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Abstract: The Bayesian neural network (BNN) method is proposed to predict the isotopic cross-sections in proton in-

duced spallation reactions. Learning from more than 4000 data sets of isotopic cross-sections from 19 experimental

measurements and 5 theoretical predictions with the SPACS parametrization, in which the mass of the spallation sys-
tem ranges from 36 to 238, and the incident energy from 200 MeV/u to 1500 MeV/u, it is demonstrated that the BNN
method can provide good predictions of the residue fragment cross-sections in spallation reactions.
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1 Introduction

The spallation reaction is a high-energy nuclear reac-
tion in which a target nucleus is struck by a light particle
(for example, p,n, and @) with an incident energy above
50 MeV/u, from which numerous lighter particles (neut-
rons, protons, or various composite particles) are ejected
and form residues lighter than the target nucleus. It oc-
curs in Nature in cosmic radiation and artificially in
particle accelerators. Due to the various applications in
aeronautics and astronautics testing [1], nuclear waste
disposal [2, 3], proton therapy [4, 5] and the experiments
based on the third generation of radioactive ion beam fa-
cilities [6, 7], the study of spallation reactions has attrac-
ted considerable interest.

Driven by the demands of disposal of nuclear waste
and the design of accelerator driven subcritical system
(ADS), systematic experimental measurements of spalla-
tion reactions have been performed at the FRagment Sep-
arator (FRS), GSI, Darmstadt, which cover a broad range
of incident energies (from 200 MeV/u to 1500 MeV/u)
and spallation nuclei from *Fe to “*U. At Lawrence
Berkeley Laboratory (LBL), the spallation reactions of
relatively small systems, ***%Ar and *Ca were measured
[8, 9]. Besides many experimental studies, different the-

oretical models have been developed for nuclear spalla-
tion reactions, in which the prediction of fragment pro-
duction is of great interest. The traditional methods deal
with the spallation reaction as a two-stage processes, in
which the first (fast) stage is described by quasi-free nuc-
leon-nucleon collisions and intranuclear cascades, and the
second stage by de-excitation or fission of the excited
compound nuclei. A number of codes have been de-
veloped to treat the first stage, for example, ISABEL
[10], INCL++ [11-13] and the CRISP code [14]. Models
based on microscopic quantum molecular dynamics have
also been developed [15— 19], which usually combine
statistical de-excitation simulations with the binary decay
code GEMINI [20], or the evaporation-fission code
ABRAO7 [21]. To deal with the compound nucleus
formed at low energies, or its evolution through multi-
fragmentation at high energies, the statistical multi-frag-
mentation model (SMM) has been adopted in Refs.
[22—24]. Methods based on empirical parametrizations
have also been proposed, for example, the SPACS para-
metrization [25], and the semi-empirical parametriza-
tions by Silberberg and Tsao [26], Webber et al. [27],
Waddington et al. [28], or by using the empirical for-
mula based on the scaling phenomena in spallation reac-
tions [29]. Difficulties still exist in predicting the yields
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of residue fragments because spallation reactions occur in
a wide range of incident energies and incident species,
from medium nuclei to heavy nuclei. Furthermore, the
residue fragments are distributed over a large range of
mass and charge numbers.

Neural network methods are a powerful tool for pre-
dicting behavior because they have a strong ability to
learn from known data. They have been widely used in
various areas, such as pattern recognition and machine
learning [30, 31]. Neural network methods have also been
used in nuclear physics, for example for prediction of
nuclear masses [32, 33], nuclear charge radii [34], nucle-
ar B-decay half-lives [35] and fission product yields [36],
and have achieved considerable success. In these meth-
ods, hundreds or even thousands of parameters are used
to achieve a better prediction, which may lead to the
problem of over-fitting. The introduction of the vague
prior for the hyper-parameters can control the complexit-
ies in simulations and avoid the over-fitting problem in
the Bayesian neural network (BNN) methods [37, 38]. In
this article, the BNN method is introduced to predict the
cross-sections of residue fragments in proton induced
spallation reactions. Comparing with the measured cross-
sections of residue fragments in various reactions, it is
shown that the BNN method is a useful tool for studying
the residue fragments from spallation reactions.

