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Abstract: The equation of state (EoS) of dark energy plays an important role in the evolution of the universe and has
attracted considerable interest in the recent years. With the progress in observational technique, a precise constraint
on the EoS of dark energy can be obtained. In this study, we reconstruct the EoS of dark energy and cosmic expan-
sion using Gaussian processes (GP) from the most up-to-date Pantheon compilation of type la supernovae (SNe Ia),
which consists of 1048 finely calibrated SNe Ia. The reconstructed EoS of dark energy has a large uncertainty owing
to its dependence on the second-order derivative of the construction. Adding the direct measurements of Hubble para-
meters H(z) as an additional constraint on the first-order derivative can partially reduce the uncertainty; however, it is
still not sufficiently precise to distinguish between the evolving and the constant dark energy. Moreover, the results
heavily rely on the prior of the Hubble constant Hy. The Hy value inferred from SNe+H(z) without prior is
Hy =70.5+0.5 km s~ Mpc~'. Moreover, the matter density €, has a non-negligible effect on the reconstruction of

dark energy. Therefore, more accurate determinations on Hy and Q,, are required to tightly constrain the EoS of dark

energy.
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1 Introduction

The late time cosmic acceleration is one of the most
important discoveries in modern cosmology and it re-
vives Einstein's cosmological constant hypothesis. Since
the first discovery of cosmic acceleration from type la su-
pernovae (SNe Ia) in the late 1990s [1, 2], it has now
been confirmed by various other independent observa-
tions, such as the large scale structure [3], growth func-
tion [4] and cosmic microwave background radiations [5,
6]. This leads to the final foundation of the standard mod-
el of cosmology, i.e. the cold dark matter plus a cosmolo-
gical constant (ACDM) model. Here, A denotes the cos-
mological constant (or an alternative name dark energy),
which provides a negative pressure and is responsible for
the acceleration of the universe. According to the ACDM
model, the equation of state (EoS) of dark energy is a
constant and does not evolve with cosmos, i.e.,
w= p/p=-1. Although the ACDM model has achieved
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great success, it still confronts some problems, among
which the most important ones are the coincidence prob-
lem and the fine-turning problem [7, 8]. The EoS of dark
energy plays an essential role in the evolution of the uni-
verse. In terms of different EoS of dark energy, several
alternative models have been proposed, such as the mod-
el with a constant w but does not necessarily equate to —1,
the evolving dark energy models, e.g., the Chevallier-Po-
larski-Linder parametrization [9, 10] and various other
parameterizations [11, 12]. In some models the dark en-
ergy is replaced by a scalar field, such as the quint-
essence field [13], phantom field [14] and tachyon field
[15]. The effective EoS of these scalar fields is also
evolving with the cosmos.

The above models depend on the specific parametriz-
ation of dark energy or the scalar fields; thus, they are
model dependent. Moreover, most parameterizations lack
physical interpretation; hence, they are just phenomenolo-
gical. Because we have no prior knowledge on the expli-
cit form of dark energy, reconstructing it in a non-para-
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metric manner is of great importance. Therefore, some
model-independent methods have been proposed, among
which the Gaussian processes (GP) is one of the most
widely used methods. Unlike the best-fitting method that
must have a concrete model to fit the data, the GP meth-
od can reconstruct a theoretical curve from the discrete
data points without evolving any specific model. Since
Ref. [16] first applied the GP method to investigate the
dark energy, it has been widely used and has shown its
applicability in cosmology [17-26]. The advantage of the
GP method is that it does not need the concrete form of
the model; the only assumption is that the observational
data points are drawn from the multivariate Gaussian dis-
tribution.

