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Abstract: We study the quark-antiquark scattering phase shift and meson spectral function in the pion superfluid de-
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1 Introduction

The study of QCD at finite isospin density and the
corresponding pion superfluid phase is related to the in-
vestigation of compact stars, isospin asymmetric nuclear
matter, and heavy-ion collisions at intermediate energies.
When the isospin chemical potential is larger than the pi-
on mass u; > M, then the quark and antiquark form co-
herent pairs and condense on a uniform Fermi surface [1-
23]. Inside the pion superfluid phase, a smooth crossover
appears between the Bardeen-Cooper-Shrieffer (BCS)
condensation of fermions with large and overlapped pairs
and the Bose-Einstein condensation (BEC) of molecules
with small and distinguished pairs [13, 24-27]. The equa-
tion of state for a pion superfluid with a large pion con-
densate [2, 8, 28] will be stiff and may be used to de-
scribe the massive compact stars.

The NJL model [29-34], which is inspired by the BCS
theory, describes well the quark pairing mechanisms. In
this model, quarks are elementary particles, and mesons
are quantum fluctuations. The fluctuations' contribution
to the thermodynamics of the quark-meson system can be
expressed at the mean field level for quarks and with the
random phase approximation (RPA) for mesons, in terms
of the bound states and scattering phase shifts of quark-
antiquark pairs [35, 36]. This result appears to be more
general than for application in the NJL model, as it re-
sembles the Beth-Uhlenbeck formula for the second viri-
al coefficient for a gas of non-relativistic particles [37,
38] and relativistic particles [39]. Recently, the relativist-
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ic approach was extended to describe the thermodynam-
ics of color superconductivity by Blaschke et al. [40]. At
finite isospin density, taking into account all possible
channels of the bubble summation in the RPA, the NJL
model successfully describes the pion superfluid phase,
especially the Goldstone mode corresponding to the spon-
taneous breaking of isospin symmetry [13]. Previous
studies of the meson mass spectra in the pion superfluid
phase treat mesons as bound states [6, 7, 13, 17, 41-46].
These include the NJL model, linear o model, and LQCD
simulations. However, in a medium where the meson
mass exceeds two times the quark mass, the meson can
decay into its constituent quark-antiquark pair. It is thus
not a stable bound state, but rather a resonant state.

In this paper, we study the quark-antiquark scattering
phase shift and its relation to the meson spectral function
in pion superfluid phase within frame of the NJL model.
When isospin symmetry is spontaneously broken, the
new eigenmodes of the superfluid system are no longer
the ordinary mesons with fixed isospin quantum numbers,
but their linear combinations. Such strong meson mixing
makes it impossible to define the quark-antiquark scatter-
ing phase shift and the meson spectral function for a fixed
isospin channel. However, the whole phase shift and
spectral function can be defined, which is relevant to the
thermodynamics of the quark-meson system. We will dis-
cuss the relations among the meson propagator pole,
quark-antiquark scattering phase shift, and the meson
spectral function in the NJL model in Section 2. Further,
we show numerical calculations in normal and pion su-
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perfluid phases and analyze the physical mechanisms in
Section 3. Finally, we provide a summary of this study in
Section 4.

2 Meson spectra in pion superfluid

The Lagrangian density of the two-flavor NJL model
at quark level is defined as follows [30-34]

L=§(iy"0,—mo+pyo) ¥+ GLW@W) + @iystw)'l. (1)

my is the current quark mass, characterizing the explicit
chiral symmetry breaking. The quark chemical potential
p = diag (uy, pa) = diag (ug/3 + pr/2,up/3 - p1/2) isa mat-
rix in the flavor space, with u, and p, as the u- and d-
quark chemical potentials and pp and y; as the baryon and
isospin chemical potentials. G is the four-quark coupling
constant with dimension (GeV) in the scalar/pseudo-
scalar channel, which controls the spontaneous breaking
of chiral symmetry and isospin symmetry. 7; (i = 1,2,3)
are the Pauli matrices in the flavor space.

At zero isospin chemical potential, the Lagrangian
has the symmetry of SU;(2)(X) S U4(2) corresponding to
isospin symmetry and chiral symmetry, respectively. At
finite isospin chemical potential without pion condensa-
tion, the isospin symmetry SU,(2) and chiral symmetry
SUA(2) are explicitly broken to U;(1) and Uy(1), respect-
ively. Therefore, the chiral symmetry restoration at finite
isospin chemical potential depict the degeneracy of o~ and
mo mesons only, while the charged pions 7. still behave
differently.

