The cross-sections of NN — NA in free space have
been measured [17-21], and are well explained by the
one-boson exchange model (OBEM) and the relativistic
Boltzmann-Uhling-Uhlenbeck approach [22-27]. The de-
tailed balance means that the scattering matrix elements
obtained from the time-reversal invariance are equal, i.e.
IMI?f = |M|2ﬂ, where i and f are the initial and final states
of the scattered particles.

Since A is a resonance with a broad mass distribution,
it requires to consider the A-mass effects in the calcula-
tions of the NA — NN cross-sections [9-11, 14, 28, 29].
For example, Danielewicz et al. [10] considered a linear
my dependence of |MJ? (i.e. the A mass dependence of
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IMp|? is ignored Y in the NN — NA process), and ob-
tained the following relationship for the one-A(1232) ab-
sorption cross-section [10, 14, 16, 22, 30, 31],
D
O-N,XA4—>N1N2 =
11 Ip1af?
b g
2 1+6n,n, |p3a(my)|

Vs—my
/ f AT (1)

N/

N,N,—>N;A,

The superscript D means that the NA — NN cross-sec-

tion is calculated using the method proposed by
Danielewicz et al. f(m)) is the A mass distribution, #
takes into account identical of final two nucleons. If the A
mass dependence of |ps4| is also ignored, this leads to the

Wolf et al. formula [11, 12], which we express as,

W 1 1 Ip12l?
TN =—
NASNN TN 1+ 6y, |paa(mp)?
XO—NlNz_’NJAA' (2)

S—ny

where the factor N = fm o, f(m))dm,. The two methods
of calculating o-ya_nn based on Eq. (1) and Eq. (2) have
been discussed in Refs. [11, 12, 14]. It was found that
they can obviously influence the calculation of observ-
ables of heavy-ion collisions, such as the rapidity distri-
bution and flow of pions, at beam energies from 0.8 A
GeV to 1.35 4 GeV. Since both methods ignore the A
mass dependence of |[Mp|? or |ps4|, which is thought to be
very important near the threshold energy, it would be in-
teresting to evaluate the precision of the two methods and
to calculate the NA — NN cross-sections taking into ac-
count the m, dependence of the M matrix and |pa4|.

In this work, we first investigate the A mass depend-
ence of |[MJ? and |p34(mya)| in the framework of OBEM.
The cross-section of NA — NN in free space is directly
obtained from the M matrix element. It is denoted as
o-% A ny-> and is chosen as a benchmark for the methods
proposed in [10-12], i.e. Egs. (1) and (2), for calculating
ona—ny from oyyoya. Finally, the exact results for
ona—ny and the sampling function for the mass of A in
the transport models are given in the framework of
OBEM.

2 Theoretical model

We adopt the OBEM method with the effective Lag-
rangian density for nucleons and A baryons which inter-
act through o, w, p, §, and # mesons [22, 27, 32-34]. Dif-
ferent from Ref. [23], we also include the isovector

mesons p and ¢ in order to describe the isospin asymmet-
ric nuclear matter and the isospin dependent in-medium
NN = NA cross-sections. The cross-section of NN = NA
can be calculated from their M matrix [22]. The element-
ary two-body NN — NA cross-section for a given my
reads

Fmy) = Eps dpy
MTUAF ) Qrp2E; Qr)32E,

x (2m)*6*(p1 + p2 — p3 — pa)IM(ma)2

1 |p3amp)l ———
= M(@mp)|2dQ, 3
64> J sz \/S34|P12|| (o ®)

where IMma)P = grpaay 2 M)l s for the
s

NiN> —>N3A4 process. pio and’ pas(imy) are the center-of-
mass momenta of the incoming (1 and 2) and the outgo-

ing particles (3 and 4). F = /(p1p2)* ~ pip3 = Vsalpal is

the invariant flux factor, s;»=(p1+p2)? and
s34 = (p3+ps)® (s;p=s34=s in free space). The total
cross-section is the elementary two-body cross-section
averaged over the mass distribution of A, i.e.,

1
ON,N,—N;A, —@
|p3amp)l ——
X | dmpadQ————|M(@mp)|? f(mp)
f A Vs12 Vs34lp1al 2)Ff ma
“4)

f(my) is the mass distribution of the A resonance,

2r
Flmy) = 2 )

bid (m(z)’A —m3)? +mxI2(my)

)