In this study, we attempt to reconstruct the EoS of
dark energy using the GP method from the latest dataset
of SNe Ia, i.e., the Pantheon compilation [27], which con-
sist of 1048 finely calibrated SNe Ia. The EoS of dark en-
ergy has strong influence on the Hubble expansion rate
H(z) and the deceleration parameter g(z), which will be
simultaneously obtained in the reconstruction. The recon-
structed dark energy depends on the second-order derivat-
ive of the GP (see the next section for details); hence, it
has a large uncertainty. To improve the significance, we
use the direct measurement of Hubble parameters H(z) as
an additional constraint in the GP reconstruction. Be-
cause tensin is greater than 3¢ is the between the Hubble
constant Hy from the local distance ladders [28] and from
the global CMB radiation [6], we will also investigate the
impact of different values of Hy on the reconstruction.

The remainder of this paper is organized as follows.
In section 2, we introduce the methodology and the relev-
ant data used in our analysis. The results along with some
discussions are presented in section 3. Finally, a short
summary is given in section 4.

2 Data and methodology

The Hubble expansion rate H(z) strongly depends on
the contents of the universe and the EoS of dark energy.
In a spatially flat Friedmann-Robertson-Walker universe
dominated by non-relativistic matter (including baryons
and dark matter) and dark energy, the evolution of H(z) is
governed by the Friedmann equation [29]

H(z) = H? {QM(I +2)° +Qaexp [3 fz 1w } (1)
0

1+z

where Hj is the Hubble constant, Q;, and Q, are the nor-
malized density of non-relativistic matter and dark en-
ergy at current epoch, respectively, and w(z) = p(z)/p(2) is
the EoS of dark energy. The normalized co-moving dis-
tance is related to the Hubble expansion rate by [30]

© dz
e = —_—, 2
d.(2) fOE@ @)

where E(z) = H(z)/Hy is the normalized Hubble paramet-
er. From Eq. (2) we have

E@@)= 3)

1
mv
where the prime denotes the derivative with respect to
redshift z. Combining Egs. (1) and (3), we can solve for
w(2),

-2(1+2)d” - 3d.
3ld; ~ Qu(1+2%dPT

w(z) = 4

The acceleration of the universe is often represented
by the so-called "deceleration parameter", which is
defined by ¢(z) = —ia/a®, where a=1/(1+7) is the scale
factor of the universe, and the dot denotes the derivative
with respect to cosmic time. Using H = a/a, the decelera-
tion parameter can be rewritten as

’ 4

H C
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A positive or negative g implies a decelerating or acceler-
ating universe, respectively.

If we know d.(z) as a function of z, E(z) can be ob-
tained from Eq. (3). Similarly w(z) and ¢(z) can be ob-
tained from Egs. (4) and (5), respectively. In a spatially
flat universe, the normalized co-movig distance d.(z) is
related to the luminosity distance Dy (z) by

1 H
de(z) = 1—+Z7°DL<z>. (6)

The luminosity distance can be measured from the bright-
ness of SNe Ia. SNe Ia are often assumed to have an ap-
proximately constant absolute magnitude after the color
and stretch corrections; therefore, they are widely re-
garded as the standard candles. The distance modulus of
SNe Ia can be derived from the observation of light
curves through the empirical relation [31-33]

Hen = mp+aX; —BC— Msp, (7)

where mj, is the B-band apparent magnitude, X, and C are
the stretch and color parameters respectively, and My is
the absolute magnitude. @ and 8 are two nuisance para-
meters. The luminosity distance of SNe la can be calcu-
lated from the distance modulus through the following re-
lation

Dy
ﬂZSIOgIOM—pC+25. (8)