The order parameters for the spontaneous breaking of
chiral and isospin symmetry are the chiral condensate (o)
and pion condensate (rr),

(o) = (),
() = N2UiysToth)

with 7, = (11 £ i12)/ V2.

Assuming that both condensates are real, the quark
propagator in mean-field approximation can be ex-
pressed as a matrix in the flavor space [13],

_ i+ uyo— My 2iG(m)ys )
Stwy=| 1 ‘ 3
® ( 2iG(n)ys Yk + payo — M, )
with non-vanishing off-diagonal elements in the phase
with isospin symmetry spontaneous breaking. Here, the
chiral symmetry breaking is hidden in the effective quark

mass M, =mo—2G(c). One can explicitly obtain the
mean field quark propagator [13]

_ Suu(k) Sud(k)
S ‘( Sauk)  Sualk) )

in terms of the four effective quark energies

2
+ H _/J_
E= \/( V"2+M'§“—LEI) HGEFT6)

2

“)

by applying the method of the massive energy projector
[47].

The ground state of the system is determined by the
minimum thermodynamic potential, realized by solving
the two gap equations[ 13 31]

(a’)—Nf
<)Nf

which can be 1llustrated in Fig. 1. Here, the trace Trp is in
Dirac space, and the four momentums integral is defined
as f d*k/n)* =iT 3, f d*k/(2r)? in Euclidean space with
ko = iw, =i2n+ aT (n=0,%1,£2,---) at finite temperat-
ure 7. Obviously, the color degrees of freedom in the NJL
model is trivial, and the trace in color space simply con-
tributes a color factor N, = 3. At the chiral limit with van-
ishing current quark mass mo =0, the critical point of
chiral symmetry restoration is determined by the first gap
Eq. (6) at (o) =0, and the pion superfluid phase with non-
vanishing (r) starts at gy = 0. In the physical world with
mg # 0, when there is no more strict chiral phase trans-
ition, the pion superfluid phase starts with u; = M, at T =
0 [13], where M, is the pion mass in vacuum.

TrD 1Suu(k) + Ide(k)]

7 Tp [(Suak) + Sau(k) ¥5], (6)

_12 =

Fig. 1.
lar interaction vertex in the NJL model.

Hartree contribution to the self-energy for a particu-

The above treatment at the mean field level is clearly
incomplete, as it omits the meson contribution, which
should dominate the system at low temperature and
chemical potential. In the NJL model, the meson modes
are treated as quantum fluctuations above the mean field.
The quark-antiquark scattering via meson exchange can
be effectively expressed at the quark level in terms of
quark bubble summation in RPA [30-36], shown in Fig. 2.

Fig. 2.
model.

Random phase approximation for mesons in the NJL

Considering all the possible quark bubbles between
two interaction vertexes, the meson propagator can then
be written as a matrix in the meson space (m,,7_,79,0)
[13,42],

2G

D(p) = T-26T0p) (7
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where p = (iv,, p) is the meson four momentum with the
Matsubara frequency v, =2anT, and II(p) is the meson
polarization matrix with elements

% *
M(p) = i f G TSR RSO

with the meson vertexes

1 m=o 1 m=o
iT,ys m=my " iT_ys m=my
l—‘m = . _ l—‘m = : _ (9)
iT_ys m=nm_ ityys m=nm_
iT3ys m=mg, iT3ys m=myg.

In Eq. (8), the quark momentum integral is at finite tem-
perature, and the trace runs across color, flavor, and spin
degrees of freedom of quarks. The polarization matrix is
symmetric with I, = IT,,,. In the normal phase with van-
ishing pion condensate (r) = 0, the quark propagator is di-
agonal in the flavor space, and therefore all the off-diag-
onal elements of the polarization matrix IT in the meson
space disappear automatically. In the pion superfluid
phase, while there is no mixing between my and other
mesons, I, =1, =1, =0, the other three mesons
o,n4, and 7_ are coupled to each other with nonzero ele-
ments [1,, ,I1,, I, , #0[13,42].