2 Brief introduction to BNN

The principle of Bayes' rule is to establish a posterior
distribution from all unknown parameters trained by a
given data sample [38]. The process of BNN starts by de-
fining a prior distribution p(w), which is a probability dis-
tribution for the model parameter w. A set of data
D ={(x1,t1),(x2,12), -+, (x,1,)} 18 prepared, where x; (k =
1,2, --,n) are the input data, which may consist of a group
of parameters. #;, (k= 1,2,---,n) are the output data, which
in this work represent the fragment cross-sections, and »
is the number of training data. The posterior distribution
is updated as,

pw/D) = p(D/w)p(w)/ p(D), (1)
in which the prior probability p(w) denotes the trial distri-
bution based on the background knowledge. In the case
of insufficient information, p(w) changes little and de-
termines the final predictions. The impact of p(w) is
gradually weakened as the number of input data sets is in-
creased. p(w/D) is the posterior distribution. p(D) is a
normalized constant, which ensures that the posterior dis-
tribution is a valid probability density and integrates to
one. p(D/w) is the likelihood function, and it can influ-
ence the prior probability after examining the training
data. In this work, the prior probability of each model
parameter is a Gaussian distribution with zero mean. The

precision (the inverse of the variance) of a Gaussian dis-
tribution is the gamma distribution, as in Ref. [35], which
can make the precision vary over a large range. Optimal
precision is automatically found during the sampling pro-
cess. In this work, the likelihood function p(D/w) is a
Gaussian distribution exp(—y?/2). x* is given by

N S (x, 2
el @

where At, is the standard deviation, which denotes the
noise error of the n—th observable [35]. S(x,w) is the
functional equation of the feed-forward neural network,
which is written as,

H 1
Sy =a+ ). bjtanh{c; + Zd,»,»x,»}, 3)
=1 i=1

where w defines all model parameters a (bias of output
layers), b; are the weights of output layers, c¢; bias of hid-
den layers, and dj; weights of hidden layers. /7 and / are
the numbers of neurons in the hidden layer and the num-
ber of input variables, respectively. A schematic diagram
of a neural network with a single hidden layer, three hid-
den neurons (H=3), and two input variables (/=2) is
shown in Fig. 1.
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Fig. 1.  (color online) A schematic diagram of a neural net-

work with a single hidden layer, three hidden neurons (H =
3) and two input variables (/ = 2).

In this work, for the case of spallation reactions X + p,
the bombarding energy E (in MeV/u), the mass number
(Aproj) and charge number (Z,;) of the projectile nucleus
and the mass number A4, charge number Z, neutron ex-
cess N —Z and pairing effect B, [39, 40] of the fragments
are considered as input, i.e. x; = (Aproj> Zprojp £, A4, Z,
N-Z, B,). The output # (k= 1,2,---,n) is in the form of
lgox, where o are the cross-sections. B, has a simple
form

B, =[(-1)* +(-D"]-A7'/2, 4)

After determining the prior distribution and the mod-
el structure, the posterior distribution of the model para-
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meters can be obtained from the Bayesian principle, after
taking into account the new data D. In the Bayesian neut-
ral network, the quantity of interest is the model predic-
tion that corresponds to the new input data, rather than
the posterior probability distribution of the neural net-
work weights. To predict the new output (S™") corres-
ponding to the new input x"*¥, the Markov Chain Monte
Carlo (MCMC) method is used to approximate the math-
ematical expectation as,

1 K
newy _ D)= — new .
(s f S0P = DS (9
The uncertainty is estimated as AS ™Y = 4/(§new2)_(gnew)2
3 Results and discussion

In the past decades, many spallation reaction systems,
with the incident energy ranging from a few hundreds
MeV/u to above GeV/u, and the mass of the spallation
nucleus from A=36 to above 200, have been experiment-
ally measured, as listed in Table 1. A recent parametriza-
tion, called SPACS [25], was proposed to predict the
cross-sections of residue fragments. To complement the
experimental data, SPACS was used for some reaction
systems where no measured data is available (1166 data

Table 1.

spallation reactions.