Several SNe Ia samples have been released, among
which the most up-to-date is the Pantheon compilation
[27]. The Pantheon sample is at present the largest
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sample that consists of different supernovae surveys, in-
cluding SDSS, SNLS, various low-z samples, and some
high-z samples from the HST. The total number of SNe in
the Pantheon dataset is 1048, which is about twice that of
the Union2.1 sample [34] and is approximately 40% more
than that of the JLA sample [35]. Moreover, the furthest
SNe reaches approximately z ~ 2.3, and the systematic
uncertainty is further reduced compared with the previ-
ous samples. Usually, the nuisance parameters @ and B
are optimized simultaneously with the cosmological para-
meters or are marginalized over. However, this method is
model dependent; thus, the distance calibrated in one cos-
mological model could not be directly used to constrain
the other models. The Pantheon sample applies a new
method called the BEAMS with Bias Corrections (BBC)
to calibrated the SNe. According to the BBC method, the
nuisance parameters « and 8 are determined by fitting to
an randomly chosen reference cosmology. There is no
special requirement on the reference cosmology;
however, it should not deviate too far from the data. Once
a and B are determined, we can fix them in other cosmo-
logy fits. In the Pantheon sample, the corrected apparent
magnitude mj . =my+aX;-pC arereported. There-
fore, we do not need to do the color and stretch correc-
tions any more; hence, we fix a=8=0 in Eq. (7). The
statistical uncertainty Dy, and systematic uncertainty
Csys are also given in Ref. [27]. The total uncertainty mat-
rix of distance modulus is given by

2;1 = Dy + Csys- (9)

We convert the distance modulus of SNe to the nor-
malized co-moving distance through the relation

1 Hpy, wx
de=———1075". 10
e (10)

The uncertainty of d,. is propagated from the uncertain-
ties of u and Hy using the standard error propagation for-
mula,

X, = D\%,D] +07,D,D;, (11)
where oy, is the uncertainty of Hubble constant, the su-

perscript "T" denotes the transpose of a matrix, D; and
D, are the Jacobian matrices,

n10
D, = diag(anc), (12)
D, = diag|—d (13)
2= g H() Cc|»

where d. is a vector whose components are the normal-
ized co-moving distances of all the SNe Ia in Pantheon,
and diag(v) is the square diagonal matrix with the ele-
ments of vector v on the main diagonal.

To obtain the co-moving distance - redshift relation
from the discrete data points, we use the GP method [19]

to reconstruct the d.(z) function, and the derivatives d..(z)
and d/(z) can be obtained simultaneously in the recon-
struction procedure. The GP can reconstruct a function
y = f(x) from the discrete data points (x;,y;) without as-
suming a particular parametrization of the function f(x).
It assumes that the data points are drawn from the mul-
tivariate Gaussian distribution,

y~NuK(x,x)+C), (14)

where x = {x;}, y = {;}, u is the mean of the Gaussian dis-
tribution, C is the covariance matrix of the data, and
[K(x,x)];j = k(x;, x;) is another covariance matrix that con-
trols the behavior of the reconstructed function. All the
freedoms of GP originate from the choice of the covari-
ance function k(x;,x;). There are several covariance func-
tions available; however, any covariance function should
be symmetric, positive definite, and monotonously de-
creasing with |x; —x;|. In this study, we use the simplest
and most widely used squared-exponential covariance
function defined by

T2 (15)

The hyperparameters oy and / are optimized by maximiz-
ing the marginalized likelihood. For more details on the
GP, please refer to Ref. [19].

It has been noted that although the GP method can re-
construct the function f(x) with a relatively high preci-
sion, the reconstructed derivatives, especially the higher
order derivatives of f(x) have large uncertainty. If there
are observational constraints on the derivatives of the
function, then the uncertainty can be reduced. From Eq.
(3) we can know that d/(z) = 1/E(z) = Hy/H(z); thus, the
direct measurement of Hubble parameters can be used as
an additional constraint on the first-order derivative of
d.(z). Here, we use the 51 H(z) data points (except for Hy)
complied in Ref. [36], which is, to the best our know-
ledge, the largest data sample available at present. These
H(z) data points are measured from two different meth-
ods, i.e., the differential age of galaxies (DAG) method
and baryon acoustic oscillations (BAO) method. Because
the BAO method relies on the cosmological model, to
avoid the model dependence we only use the remaining
31 data points measured from the DAG method.