Static meson properties, like mass and the meson con-
tribution to the thermodynamics of the system [35, 36],
are controlled by the determinant of the inverse meson
propagator, which is a complex function and can be ex-
pressed in terms of a phase,

det[1-2GI(w=ie, p)] = |det[1 - 2GT(w + i€, p)]| €™,
Im{det[1 - 2GTI(w + i€, p)|}
det[1 -2GT(w,p)]

Physically, @ is the phase shift associated with the quark-
antiquark scattering in the model. While the phase shift is
controlled by the meson mass M around a pole of the
propagator, which is determined by det[1 — 2GII(M, p)] = 0,
it is dominated by the background when the kinematics is
away from the pole. In normal phase without pion con-
densate, ® can be explicitly separated into a meson part
and a background part, and the latter is independent of
the meson itself and determined by quark properties
[36].

The meson spectral function, which is also controlled
by the complex structure of the meson propagator, is
closely related to the quark-antiquark scattering phase
shift. In the case without meson mixing, the spectral func-
tion for the meson m in the NJL model is conventionally
defined as

tan® = —

(10)

Pm(@, p) == 2ImDyy(w + i€, p)
B 2Gsin (20, (w, p))
1 - ZGHmm (U), p)

with the scattering phase shift for the meson m,

(11)

an®,, = - Im[1-2GIL,,(w + i€, p)] ' (12)
1- 2Gl—lmm("-)’ P)

In the pion superfluid phase with 7, —7_ — o mixing, one
can not separately define the spectral function for a fixed
isospin channel. However, we can diagonalize the
propagator matrix in Eq. (7), and calculate the spectral
functions for their respective eigenstates. The analytical
formula is too lengthy and too complicated to be shown
here. Equivalently, we define the whole spectral function
of the mixed mesons through the whole mixed meson
propagator matrix,

p(w, p) =-2Im{detD(w + i€, p)}
__(26)*sin20(w,p))
~ det[1 -2G(w, p)]’

which is relevant to the scattering phase shift and the
thermodynamics of the quark-meson system.

Accordingly, in any case, the meson spectral function
is associated with both the meson pole depicted in the de-
nominator and the quark-antiquark scattering phase shift
in the numerator. This indicates that in the quark-meson
plasma described by the NJL model, the meson spectral
function is governed not only by meson characteristics
but also by the quark properties.

(13)

3 Numerical results and discussions

Before performing numerical calculations, we first fix
the parameters of the model. Since NJL model is non-
renormalizable, it should be regularized. For simplicity,
we choose a hard cutoff A for the quark three-mo-
mentum. The three parameters A, G, and my are fixed by
fitting the physical quantities in vacuum: pion mass
M, =0.134 GeV, pion decay constant F,=0.093 GeV,
and the chiral condensate (o) =2(~0.25 GeV)>. The para-
meters we obtained are A =0.653 GeV, G = 4.93 GeV'Z,
and my = 0.005 GeV [36].

To gain some insight into the physical meaning of the
"meson modes", we first examine the pole approximation
to the inverse meson propagator 1 — 2GTI(w, p) and the as-
sociated scattering phase shifts. For mesons in stable
bound states, their masses M,, are determined by the
poles of the meson propagator at vanishing three-mo-
mentum,

det[1 - 2GTI(M,, 0)] = 0. (14)
Around the pole w? = E2 = M2 + p?, we have
1 -2GTI(w, p) = (w* — E2) X const. (15)

Taking the values w — w +ie and inserting them into Eq.
(10), the scattering phase shift is reduced to a simple step
function,

O, (w, p) =70 (w* — E},), (16)
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which gives a vanishing imaginary part of the determin-
ant. The meson spectral function p(w,p) becomes the &
function located at the pole, and the meson contribution
to the thermodynamic potential becomes the familiar
function for an ideal meson gas,

Qm=f(d;7€3[%+ﬂn(l—eﬂ"ﬁ)]. (17)

However, when the meson mass exceeds two times the
quark mass, the meson can decay into its constituent
quark-antiquark pair. Thus, this does not represent a
stable bound state, but rather a resonant state. In this case,
the pole is no longer on the real axis of the w-plane, and
the pole equation (14) should be regarded in its complex
form in order to determine the resonant mass M,, and its
associated width I, that are defined through the relation

det[1-2GII(M,, —il',,/2,0)] = 0. (18)
In the normal phase without pion condensate, taking the
approximation of the small width in comparison with the
mass, we have [36, 48]
my (M,, —i€)* - 6,2,,
o~ m
MM, 1-2GII(M,, —ie,0)—mo/M,
with €; =0 and €, = 2M,.
Around the complex pole w? = (M,, —il',,/2) + p?, the
imaginary part of the determinant can be considered as a
constant, and the scattering phase shift satisfies

Mmrm
w?—(E3,—T5/4)

| I

(19)

tan @y (w, p) = — (20)
The corresponding spectral function is of the form of
Breit—Wigner distribution with width T, and approaches
the ¢ function in the limit ', — 0.