The number of measured fragments in 19 measured X+ p

AX +p E/(MeV/u) Numbers Charge Range Reference
361 4 9-17
*Ar+p 546 42 9-17 8]
765 38 9-17
“Ar+p 352 45 9-17 8]
356 48 10-20
“Ca+p 565 54 10-20 9]
763 54 10-20
300 128 10-27
500 136 10-27
*Fe+p 750 148 8-27 [41]
1000 152 8-26
1500 157 8-27
200 96 48-55 [42]
BXe +p 500 271 41-56 [43]
1000 604 3-56 [44]
“Au+tp 800 352 60-80 [45]
b+ p 500 249 69-83 [46]
1000 459 61-82 [47]
"U+p 1000 364 74-92 [48]

Table 2.
using the SPACS parametrization.

The number of fragments in spallation reactions predicted

Ax +p E/MeV/u) Numbers Charge Range
"“Rh+p 800 40 36-41
'Nd + p 700 333 40-60
“Tm+p 600 239 53-69
*'Ta+p 800 375 55-74

*Pbp 600 179 76-82

sets for 5 reaction systems are produced by SPACS, see
Table 2). It should be noted that in spallation reactions,
fission and multi-fragmentation are the two most import-
ant mechanisms for forming residue fragments. Since the
formation of fissile fragments is quite different from the
multi-fragmentation process, the fissile fragments are not
considered in this work.

The data for 23 reactions listed in Tables 1 and 2 were
chosen as the learning set (LS), and the remaining ones as
the testing set (TS) for the reliability of the BNN method.
Two different data sets were selected as TS, i.e. TS1 for
the 800 MeV/u '’Au + p reaction [45], TS2 for the 500
MeV/u Fe + p reaction [41]. Different number of hid-
den nodes, from 34 to 36, were used to find the optimal
hidden nodes.

In Fig. 2 to Fig. 4, the BNN predictions are shown for
800 MeV/u 'Au + p with different hidden nodes H from
34 to 36. In the experiments, only the cross-sections for
fragments with Z > 60 have been measured. It is ob-
served that BNN with H = 34 significantly overestimates
the neutron-deficient fragments for Z < 62, as shown in
Fig. 2, and underestimates those for Z > 67, Fig. 3 and
Fig. 4. BNN with H = 36 underestimates the yields of the
neutron-rich fragments for Z < 61, Fig. 2, and overestim-
ates those for Z = 75 and 76, Fig. 4. BNN with H = 35
predicts best the overall yields, without significant devi-
ation from the experimental data. When Z ofthe frag-
ments is larger than the projectile Z, the cross-sections for
the very neutron-rich isotopes are significantly overestim-
ated.

In Figs. 5 to 7, the BNN predictions for TS2 (500
MeV/u *Fe + p ) with H =34, 35 and 36 are seen to be in
good agreement with the experimental data, except for
Z >23. The cross-sections of the very neutron-rich iso-
topes are over-predicted by about one order of magnitude.
For all five incident energies 300, 500, 750, 1000 and
1500 MeV/u, the change of one or two hidden nodes in-
fluences the results very slightly.

Based on the above analysis of a relatively large spal-
lation system, 197Au, and a medium one, 56Fe, the BNN
method with H = 35 hidden nodes provides the best res-
ults, and is selected in this work as the optimal number of
hidden nodes. The trained parameter sets with H = 35 and
TS1 are used for predictions of the unknown fragment
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Fig. 2. (color online) BNN predictions for selected residue fragments with Z=60 to 65 in the 800 MeV/u ~ Au + p spallation reaction.
Three different numbers of hidden nodes are tested, H = 34 (circles), 35 (triangles), 36 (triangles). The measured results are shown as
black squares.
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Fig. 3. (color online) Similar as Fig. 2, but for Z=66 to 73.
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Fig. 4. (color online) Similar as Fig. 2, but for Z=75 to §0.
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Fig. 5.