To normalize H(z), the precise measurement of Hy is
necessary. It is well known that the is greater than 3o
between the values measured from the local distance lad-
ders and that from the global CMB radiation, where the
former gives Hy =73.24+1.74km s~! Mpc~! [28] and the
latter gives Hy = 67.4+0.5kms™! Mpc~! [6]. To investig-
ate the influence of Hubble constant on the reconstruc-
tion, we consider these two different values as the prior
on H,.

)2
k(x;,xj) = a}exp[—u}.
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3 Results and discussions

The publicly available python package GaPP [19] is
used to do the GP reconstructions. First, we reconstruct
from the Pantheon dataset. Then, we add the H(z) data to
make a combined reconstruction. Because w(z) depends
on the matter density parameter Q,,, we fix it to the value
of Planck 2018 results, i.e., Qu; = 0.315 [6]. The impact of
different Q) values on the reconstruction of w(z) will be
discussed later. Note that the other quantities (d.(z), E(z)
and ¢(z)) are independent of Q. The absolute magnitude
of SNe Ia is degenerated with the Hubble constant, and
we fix it to Mg = —19.35, the best-fitting value of ACDM
model.

The GP reconstructions of d.(z), E(z), g(z), and w(z)
from SNe data with prior Hy=67.4+0.5kms™! Mpc~!
plotted in Fig. 1. The blue curves are the reconstructed
central values, and the shaded regions are the 1o and 20
uncertainties. For comparison, we also plot the best-fit-
ting curves of ACDM model, with the best-fitting para-
meters Q) = 0.3, Hy = 68.9 kms~' Mpc~!. Figure 1 shows
that the reconstructions of all the four quantities are well
matched to the ACDM model in low redshift (z < 0.5) re-

gion. However, in the redshift region higher than 0.5, the
reconstructed curves do not agree with the ACDM model.
This disagreement is especially obvious for w(z), which is
more than 20~ deviation from —1 in the intermediate red-
shift region. Owing to the large uncertainties at z > 0.5,
the remaining three quantities (d.(z), E(z), and ¢(z)) are
still consistent with the ACDM model within 20 confid-
ence level.

The GP reconstructions from the same data but with
prior Hy = 73.24+1.74 km s~! Mpc~! are plotted in Fig. 2.
Similar to Fig. 1, the reconstructions of d.(z), E(z), and
q(z) are consistent with the ACDM model within 20~ con-
fidence level, especially in the low redshift region; they
are excellently in agreement with ACDM. However, the
reconstruction of w(z) shows a discrepancy greater than
20 from —1 in the low redshift region; however, it is con-
sistent with —1 in the intermediate and high redshift re-
gions. This is contrary to Fig. 1, which shows the discrep-
ancy from ACDM in the intermediate redshift region.
This implies that the Hj value has a significant impact on
the reconstruction of w(z).

The tension is greater than 30 tension between the
two Hj priors we used here. A wrong Hy prior may lead
to a wrong result on the reconstruction of w(z). It is inter-
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Fig. 1. (color online) GP reconstructions of d.(z), E(z), q(z), and w(z) from SNe, with prior Hy = 67.4+0.5kms™' Mpc~!. The black

dashed curves are the predictions of flat ACDM model with parameters Qy = 0.3, Hy = 68.9 km s~! Mpc™..
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Fig. 2.

esting to see which of the two Hj priors is more consist-
ent with the SNe Ia data. To this end, instead of recon-
structing the normalized comoving distance d.(z), we first
directly reconstruct the un-normalized co-moving dis-
tance D.(z) (and its derivatives) as the function of red-
shift, where

(16)

Because Dy (7) is directly measured from SNe la, D.(z) is
independent of Hy. Because d..(0) = 1/E(0) = 1, we can in-
fer the Hubble constant by

c COD(0)

D0 ™ Dior an

where D.(0) is the derivative of D.(z) at z = 0. Using this
method, we obtain Hy = 70.6+0.5 km s~' Mpc~!, which is
approximately the mean value of the local and global
measurements of Hy. Then, we normalize D.(z) (and its
derivatives) with the inferred Hy and calculate E(z), ¢(2),
and w(z) in the same manner as the previous cases. The
results are plotted in Fig. 3. Now, the reconstructed w(z)
is consistent with —1 within 20~ confidence level in the
entire redshift region, except for a small region near
z~ 1.2. In addition, from the ¢(z) subfigure we see a turn

point at z =0.59%0% where the universe changes from ac-

> 1
D.(z) = Hiodc(z) = 2D,

Hy
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(color online) Same as Fig.1 but with prior Hy = 73.24+1.74 km s~! Mpc™L.

celerating to decelerating. The location of the turn point
is in good agreement with the prediction of ACDM mod-
el.