The meson masses M,, and the associated widths T,
are displayed in Fig. 3 as functions of temperature at
fixed isospin chemical potential. At y; =0.1 GeV (upper
panel), which is less than the critical value y; = M, of the
pion superfluid, the system is in the normal phase without
pion condensate at any temperature. Due to the explicit
isospin symmetry breaking from SU;(2) to U;(1) at
ur # 0, the degenerate pion mass M, in vacuum splits in-
to M , M, , and M,, in medium. Thus, the explicit chiral
symmetry breaking from SUx(2) to Ua(l) at yu; #0 re-
duces the degree of meson degeneration at high temperat-
ure: only the neutral mesons o~ and 7y become degenerate,
while the charged pions 7, and n_ still behave differently.
Any pion is in its bound state at low temperature (espe-
cially in the pion superfluid phase) and starts to have
nonzero width at the corresponding critical temperature
of the Mott phase transition [49-51] where the pion en-
ergy is larger than the corresponding quark plus anti-
quark energies. The width increases monotonously with
the temperature. The o meson is always in the resonant
state in the NJL model, whereas the width is rather small

0.7 T T T T T

0.6 F

0.5F
0.4F
03F
0.2F

0.1F
oL

0.6
0.5

0 0.05 0.10

Fig. 3. (color online) Meson masses M,,(T) (solid lines) and
their broadenings M,,,(T) +T,,(T)/2 (dashed lines) at differ-
ent isospin chemical potential ¢y =0.1 (upper panel), 0.15
(middle panel), 0.25 (lower panel) GeV and vanishing bary-
on chemical potential up = 0. The vertical dotted lines in
the middle and lower panels separate the pion superfluid
phase at low temperature from the normal phase at high
temperature.

in the chiral symmetry breaking phase and increases rap-
idly when symmetry is gradually restored. Different from
the case at y; =0 where the three pions are degenerate,
the meson mass splitting at p; # 0 leads to different Mott
phase transition points for different pions.

In the normal phase with only chiral condensation, the
quark propagator is diagonal and the summation of
bubbles in RPA selects its specific channel by choosing
the proper polarization function at each stage. Therefore,
a meson mode, which is determined by the pole of the
corresponding meson propagator, is only related to its
own polarization function. However, when the isospin
chemical potential exceeds the critical value u; = M,, as
depicted in the middle and lower panels of Fig. 3, then
the system is in the pion superfluid phase at low temper-
ature. The collective excitations of the system, determ-
ined by the pole Eq. (18), will in principle not be the ori-
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ginal meson modes (7, 7_,m9,0), but their linear combin-
ations (¢p, 4 + ¢x -+ cqmo+co0) [13, 42]. Due to this
mixing, which is very strong at high y; and low 7, these
new modes in the pion superfluid are no longer the eigen-
modes of the isospin operator /3. In the NJL model, from
the explicit calculation of the polarization elements IT,,,,,
7o decouples from the other mesons and is still an collect-
ive mode of the system, but the other three (r,,7_,0) are
replaced by their linear combinations. Considering the
fact that these new modes should return to the old modes
at the critical point of pion superfluid, indicated by the
vertical dotted lines in the middle and lower panels of
Fig. 3, we still refer to these modes as 7,,7_,0 according
to the continuity. While the mixing is weak around the
critical point, it becomes increasingly stronger at 7 — 0.
For instance, at u; =0.25 GeV, as shown in the lower
panel of Fig. 3, the new mode n_ in the pion superfluid is
dominated by the n_ component at 7 — T, but by the o
component at 7 — 0. Corresponding to the spontaneous
isospin symmetry breaking, there exists a Goldstone
mode in the pion superfluid. From the continuity at the
critical point, we call it 7,.. While there is a small width
associated with the new mode o in the middle panel and
7_ in the lower panel, the other new modes are in the
bound states with I'=0. The critical temperature starts
with 7= 0 at u; = M, and increases monotonously with y;
. In the normal phase at high temperature, any meson be-
comes a resonant state when its energy is beyond the
quark + antiquark energies. The meson widths increase
rapidly with temperature.