(color online) BNN predictions for the 500 MeV/u *Fe + p reaction with H = 34, 35 and 36. The results for the selected

residues Z=10 to 15 are compared to the measured residue fragments [41]. The symbols are the same as in Fig. 2.
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Fig. 6. (color online) Similar as Fig. 5, but for Z= 16 to 21.
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Fig. 7. (color online) Similar as Fig. 5, but for Z =22 to 27.
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cross-sections in four reaction systems, % + p at 1000
MeV/u, **U + p at 1000 MeV/u, “’Ca + p at 763 MeV/u,
and PAr + p at 361 MeV/u. The predictions with the
BNN method are also compared with the SPACS results
and the experimental data, when available.

In Figs. 8 and 9, the results for the residue fragments
in the 1000 MeV/u “*Xe + p spallation reaction are
shown. The measured fragment cross-sections cover a
wide range of charge numbers, from Z = 3 to Z = 56, but
a limited isotope range. The BNN results are in good
agreement with the experimental data for light to heavy
isotopes, where the experimental data are available. The
predictions of the SPACS parametrization for the light
fragments are significantly lower, by about 4 (Z=8) to 5
(Z = 3) orders of magnitude, for medium masses they are
lower by about 2 (Z = 22) to 3 (Z =17) orders of mag-
nitude, but are in good agreement with the experimental
data for heavy residues. There is a good agreement
between BNN and SPACS for Z> 36, except that the
BNN predictions are larger than SPACS for neutron-defi-
cient and very neutron-rich isotopes.

In Figs. 10 and 11, the predicted isotopic cross-sec-
tions for the 1000 MeV/u **U + p reaction are shown. In
[48], only the isotopic cross-sections for the Z > 74 frag-
ments are reported. It can be seen that the BNN results re-
produce the measured data well, while SPACS provides

good predictions only for the residues with Z = 74 to 83,
and significantly overestimates those with Z > 86 on the
neutron deficient side. For the fragments with Z = 54 to
70, BNN predicts a reduction of the peak of the isotopic
cross-section which is much slower than the overall drop.
The shapes of the isotope distributions predicted by BNN
and SPACS are also different. BNN predicts much high-
er cross-sections for the neutron-rich isotopes. This was
also seen in the **Xe system in Fig. 8, which reflects the
lack of cross-section data for neutron-rich isotopes in the
present BNN learning set.

In Fig. 12, the isotopic cross-sections for the 763
MeVu “Ca + p reaction are shown. Compared to the
measured cross-sections, BNN and SPACS reproduce the
experimental data well. For the very neutron-rich frag-
ments with no measured data available, the BNN and
SPACS predictions show a large difference. As men-
tioned above, this difference is due to the lack of data for
neutron-rich isotope cross-sections in the BNN method .

In Fig. 13, the isotopic cross-sections for the 361
MeV/u **Ar + p reaction are shown. *Ar is the smallest
projectile in the training data. A similar result as for the
763 MeV/u “Ca + p reaction is seen, that is both the
BNN and SPACS methods reproduce the measured data
well, whereas for very neutron-rich fragments the BNN
predictions are slightly larger than the SPACS results.
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(color online) BNN predictions (with TS1 and H = 35) (circles) for selected fragments with Z = 3 to 22 in the 1000 MeV/u
Xe + p spallation reaction, compared to the experimental data (squares, from [44]) and the SPACS results (triangles, from [25].

The experimental and BNN error bars are smaller than the symbols.
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Fig. 9. (color online) Similar as Fig. 8, but for Z= 36 to 54.
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Fig. 10. (color online) Predictions of isotopic distributions by BNN (squares) and SPACS (circles) for the 1000 MeV/u “"U + p spal-
lation reaction for Z = 54 to 70 [48]. Experimental distributions are not available for Z < 74. The BNN error bars are smaller than the
symbol size.
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Fig. 11. (color online) Similar as Fig. 8, but for 1000 MeV/u ***U + p and for Z = 74 to 92.
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Fig. 12. (color online) Similar as Fig. 8, but for the 763 MeV/u YCa + p spallation reaction [9]. Experimental data are not available
for fragments with Z < 10.
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Fig. 13. (color online) Similar as Fig. 8, but for the 361 MeV/u *Ar + p reaction with Z=3 to 17 [8].