The reconstructed quantities, especially E(z), ¢(z), and
w(z), which depend on the derivatives of d.(z), have a
large uncertainty in the high redshift region. To reduce
the uncertainty, we combine the SNe Ia with the 31 DAG
H(z) data in the reconstruction, where the inverse of the
normalized H(z) data are treated as an additional con-
straint on the first-order derivative of d.(z). The recon-
struction from the SNe+H(z) data with prior Hy = 67.4+
0.5kms~! Mpc~! and prior Hy = 73.24 + 1.74 km s~! Mpc~!
are plotted in Fig. 4 and Fig. 5, respectively. Compared
with Fig. 1 and Fig. 2, we may see that adding the H(z)
data can partially reduce the uncertainty. However, now
the constructed d.(z) is not consistent with ACDM within
20 confidence level in the intermediate redshift region.
The Hy prior directly affects E(z); thus, it affects the slope
of d.(z). With the small Hy prior, the slope of d.(z) is
small; therefore, the reconstructed d.(z) increases slower
than the prediction of ACDM. On the contrary, with the
large Hy prior, the reconstructed d.(z) increases faster
than the prediction of ACDM. Similar to the SNe only
case, with a small Hy prior, w(z) deviates from —1 in the
intermediate redshift region, while with large Hy prior,
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0.0 0.5 1.0 15 2.0 2.5
z z

Fig. 3. (color online) Same as Fig.1 but with no prior on Hj.

2.0 2.5

Fig. 4. (color online) GP reconstruction of d.(z), E(z), q(z), and w(z) from SNe+H(z), with prior Hy = 67.4+0.5 km s~' Mpc~!. The black
dashed curves are the predictions of flat ACDM model with parameters Qy = 0.3, Ho = 68.9 km s~' Mpc™".

075101-6



Chinese Physics C Vol. 43, No. 7 (2019) 075101

Fig. 5.

w(z) deviates from —1 in the low redshift region.

Finally, we reconstruct d.(z), E(z), q(z), and w(z)
without Hy prior using a method similar to the one men-
tioned above. We directly reconstruct the un-normalized
D.(2), treating the ¢/H(z) data as an additional constraint
on the first derivative of D.(z). Then, we infer Hy and its
uncertainty from the reconstructed D.(z) curve using Eq.
(17). The results are plotted in Fig. 6. The inferred
Hubble constant is Hy=70.5+0.5kms~! Mpc™!, which
agrees with the value inferred from SNe la only. The d.(z)
is excellently in agreement with ACDM model in the en-
tire redshift region, and E(z) is consistent with the ACDM
model within 1o~ confidence level. Compared with Fig. 3,
an obvious difference can be seen in the ¢(z) subfigure.
Except for an unambiguous accelerating-to-decelerating
turn point at z=0.59*093 there is another possible, but
with large uncertainty, turn point near z ~ 1.8. In addition,
¢(z) and w(z) are consistent with ACDM within 20~ confid-
ence level. Therefore, we conclude that the combined
data of SNe+H(z) shows no evidence for the deviation
from the standard cosmological model.