For my meson, which decouples from the other three
mesons, we can analytically derive

My, (T, pp) = (21)
in the pion superfluid, by combining the pole equation
1 -2GIl, ,,(M,,,0) =0 and the gap equation for the pion
condensate (7). However, the polarization Il . is not
continuous at the critical point of pion superfluid in the
case of nonzero temperature, leading to a jump of M,
from y; in the pion superfluid phase to a lower value in
the normal phase, as depicted by the jumps along the ver-
tical dotted lines in the middle and lower panels of Fig. 3.
When the temperature is high enough, the chiral sym-
metry is gradually restored, and the o and 7y masses ap-
proach to coincide.

With the gap Eq. (6) for the chiral and pion condens-
ates (o) and (rr), one can determine the phase boundaries
of chiral restoration and pion superfluid in the NJL mod-
el. When chiral symmetry is explicitly broken with a
nonzero current quark mass my, there is no strict defini-
tion for the chiral symmetry restoration. The pseudo-crit-
ical temperature T}, is normally defined as the temperat-
ure at which the quark mass or chiral condensate has the
maximum change, and we numerically have Tp. =187
MeV with ug=yu; =0 in the hard cutoff regularization

scheme [36]. The critical temperature of the pion super-
fluid phase transition is determined by the condition
(my =0, see T, in Fig. 4. Taking the pole Eq. (14) in the
normal phase, one can obtain the border between the
meson bound and resonant states. The corresponding
meson dissociation temperature is defined by the
threshold where the pion mass is equal to the correspond-
ing quark + antiquark mass, see Ty in Fig. 4. The phase
diagram of the pion superfluid in the plane of temperat-
ure and isospin chemical potential at vanishing baryon
chemical potential is plotted in Fig. 4. The critical tem-
perature T, and the 7y dissociation temperature Ty are dis-
played by solid and dashed lines, respectively. The two
temperatures coincide when y; is large enough. There are
three phases in the plane: the pion superfluid phase in the
region of T < T, the normal phase with meson bound
states in the region of T, < T < Ty, and the normal phase
without bound states in the region of T > T4. Since the
thermal excitation of the pion condensate at the critical
temperature 7, are meson bound states at low y; and res-
onant states or even quark and antiquark states at high y;,
there should be, in the pion superfluid phase, a crossover
from Bardeen-Cooper-Schrieffer (BCS) state at high y; to
Bose-Einstein Condensation (BEC) state at low y; [13,
24-27].

We now consider the quark-antiquark scattering
phase shift in pole approximation. For all the numerical
calculations for phase shifts and spectral functions shown
in the following, we set the meson momentum p = 0. At
ur =0, pions are degenerate, in the bound state at low
temperature and in the resonant state at high temperature.
The pion phase shift ®,(w) in the pole approximation is
shown in Fig. 5 for the bound and resonant states. In va-
cuum at 7 = 0, the phase shift ®,(w) is a step function. It
is zero at w < My, then jumps suddenly from 0 to n at
w = My, and keeps  at w > M. At T=0.25 GeV, the pi-
ons are already in the resonant state, and the phase shift
changes from the step function (16) to the smooth cros-

0.25 T T T T T

0.20

0.15

T (GeV)

0.10

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6
w (GeV)

Fig. 4. Phase diagram of pion superfluid in the T — y; plane
at up =0. The solid and dashed lines display the critical
temperature T of the pion superfluid and the dissociation
temperature 74 of the meson bound states, respectively.
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35¢
3.0F
25¢
o 20¢F

T'=0.25GeV

0 0.2 0.4 0.6 0.8 1.0
w (GeV)

Fig. 5.

imation as a function of pion energy w at vanishing chemic-

(color online) Pion phase shift @, in the pole approx-

al potentials and momentum y; = up = p = 0. The two lines
correspond to the bound state at 7= 0 and resonant state at
T=0.25GeV.

sover (20). The rapid change is still around w = M, = 0.28
GeV. While the phase shift can reach the limit ®, =7 at
large enough w, it starts with a finite value ®, #0 at
w = 0 due to the finite width I,.