From the BNN predictions for the 36Ar, 40Ca, 136Xe,

and U spallation reactions, it may be concluded that the
BNN method provides good predictions for the cross-sec-
tions of fragments, except for those that are far from the
measured data. Additional experimental measurements
should reduce the effect of the prior distribution error and
improve the prediction ability of BNN. For simulated re-
actions in a wide range of masses from *Ar to ?*U and
incident energies, it is demonstrated that the BNN meth-
od has a good ability to predict the fragment production
cross-section in spallation reactions.

In most cases, it is seen that the BNN predictions for
neutron-rich fragments are higher than SPACS. To check
these predictions, in particular when there is a large dif-
ference, the empirical relation between the isotopic cross-
section and the average binding energy (B’) is introduced

o = Cexp[(B' - 8)/7], (6)

where C and 7 are free parameters. B’ = (B—¢,)/A de-
notes the average binding energy per nucleon of the frag-
ment. &, is the correction due to the pairing energy

£p = 0.5[(=D)N +(=1)%1gg- A7, @

Based on the canonical ensemble theory, this empiric-
al formula was shown to be reasonable for fragment pro-
duction in multi-fragmentation reactions [49]. Evidence
that this formula is obeyed by both the neutron-deficient
and neutron-rich fragments was given in [50—53]. The
correlation between the BNN and SPACS isotopic cross-

sections and p’ for isotopes with Z =8, 17, and 41 in the
14 GeV *Xe + p reaction, and for Z =11 in the 763 4
MeV “Ca + p reaction, are plotted in Fig. 14. The nucle-
us binding energy was taken from AME16 [54], and &y =
30 MeV was chosen following Ref. [49]. The linear fit of
the correlation between the measured cross-sections and
B’ of the fra%ments is shown by the solid line.

For the "*Xe + p reaction, it is seen that the BNN pre-
dictions obey well the formula in Eq. (6) when Z is relat-
ively small, while for the neutron-rich fragments of the Z
=41 isotope, the BNN predictions are above the empiric-
al formula. The SPACS predictions obey well the empir-
ical formula for the Z = 41 fragments. It is not possible to
conclude if the BNN and the SPACS predictions obey the
empirical formula for the Z = 11 fragments, as there are
only two points. In general, the BNN predictions are
closer to the measured data, which suggests that they
obey the empirical formula better than SPACS. Based on
this analysis, we conclude that the BNN predictions are
satisfactory for fragments with relatively small charge
numbers, while the SPACS predictions are better for frag-
ments with relatively large charge numbers.

It is worth mentioning that other spallation systems
have also been simulated using the BNN and SPACS
parametrization methods (not shown in this articlez), and
that similar results were obtained for the '"*Xe + D, U+
D, “Ca + p and *Ar + p reactions. From the BNN yredic-
tions for the Ar + )2 “Ca + J2 e + p and Py + p
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ation between o and B'.

spallation reactions, it was shown that the BNN method
provides good predictions for the fragment cross-sections,
although improvements should be made for the very neut-
ron-rich isotopes in the case of the 2y system. Further
experimental measurements for the very neutron-rich iso-
topes would help to improve the quality of BNN predic-
tions. It can be concluded that for a wide mass range,
from *’Ca to **U, and a wide incident energy range, from
200 MeV/u to 1500 MeV/u, the BNN method has a good
ability to predict fragment production in spallation reac-
tions.

4 Summary

The BNN method was applied to predict the isotopic
cross-sections in proton induced spallation reactions with
incident energies from 200 MeV/u to 1500 MeV/u. Us-

ing about 4600 isotopic cross-section data, the number of
optimal hidden nodes in the BNN method was determ-
ined as A = 35. The input for BNN includes the incident
energy, the mass and charge numbers of the projectile
nucleus, the mass and charge numbers of the fragment,
the neutron-excess and the pairing effect in the fragment.
Comparing with the experimental data, it was demon-
strated that the BNN method provides a good prediction
of the isotopic cross-sections in proton induced spalla-
tion reactions, in particular for fragments with small
charge number. It is suggested that the BNN method
provides a new tool for predicting the cross-sections of
fragments in spallation reactions, and may contribute to
the related research in nuclear physics, proton therapy,
and nuclear technology.
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