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Abstract: We propose a method for extracting the properties of the isobaric mass parabola based on the total double

B-decay energies of isobaric nuclei. Two important parameters of the mass parabola, the location of the most 3-stable

nuclei Z4 and the curvature parameter by, are obtained for 251 A values, based on the total double B-decay energies

of nuclei compiled in the AME2016 database. The advantage of this approach is that the pairing energy term Py

caused by the odd-even variation can be removed in the process, as well as the mass excess M(A,Z4) of the most

stable nuclide for the mass number 4, which are employed in the mass parabolic fitting method. The Coulomb en-

ergy coefficient a. = 0.6910 MeV is determined by the mass difference relation for mirror nuclei, and the symmetry

energy coefficient is also studied by the relation asym(A) = 0.25b4Z4.
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1 Introduction

The nuclear mass (binding energy) is one of the most
important topics in nuclear physics and astrophysics. In
the semi-empirical mass formula based on the liquid drop
model, the binding energy B(A,Z) of a nucleus is the sum
of the volume, surface, Coulomb, symmetry, and pairing
terms, which can be expressed as a function of the mass
number 4 and charge number Z [1,2],

Zz? (N-2)?

B(A,Z) = ayA—aA*? —ac—

-1/2
CA1/3_asym +apA 2,

(M
where ay, a5, ac, aym, and a, are the volume, surface,
Coulomb, symmetry, and pairing energy coefficients, re-
spectively. The coefficients are obtained by fitting to ex-
perimentally measured binding energies of nuclei. In con-
trast, the nuclear mass is usually indicated by the mass
excess (nuclide mass minus the mass number in atomic
mass units). The mass excess of the isobaric nuclei can be
expressed as a parabola, as a function of the atomic num-
ber Z with a high degree of precision, referred to as the
Bohr-Wheeler parabola [3]. In Ref. [4], the nuclide mass
equation is expressed as
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M(A,Z) = M(A,Zy) + %bA(Z—ZA)Z +Ps-S(N,2), (2)

where M is the mass excess of nucleus (4,7) in MeV, and
Z and A are the atomic and mass numbers of the nucleus.
M(A,Z,) is described as the minimum of the mass excess
parabola, where Z, is a parameter and not the atomic
number of an existing nuclei. b, is the curvature paramet-
er of the isobaric mass parabola, P, is the pairing energy
due to the odd-even variation, and S (N, Z) is the shell cor-
rection term. In the textbook [5], the relation between the
nuclear mass excess and the binding energy is written as

B(A,Z) = 931.4943 x (0.008665A — 0.00084Z) — M(A, Z),
3)

where 0.008665 is the mass excess of the neutron, and
0.00084 is the hydrogen-neutron mass difference in atom-
ic mass units. One atomic mass unit is equivalent to
931.4943 MeV. The question is, hence, whether the Cou-
lomb energy coefficient and the symmetry energy coeffi-
cient in the binding energy formula can be expressed by
parabolic parameters Z4 and b4.

There are two ways to obtain the parameters Z, and
ba. One is by fitting the experimentally measured mass
excess of isobaric nuclei with Eq.(2). The other is by fit-
ting by measured S-decay energies of isobaric nuclei with
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Eq.(4). The first method requires that four parameters Zy,
ba, M(A,Zy), and P4 are determined by a parabola fit,
while the second requires that three parameters Zu, by,
and P, are determined by fitting the B-decay energies.
Isobaric analyses of B-decay energies were conducted by
several authors [3,6,7], where the early work was based
on scanty experimental data. In Ref. [3], Bohr and
Wheeler employed the least-squares method to determine
the parameters of the mass parabola, Z,, by, and P4 , for
20 A values by a parabola fit of the isobaric mass excess.
In Ref. [6], J. W. Dewdney analyzed the isobaric 8-de-
cay energies and used the least-squares method to de-
termine the parameters of the mass parabola for 157 4
values. The experimental data were taken from Refs.
[8,9]. Later, X.Y. Li and co-workers [7] updated the three
parameters of the isobaric mass parabola for 234 A val-
ues (10<A<253) in the same manner as Dewdney,
however they adopted a different mass table AME1977
[10] including about 1000 nuclides. In the recent decades,
with the development of scientific instruments and the
progress of technology, a large number of unstable nuc-
lei could be produced, and their masses could be meas-
ured with high precision. The experimental information
or recommended values for nuclear and decay properties
of 3437 nuclides are compiled in the mass table
AME2016 [11]. The number and precision of nuclear
masses in AME2016 have been considerably increased in
comparison with the results compiled in the AME1977
database [10]. The available data sets are presently signi-
ficantly larger, and it is possible to analyze them statistic-
ally.