However, the pole approximation is in principle in-
sufficient for our calculation, since it is only valid for w
in the vicinity of the pole and should violently deviate
from the original definition (10). Furthermore, it neglects
the fact that the exact phase shift ®(w) must increase
around the pole and then decrease in such a way that Lev-
inson's theorem is fulfilled [35]. In our notation, this the-

orem reads
< do
f dw— =0. (22)
0 da)

Thus the pole approximation, which states that the phase
shift starts with ® =0 and ends with ® =, is inconsist-
ent with Levinson's theorem, and we therefore expect that
a partial compensation to the meson spectral function p as
calculated from (13) must arise when one performs a full
calculation of the phase shift. In the following, we will
perform the full calculations for the scattering phase shift
and the spectral function.

Fig. 6 shows the full scattering phase shift in normal
phase at temperature 7 = 0, 0.2, 0.21, and 0.3 GeV and
vanishing chemical potentials g =y = 0. The full phase
shift includes not only the meson part, which is con-
trolled by the step function (16) or the crossover (20)
around w =M,,, but also a background part which starts at
the threshold wy, = Min(E~ + E7) =2M, and is independ-
ent of the meson properties, where E. are the quasi
particle energies defined in Eq. (5). Since the back-
ground part dominates the high energy region, we ob-
serve that the meson phase shifts coincide at high w do-
main in Fig. 6 and Fig. 7. It is the background part, which
makes the full phase shift satisfy the Levinson's theorem
(22): the phase shift starts with ®(w=0)=0 and ends
with ®(w — o) =0, where in the large w region, the phase

T=0.21 GeV

Meson phase shift @,

T=0.3 GeV

0 02 04 06 08 10 12 14
@ (GeV)

Fig. o. (color online) Full scattering phase shifts
D, (w) (m =m,0) in normal phase at 7 = 0, 0.2, 0.21, 0.3
GeV and up = uy; =0.

shift decreases and retains zero for w > wWmax = Max(E_+
E7)=2 w/Mg + A2, In the normal phase at y; = 0, this has
been explicitly proven [36].

In vacuum, with T =ug =u; =0, the degenerate pi-
ons are in a bound state, and the phase shift is given by
the step function around the pion mass, after which it
drops down continuously due to the background contribu-
tion. For sigma, its mass is slightly larger than two times
the quark mass in the model, thus it is nearly a bound
state. However, before the phase shift ®, reaches n at
w= M, the decreasing background component starts
already at w =2M, < M. Therefore, the full phase shift
can not reach n. Since the background contribution is
meson-independent, the phase shifts for 7 and o coincide
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25¢
0 0.5 1.0 1.5
w (GeV)
Fig. 7. (color online) Full scattering phase shifts

D,y (w) (m = my,m_,my,0) in normal phase at 7 = 0, 0.2,
0.21,0.3 GeV, up =0 and u; = 0.1 GeV.

at large w.

At T=0.2 GeV, which is below the critical temperat-
ure for the Mott phase transition of pions, the behavior of
the phase shifts for pions and sigma is similar to that at T
= 0. The pions are still in bound state with larger mass,
their phase shift reaches 7 at w = M, and then decreases
continuously, finally approaching zero at wm,yx, due to the
contribution from the background. The sigma becomes
much lighter, however it remains in a resonant state with
M, >2M,. At T=0.21 GeV, which is already larger than
the critical temperature for the Mott phase transition of
pions, both pions and sigma are in resonant states with
M, M, >2M,, and both phase shifts can not reach n. At

T = 0.3 GeV, the chiral symmetry is well restored with a
small quark mass, and all the mesons have almost the
same mass. In this case, the phase shifts for pions and
sigma coincide in the whole w region. Since the contribu-
tion from the background starts very early, the strong
cancellation between the increasing meson part and the
decreasing background part leads to a rather small phase
shift.

The full phase shifts at 4; = 0.1GeV are shown in Fig. 7.
Since y; is less than the critical isospin chemical poten-
tial u; = M, the isospin symmetry is explicitly broken,
but the system remains in normal phase without pion con-
densate. The pions at low temperature are still in bound
states, but with mass splitting. In vacuum with 7' = 0, the
mass splitting is AM, = My — M, =M, —M,, = ;. The
continuous background contribution to s, starts at
wm =MIin(EZ + E}) = 2M, — pyand ends at wmax = Max(EZ+

E})=2, /Mg + A% — ;. Due to the meson independence of

the background contribution, the phase shifts for the
isospin neutral mesons 7y and o coincide at large w. After
a shift of w — wxy; for n;. and 7_, all the phase shifts co-
incide at large w. With increasing temperature, the .
meson first becomes a resonant state at 7= 0.2 GeV and
then immediately the other two pions mp and n_ obtain
widths at 7= 0.21 GeV. When the temperature is high
enough, for instance at 7 = 0.3 GeV, all the scattering
phase shifts coincide after proper shifts.