Here, mqa is the pole mass of A. The decay width ['(imy)
is taken in a parameteric form [23].
on,A,—N,N, Tor a given value of mp can be exactly cal-
culated as,
B U VSV
MA=NN AR ) 2r)32E, (27)32E)

x 2m)*6* (| + ph — Pl — PDIMya-wnl

1 1 2%
L+6n,n, 6472 J /531 \s12lpy, (ma)
X IMyassnnPdQ, (6)

P, is the momentum of the incoming N or A, and pi, is
the momentum of the outgoing N in the center-of-mass
frame. The M matrix is,

25 +DC2s+ ) ———
;_lesit DEss+ 1) 2
IMyasnnl® = Osst DOsat 1)|M(mA)| , (7

where the A mass is the same for both processes. The ra-

1) The definition of |M|? in this work is different from that in Danielewicz et al. For the convenience, we named the M-matrix from Danielewicz's work as Mp.
There is a following relationship between ours and Danielewicz's, i.e. 4mAm[3\,|/\/(D|2 =M in the following discussions. Thus, the mass independence of IMpl?

means the |M? in this work should linearly increase with the mass of A.
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tio between Eq. (6) and Eq. (4) gives an exact relation-
ship between the cross-sections of NN — NA and

th : :
NA — NN. Thus, oy, . for given my can be written as,

O'Ih _O—N,N2—>N1A4 (2S1 + 1)(2S2 + 1)
NBASNN = 6y, 253+ 1) (284 +1)

JdQIpiPIMGna)P

[ QP ma)l [ 1psaGmiLf (! )IMGr R,

®)
One should note that p}, and p}, are the momenta of N;
(or A4) and N; (or N,) in the center-of-mass of NA — NN,
while pi, and ps4 are the momenta of N; (or N,) and N3
(or A4) in NN — NA. For a given center-of-mass energy
v, Ipi2l = Ip},| for the ingoing and outgoing nucleons, but
|p34l may not be equal to |pj,|, depending on whether the
mass of A is equal in the production and absorption pro-
cesses.

3 Results and discussion

We first check the mass dependence of the extracted
M matrix, i.e. [M(mp)|? , in free space, based on OBEM.
The details of the M matrix calculations can be found in
our previous work [27], and the parameters in the expres-
sion for |[M|> were determined by fitting the measured
cross-sections of pp — nA** [17]. Several groups have
published measured cross-sections of NN — NA [17, 19-
21]. As shown in Fig. 1, there is still an uncertainty of 3-5
mb in the measured cross-sections of pp — nA** around
Vs ~ 2.2 GeV and above 3.0 GeV. Two typical values of
the cross-section of pp — nA**, CERN8401 (blue tri-
angles) [20] and Landolt-Bornstein [17] (red circles),
were chosen to adjust the parameters of the M matrix, and
to understand the uncertainties due to the experimental
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Fig. 1. (color online) o ... as a function of 512 in free

space. The experimental data are from [17, 19-21]. The blue
dash line is the fit of CERN8401 [20] and the red dot line of
the Landolt-Bornstein data [17].

errors, as they are the two extreme cases in the published
data for pp — nA*".

In Fig. 2 (a), we plot the angular integrated isospin in-
dependent M matrix as a function of m, for the total ener-
gies s'/2= 2.1, 2.5 and 3.0 GeV. The shadow regions cor-
respond to the M matrix with the experimental uncertain-
ties obtained from CERN8401 [20] and the Landolt-
Bornstein data [17]. The range of m, is from my +m, to
/s —my, where the maximum value of m, depends on the
energy of the process of NN — NA. The isospin inde-
pendent M matrix is obtained by normalizing the M mat-
rix with the isospin factors, i.e.,

1 251+ 1)2sy+1 —_—
M= f Z|M|2d§2=(s1;+) f IMPdQ. (9)

1

Ii=q. 1s the isospin factor as in Refs. [27, 32], and
I;ge(nA++—>pp) =15’e(pA_—>nn) =2 and ije(otherchannels) =
2/3. As shown in the left panel of Fig. 2, the behavior of
A as a function of my in OBEM clearly shows that
IM(mp)l? depends on my irrespective of the experimental
data used. In order to understand the assumption of mass
dependence of the M matrix in the method of
Danielewicz at al. [10], we also show .Zp = I%fIMDIZdQ
in the inset of Fig. 2(a), which has the same convention as
in Ref. [10] in GeV™. For the energy range selected, our
calculations show that |Mp[* clearly depends on m, in all
mass regions where A can be produced. This can be un-
derstood from the formula for the M matrix, Eq. (22) in
Ref. [32]. For example, the exponent of m, in the M-mat-
rix is roughly m3. For higher energies, the A mass de-
pendence of the M matrix becomes weak, which means
that the assumption for calculating NA — NN in Ref. [10]
is reasonable.