To investigate the influence of Qj; on w(z), we recon-
struct w(z) from SNe+H(z) data with different Q,, values
and without Hy prior. Define the significance of devi-
ation of w(z) from —1 as

(color online) Same to Fig.4 but with prior Hy = 73.24+1.74 km s~! Mpc~!.

w—(=1)

W

(18)

where w and o, are the reconstructed central value and
lo- uncertainty, respectively. We plot o(z) for different
Qy values (€, =[0.27,0.30,0.315,0.33]) in Fig. 7. It is
shown that the Qj, value has a significant effect on the
reconstruction of w(z). For Qy = 0.27, w(z) deviates from
—1 at more than 30 confidence level in the intermediate
redshift region. For Qy =0.3 and Qy =0.33, w(z) devi-
ates from —1 at more than 20 confidence level near
z~ 1.0 and z ~ 0.3, respectively. However, for ), = 0.315,
w(z) is consistent with —1 within 20~ confidence level in
the entire redshift region. It is interesting that the devi-
ation of w(z) from —1 reaches its peak value at redshift
z~ 1.0 for any Q,,. Owing to the large uncertainty of w(z)
in the high redshift region, w(z) is consistent with —1
within 1o uncertainty for all Q,, values. Therefore, a pre-
cise measurement of the matter density parameter €, is
necessary to tightly constrain the dark energy.

Note that the uncertainty of E(z), ¢(z), and w(z) in-
creases sharply beyond redshift z ~ 1.5 owing to the lack
of data points. Adding the H(z) data can partially reduce
the uncertainty; however, it is still unacceptably large.
Especially, the w(z) reconstructed from SNe+H(z) has a
sudden break and the uncertainty blows up near z ~ 2,

o(z) =
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Fig. 6.

Q,, =0.27
, =03 |
Q,, =0315
Q,, =0.33
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0.0 0.5 1.0 15 2.
z
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Fig. 7. (color online) The deviation of w(z) from —1 for dif-
ferent Q,, values.

which is unreasonable. This limiatation of the GP meth-
od has already been noted in Ref. [19]. To overcome this
flaw, more data points in the high redshift region must be
considered.

Recently, Zhang and Li [21] used the Union2.1 and
JLA compilations of SNe Ia combined with the H(z) data
to reconstruct the dark energy in the redshift region z <
1.5. They found that the Union2.1+H(z) and JLA+H(7)

(color online) Same as Fig.4 but with no prior on Hy.

data give similar results, i.e., slight dynamical dark en-
ergy can be observed for both; however, the constant dark
energy cannot be excluded. They also investigated the ef-
fect of Hy and Q, on the construction, and they showed
that Hy has a notable influence on the results; however,
the influence of Qy, is slight. In our work, with the most
recent SNe Ia data, we reconstructed the dark energy up
to redshift z ~ 2.5 and obtained similar results to those in
Ref. [21]. However, our results show that the effect of
both Hy and Q,, is non-negligible on the reconstruction of
dark energy. This difference may be caused by the reduc-
tion of the uncertainty at z < 1.5. From Fig. 7, we see that
Qy value only affects the result bellow z ~ 1.5. Beyond
z~ 1.5, owing to the large uncertainty, the influence of
Qy 1s negligible.

4 Summary

In this study, we reconstructed the EoS of dark en-
ergy and the cosmic expansion from SNe la using the
non-parametric method. To improve the significance, we
also added the direct measurement of Hubble parameter,
H(z) data, to construct a combined reconstruction.
However, even with the H(z) data, the reconstruction still
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has a large uncertainty in the high redshift region. It was
found that the H, value has a strong effect on the recon-
struction. Without Hy prior, the inferred Hubble constant
from the combination of SNe+H(z) data is Hy=70.5+
0.5 km s™! Mpc™!, thus alleviating the tension between the
local and global measurements of Hy. We have also in-
vestigate if the matter density parameter, Qy, has some
influence on the reconstruction. It was shown that the re-

construction of w(z) strongly depends on Q,,. With the in-
ferred Hubble constant and the Planck 2018 matter dens-
ity parameter (€, = 0.315), the reconstructed w(z) is con-
sistent with ACDM model within 20~ confidence level.
With the current observational accuracy, it is still prema-
ture to distinguish between the evolving and constant
dark energy.
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