In the pion superfluid phase, all four mesons are in
bound or nearly bound states, as shown in Fig. 3. Since
the meson 7y decouples from the other three mesons, its
phase shift is similar to the one in the normal phase
shown in Fig. 7. The only change is the location of the
jump and the threshold for the continuous background
contribution. Because of the mixing among n,,7_, and o,
one can not separately define their independent phase
shifts. The whole phase shift for the three mixed mesons
in pion superfluid is shown in Fig. 8 at finite isospin
chemical potential and vanishing temperature and baryon
chemical potential. The pion condensate dramatically
changes the contribution from the continuous back-
ground. The first jump from 0 to 7 occurs at w =M, =0
(note that m, is the Goldstone mode), and the second
jump occurs at w = M, =0.25 GeV for y; =0.15 GeV (the
upper panel), while w = M, = 0.27 GeV for u; = 0.25 GeV
(the lower panel), corresponding to the meson masses
shown in Fig. 3. Before the third jump for the mode
o (m2) at w=0.64 (0.72) GeV, the continuous contribu-
tion from the background starts already, which partly can-
cels the third jump and leads to the non-monotonic beha-
vior. The background contribution starts at

wh =Min(EZ +E))

=Min 2\/(w/k2+M§—%)2+4G2(7r>2 . (23)
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ol 1 =0.15GeV |

sl 1 =025GeV ]

Meson phase shift ®

0 0.5 1.0 1.5
o (GeV)

Fig. 8.
pion superfluid phase at pu;=0.15,025 GeV and

Whole quark-antiquark scattering phase shift ®(w) in

T=up=0.

For M, > u;/2, as in the upper panel of Fig. 8, the minim-
um is at vanishing quark momentum k =0, and the thre-
shold is wy =2 \/(Mq - ;1,/2)2 +4G(m2. For M, < /2,
as depicted in the lower panel of Fig. 8, the threshold is
wh =4G{(r), but with a finite quark momentum
|kl = \Ju7/4—M:. In the large w region of Fig. 8, the full
phase shift drops down sequentially at the maximum val-
ues

Wmax =MaX(Ei: + Ef)
2
2 \/( JAZ 02— %) +4G )
=4 2\JA2+ M2 +4GXny? (24)

2
2 \/( A2+ M2+ ”7) +4G(r)?,

which is consistent with the Levinson's theorem (22).

The meson spectral function p, in normal phase is
shown in Fig. 9. In principle, any meson spectral func-
tion should contain a continuous part, due to the phase
shift from the background. But, when the meson is in
bound state, the contribution from the scattering phase
shift is strongly suppressed by the meson pole, as indic-
ated by the cancelation between the phase shift in the nu-
merator and the pole in the denominator of Eq. (11). At 7=
0, all three pions are in bound states, and their spectral
functions are almost § functions located at the corres-
ponding poles. Moreover, the contribution from the back-
ground phase shift is very small and can be neglected in
comparison with the pole. Since o is always in resonant
state, its spectral function is already at a very small width

8000 |
-~ 7, o

6000

T,

4000

2000

8000
T'=0.2GeV
6000
4000 T

2000 | 7,

[
[=3
(=3
S
T
‘;l

=021 GeV

Meson spectral function p
9
S
(=) (=)
A

1000

500 | 7.

200 ¢

EULJ T=0.3GeV

150 |

100 [

501

0 0.2 0.4 0.6 0.8 1.0
w (GeV)
Fig. 9.
om(w) (m=ny,n_,m9,0) in normal phase at 7 = 0, 0.2,
0.21, 0.3 GeV, up =0 and u; = 0.1 GeV.

(color online) Meson spectral functions

in vacuum. However, the continuous phase shift, which is
mainly on the right hand side of the pole, renders the
spectral function no longer symmetric. With increasing
temperature, the three pions will sequentially enter reson-
ant states, and all the meson widths will increase continu-
ously. When chiral symmetry is well restored, the 7y and
o spectral functions coincide. Note that, the asymmetry
of the spectral function becomes increasingly clear with
increasing temperature.