Another point which needs to be investigated is the
mass dependence of |pya(ma)| (here |pya(ma)l is |p34(ma)l)
in Eq. (8). In Fig. 2(b), we present the mass dependence
of |pna(my)| for different energies, where one can see that
|[pyva(ma)| decreases with the mass of A, and that the mass
dependence is much sharper for lower energies than for
higher energies. The panels in Fig. 2 show that both
IM(mp)? and |pya(ma)| in Eq. (8) depend on the mass of
A, especially for lower energies.

Clearly, Fig. 2 shows that the A mass dependence
(which in turn depends on the system energy) of the M
matrix and |pya(ma)| cannot be ignored, and can influ-
ence the accuracy of calculations of the NA — NN cross-
sections based on the detailed balance using Eq. (1) or
Eq. (2). We select three typical values of m, to under-
stand the precision of the different methods of estimating
onasyy: the minimum mass of A (ma = mmina = 1.077
GeV), the pole mass (mga = 1.232 GeV); and mp = 1.387
GeV, which corresponds to the maximum mass of A pro-
duced in heavy-ion collisions with the beam energy of 1
GeV. Since other data give a similar ms dependence of
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Fig. 2. (color online) (a) .# = Iiz [ Z5IMPdQ as a function of m, in free space for the energies s'/? of 2.1, 2.5 and 3 GeV. The insert in
the figure is [lz fleMDlde (GeV‘4) as in Ref. [10]. (b) [pnal as a function of m, in free space.

the M matrix as shown in Fig. 2, we use in the following
the M matrix parameters extracted from the Landolt-
Bornstein data [17].

Figure 3 (a)-(c) present the results of o,a+—pp as a
function of s'/? in free space for my = 1.077, 1.232 and
1.387 GeV. The black solid lines are O'LhA“pr which are
directly calculated from the A matrix element of
NA — NN based on the scattering theory. The red dashed

lines are o-,vl‘gﬁﬁpp obtained with the method adopted by
Wolf et al. [11-13], i.e. Eq. (2), without taking into ac-
count the mass dependence of |pyal. The green dotted
lines are o-nDAﬁqpp obtained by Danielewicz et al. [10], i.e.
Eq. (1), where the mass dependence of |M[? is neglected.
All methods predict a large A absorption cross-section

around the threshold energy of the nA** — pp process

which increases with m,, while opa+—p, decreases with
energy. However, the methods of Wolf [11-13] and
Danielewicz [10] do not reproduce well o+, around
the threshold energy if the A mass is far from the pole
ma=moa = 1.232 GeV. Other channels of NA — NN
give similar results since the differences come only from
the isospin factor.

In order to see the deviations clearly, we present in
Fig. 3(d)-(f) the ratio defined as Ry =o', /0N
(W wy fori=W, o8, o\ fori= D) for different masses
of A. Ry has the same value in all channels of NA - NN
since the contributions from the isospin factor cancel in
the ratio. R; = 1 means the proposed detailed balance can
well describe the NA — NN cross section. Red dashed
lines are the results of o)y v\ /ot . and green dot-

ted lines o, /ol . For my=mga, both methods

free space
80
—— This work |
2 60 \— — Wolf '
é ) | Danielewicz “
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Fig. 3.

(color online) Panels (a)-(c): gya++,, in free space as a function of s'/2 for different detailed balance methods and for three

values of m,. Panels (d)-(f): R, as a function s'/? corresponding to the upper panels.
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reproduce well the values of a-}’,’A_}NN, except for

s12 <22 GeV, where the Danielewicz method is much
closer to the precise result than the Wolf method. If
mp =1.076 or 1.387 GeV, larger deviations are found
near the threshold energy of the NA — NN process (close
to the vertical dashed lines). For example, if m, is close
to the minimum mass of A, both methods in Refs. [10,
11] underestimate the A absorption cross-section for
512 <22 GeV, and the deviation is less than 20% for the
Danielewicz method and larger than 50% for the Wolf
approach. Both methods overestimate the A absorption
cross-section, and the deviation is close to 50% for the
Danielewicz method while the Wolf approach gives the
deviation is less than 40% for s'/2 > 2.5 GeV. In the large
mass region of A, both methods overestimate the A ab-
sorption cross-section for s'/2 <2.47 GeV, but underes-
timate it for s'/2>2.6 GeV. Furthermore, the cross-sec-
tions of NA — NN in free space can be changed by using
different coupling constants [32]. The mass dependence
of the M matrix should exist and cannot be simply ig-
nored near the threshold energy, since the M matrix is de-
termined by fitting the NN — NA data. The above com-
parison suggests that the mass dependence of the M mat-

rix and |pya(ma)| should be taken into account for precise
calculations of the NA — NN cross-sections.