Double B-decay is a popular topic. It is a rare trans-
ition between two nuclei with the same mass number,
which changes the nuclear charge number by two units,
(A,Z) — (A,Z+2), and has been observed in many nuclei
[12,13]. The energy released in the double B-decay exhib-
its even a greater regularity than the single g-decay, as
shown in Ref. [14]. However, detailed studies of the mass
parabola have not been performed using the total double
B-decay energies. In this study, we propose a simple em-
pirical formula to obtain the parameters Z, and bs. The
relation between the Coulomb energy coefficient and the
symmetry energy coefficient in terms of Z4 and b, is then
presented. We use more than 2400 total double S-decay
energies, which are complied in the AME2016 database,
to analyze the properties of the Bohr-Wheeler isobaric
mass parabola in all modes of double 3-decay employing
a theoretical method. The advantage of this approach is
that there are only two parameters in the expression for
the double B-decay energies, as the pairing energy P4 and
the mass excess M(A,Z,) are removed by the mass differ-
ence between (A,Z) and (A,Z +2). Furthermore, the over-
all simplicity of the double B-decay energy pattern may
point to a convenient empirical mass formula.

2 Theoretical framework

The Q value is defined as the total energy released in
a given nuclear reaction. The Q value of 8-decay is calcu-
lated by the mass difference between the two nuclei (A, Z)
and (A,Z+ 1), while the expressions for 3-decay energies
may be derived from the empirical mass Eq. (2), when
the shell correction is neglected. According to Eq.(2), the
B-decay energy is directly proportional to Z—Z,4. For odd
A isobars, there is only one isobaric mass parabola, since
the pairing energy term is equal to zero, and the B-decay
energies plotted versus Z lie on a single straight line.
However, for even 4 isobars, due to the extra stability as-
sociated with pairs of similar nucleons, two isobaric mass
parabolas with the same shape are obtained, but they are
displaced one below the other. The lower parabola con-
tains even-even nuclides, while odd-odd nuclides lie on
the upper parabola. Consequently, the 8-decay energies
plotted versus Z do not lie on a single straight line, but on
a pair of parallel straight lines. For negative §-decay and
positive B-decay (or electron capture), one can combine
them into one universal expression

Qp = M(A,Z)— M(A,Z+1) = —by (Z—ZA + %)+AE. 4)

The reaction will proceed only when the Q value is posit-
ive: "Qp > 0" for f~-decay occurs when the mass of atom
M(A,Z) is greater than the mass of atom M(A,Z+1);
"Qp <0" for B*-decay occurs when the mass of atom
M(A,Z +1) is greater than that of M(A,Z). For even-even
nuclides AE =2P, , for odd-odd nuclides AE = -2P, ,
and for odd-4 nuclides (i.e., even-odd and odd-even)
AE =0.

Our aim in this study is to propose a very simple em-
pirical formula that only depends on the basic mass para-
bolic parameters Z, and b4. We employ the total double
B-decay energy to analyze the mass parabola rather than
the total single 8-decay energy. The parameters M(A,Z,)
and AE are removed by the mass difference between
(A,Z) and (A,Z+2). We obtain a universal expression for
the total double B-decay energy in the same manner as
above,

Q2 = M(A,Z) - M(A,Z+2) = —2bA(Z-Zs+1),  (5)

where “ Qo5 >0 for 787, and “ Qs <0” for g*B*. The
nucleus (Z,A) will be called the decay nucleus, no matter
whether the decay actually proceeds from (A,Z) to
(A,Z+2) or vice versa. The total double 8-decay ener-
gies lie on the same lines for odd-odd and even-even nuc-
lei for even-A values, and for adjacent odd-4 and even-4
values, they lie approximately on the same lines.

3 Results and discussion

3.1 Procedure for calculating Z, and by
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We employ the three Egs. (2), (4), and (5) to analyze
the corresponding experimental data, i.e., the mass ex-
cess, total B-decay energies, and total double 8-decay en-
ergies. The parameters Z, and b4 in the isobaric mass
parabola are obtained using the least-squares fitting pro-
cedure. The calculated results are compared, and they are
found to be almost identical for three different methods of
fitting the corresponding experimental data.