In the pion superfluid phase, all the new meson
modes m,,7_, and o are in or nearly in bound states, as
shown in Fig. 3. Therefore, from the pole approximation,
one may expect the full spectral function to be the sum of
three ¢ distributions at their pole positions. However, the
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strong mixing among them may enhance the phase shift
contribution to the spectral function, especially when the
enhancement is around a pole. The spectral function at
ur =0.15 GeV and T = up =0 is shown in Fig. 10. Con-
sidering the mixing effect on the scattering phase shift,
we take here the absolute value of the spectral function in
the pion superfluid. To focus on the dramatic change
around the pole corresponding to the new mode o at
w = 0.64 GeV, we have neglected in Fig. 10 the two 6 dis-
tributions around w =0 and 0.25 GeV corresponding to
the Goldstone mode n, and n_. The sudden drop of the
scattering phase shift before the o pole broadens the nar-
row o spectrum and even splits the peak into two. This
means that the pole approximation for the new mode o in
the pion superfluid is no longer a good approximation,
even if the width shown in Fig. 3 is very narrow.

(53
(=]

=0 ]
= 0.15 GeV

N
W
T

[N
(=]
T

—_
W
T

—_
(=]
T

W
T

Meson spectral function |p| x 107

050 055 060 065 070 075 0.80
© (GeV)

Fig. 10. Meson spectral function p(w) in the pion superfluid
phase at u;=0.15 GeV and T =pp=0. Only the part
around the pole of the new mode o is displayed, and the
two ¢ distributions at w = 0 for the Goldstone mode 7 and
0.25 GeV for n_ are not shown in the figure.

We should point out that the broadening of the o
spectrum in the pion superfluid phase is independent of
the regularization scheme. Under the Pauli-Villars regu-
larization scheme, one introduces the regularized quark
masses m; = \m2 +a;A? fori=0,1,---,N, and replaces m?>
in the quark energy E% by m? and the momentum integra-
tion [d*pF(EY) by [dpXX ciF(EE,). The coefficients
a; and ¢; are determined by constraints ag =0, ¢o = 1, and

Nocim*t=0 for L=0,1,---N—1. Different from the
hard cutoff scheme, in the Pauli-Villars scheme, the
quark momentum runs formally from zero to infinity, and
the divergence is removed by the cancelation among the
subtraction terms. Applying the Pauli-Villars regulariza-
tion scheme [28] with coupling constant G = 3.44 GeV?,
mass parameter A = 1.127 GeV, and mg = 0.005 GeV. Fig.
11 depicts the spectral function around the new mode o

Pauli—Villars

—_
N
T

4,=0.15GeV ]

_ =
S N
T T

Meson spectral function |p| x 107

2 03 04 05 06 07 08
© (GeV)

oS N A o

Fig. 11. Meson spectral function p(w) in the pion superfluid
phase at ; = 0.15 GeV and T = up = 0, where only the part
around the pole of the new mode o is displayed as in Fig.
10. Here, we use the Pauli-Villars regularization scheme in
the calculation, and the new mode o has the mass
mg =0.48 GeV.

at u; =0.15 GeV and T = up = 0. The wide and two-peak
spectrum looks similar as in the hard cutoff scheme (Fig.
10), and it is a consequence of the mixing among the
mesons in pion superfluid phase. The only difference is
the location of the peak, which is around m, = 0.48 GeV
(the mass of new o- mode) in the Pauli-Villars regulariza-
tion scheme and around m, = 0.64 GeV in the hard cutoff
scheme.

4 Conclusion

The quark-antiquark scattering phase shift is con-
trolled by not only the meson bound or resonant state,
which leads to a jump around the pole, but also the
quarks as a background that is continuous and independ-
ent of meson properties. In the pion superfluid phase, the
poles of the meson propagator are no longer located at the
ordinary meson masses, and the phase shift is dramatic-
ally modified by meson mixing. As a result, the meson
spectral function is strongly corrected when the change in
the phase shift occurs around a pole. In the NJL model,
the pole approximation for the new mode ¢ is no longer a
good approximation due to its strong mixing with pions.
The mixing in the pion superfluid enhances the width of
the spectrum and even splits the peak into two. The fluc-
tuations' contribution to the thermodynamics of the
quark-meson systems at finite isospin chemical potential
can be expressed in terms of the bound state and scatter-
ing phase shifts of quark-antiquark pairs, which will be
reported in a future study.

We all thank Prof. Pengfei Zhuang for the helpful dis-
cussion and contribution to the paper.
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