Using the isospin independent matrix .# in Eq. (9),
the cross-section of NA — NN can be expressed as,

S __ L _lpnl i !
NA=NN = 64725 |pya(ma)l 253+ 1254 +1) 1 +6N1Nz( '
10

The form of .# can be found in Ref. [35]. For the
nA*™ — pp and pA~ — nn channels, I? =2, while for the
nA* - np, nA® —nn, pA* — pp, pA® —np channels,
I? =2/3. Hence, the ratio oua=—pp : Tpa-—mn
O pA—snp’ Tnavosmnn & Opas—pp 18 3:3:2:2:1:1. Since the mass
dependence of the M matrix is considered, the mass of A
in the process NN — NA should be sampled by consider-
ing the mass dependence of |M|?>. Therefore, the A mass
should be sampled as,

- OpAr—np -

f Ipna(m))IX It X f(m)y)dm),
mN+m,,

‘/§me
Ipva(ma)| X 2.2 X f(ma)dm

my+m,

P(my) = D

Since the in-medium cross-sections are adopted in the
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Fig. 4.

(color online) Panel (a)-(c): R, as a function of s'/2 for 2p,, different types of detailed balance and three values of m}, in sym-

metric nuclear matter & = 0. Panel (d)-(f): R, as a function of s'/2 for nA** — pp, and (g)-(i) for pA~ — nn, for 2p, and different values

of m};, in asymmetric nuclear matter (¢ = 0.2).
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simulations of heavy-ion collisions, it is necessary to
check the isospin effects and the precision of the calcula-
tions of the in-medium cross-sections of NA — NN using
the methods proposed in [10, 11]. The in-medium cross-
sections of NN — NA are calculated in the same way as
in Refs. [27, 32], and depend on the coupling constants
and isospin asymmetry. As a result of the isospin split-
ting of the in-medium NN — NA cross-section, one can
expect that R, also depends on the isospin asymmetry and
the channel of the NA — NN. In Fig. 4, we present R, as a
function of s'/? for two times normal density (2p,) and
for three m) values. The upper panels are the results in
symmetric nuclear matter, i.e. @ = (0, —pp)/(En+pp) =0.
The panels (d)-(i) are the results in isospin asymmetric
nuclear matter with @ = 0.2, where (d), (e) and (f) panels
are for nA*™* — pp, and (g), (h) and (i) panels are for
pA~ — nn. The selected three values of m are the effect-
ive masses, which depend on the density, isospin asym-
metry, and the charge state of A. Similarly to the results
in free space, the deviations in the low and high A mass
regions are larger than in the pole mass region. and the Ry
values depend on m}, s'/? and the channels of NA — NN.
As shown in Fig. 4 (d) and (g), one can see that the m}
dependence of the M matrix influences the pA~ — nn
cross-section more than that of nA™ — pp near the
threshold energy in neutron-rich matter. The effect of
isospin on R, of in-medium NA — NN can be understood
from the ratio between Eq. (1) and Eq. (8), or between

Eq. (2) and Eq. (8), where the effective mass splitting of
the A and nucleon in the M matrix leads to different R,
for different channels of NA — NN. Hence, the A mass
dependence of the M matrix for in-medium NA — NN
cross-sections also depends on the channels of NA — NN.

4 Summary and outlook

In summary, we have evaluated the methods of calcu-
lating oyamyy from oyy_ya in the framework of
OBEM. Comparing oya—yy obtained with the methods
proposed in [10] and [12] with o, . which is the ex-
act result using the M matrix in OBEM, we showed that
the methods in Refs. [10] and [12] underestimate the low
mass and overestimate the large mass A absorption cross-
sections near the threshold. We found that the mass de-
pendence of the M matrix should be taken into account,
especially around the threshold energy.

The role of accurate calculations of oya_yy 1n trans-
port models of heavy-ion collisions near the threshold en-
ergy should also be investigated, since most of the A res-
onances participating in the processes NA — NN are low
mass As. Another interesting work for the future is to
evaluate the effect of the resonances with a much broad-
er width, which could be useful to better understand the
mechanisms of particle production in high energy heavy-
ion collisions.
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