The first equation Eq.(2) requires at least three para-
meters, Z4, ba, and M(A,Z,) , to fit the experimental mass
excess for odd-4 nuclei. Here, P, = 0 is assumed, based
on the values of P4 < 0.3 MeV for odd-4 nuclei, presen-
ted in Ref. [6]. For even-4 nuclei, an isobaric slice
through the mass surface tends to yield two parabolas of
the same shape, but they are displaced one below the oth-
er. Even nuclides lie on the lower parabola, while the odd
nuclides lie on the upper parabola. Hence, it is necessary
to unify the parameters Z, and b, for even-even and odd-
odd nuclei, by = 0.5(b5° +b5°) and Z, = 0.5(Z57° + Z7°),
where b5 and Z;~° are for even-even nuclei, and 63° and
Z;~° for odd-odd nuclei. Finally, the value of AE is ob-
tained from the difference AE = M°°(A,Z4)— M (A, Zy).
For Eq. (4), the procedure is similar to that for Eq. (2),
and the value of AE equals to half of the difference

between the two intercepts of a pair of parallel lines.

To construct the formula for O,z , we start by plot-
ting the total double S-decay energy Qo versus the
charge number Z for 11 odd-A4 nuclei7 < A <257 in Fig. 1.
The experimental data for Qs are taken from AME2016
[11]. The straight line relations in this plot are clearly dis-
tinguishable, and the slopes 2b4 of these lines exhibit the
general trend that Q»s decreases slightly with increasing
mass number 4. A similar linear relation is also shown
for even-A4 values in Fig. 2.

Figure 2 shows two examples of the treatment of ex-
perimental data for A =131 and A =132 as a function of
the nuclear charge number Z. Figure 2 (a) is a plot of the
experimental isobaric mass parabola for 4 = 131. The
mass parabola is related to the 8 and 28-decay energies
shown in the plot below (b). The intercept Z4 on the 8-de-
cay energy plot corresponds to the minimum of the mass
parabola. The slope b4 of the B-decay energy plot is a
measure of the steepness of the mass parabola. The red
dashed lines in Fig. 2 (b) and (d) denote the results of fit-
ting the experimental data for Q»s by Eq. (5). Figure 2 (c)
and (d) are similar plots for 4 = 132. Figure 2 (c) shows
that the mass excess lies alternately on a pair of para-
bolas of identical shape. The parabola for even masses is

below the odd-mass parabola by AE . This implies that
the B-decay points lie on a pair of parallel straight lines,
while the double B-decay points lie on a single straight
line for both odd-4 and even-A4.
Figure 3 presents the mass parabolic parameters Z,
(a), by (b), and AE (c) as a function of the nuclear mass
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Fig. 1. (color online) The total double p-decay energy Qs as
a function of charge number Z for 11 odd-4 values
(7<A<257). The experimental data are taken from
AME2016 [11]

number 4. The values of Z,4 and b, obtained by the afore-
mentioned procedure are shown in Fig. 3 (a) and (b) with
blue solid curves using Eq. (5). AE is depicted with blue
open circles in Fig. 3 (¢) calculated with Eq.(4). The sol-
id curve AE = 2P, is the result of a fit of the -decay en-
ergy, and the pairing energy term P4 = 11.505/A'/? is ob-
tained, where ¢ equals to 0 for odd-4, +1 for even-even
and -1 for odd-odd nuclides. The calculated values are
compared with the early results of Bohr and Wheeler [3]
(solid squares), Dewdney [6] (solid circles) and X.Y.Li
[7] (solid triangles). There are currently 358 known S-de-
cay stable nuclides [15], plotted in Fig. 3 (a) with open
circles. We found a very good agreement between our
results and those obtained previously in Refs. [6,7], ex-
cept for a few A values (Z4 parameter for 4 = 111, and b4
parameter for 4 = 144). We presume that our results for
these cases are more robust, because the discontinuities
occur only for the two A values shown in Fig. 3. Our res-
ults indicate that Z, = 47.7566 and by = 1.7955 for 4 =
111, and Z, = 59.9768 and by = 1.5102 for 4 = 144.

3.2 Determination of the Coulomb energy coefficient ac

from the relation of Z, and b,

The Coulomb energy coefficient ac can be determ-
ined from the mass relation for mirror nuclei. On the one
hand, due to the charge independence of the nuclear
force, the binding energies of mirror pairs differ only in
their Coulomb energy. The Coulomb energy difference

between a pair of mirror nuclei is proportional to
Y=N-Z[16,17],

1
—AB = Ec [A, SA+Y)

—-Ec [A, %(A - Y)] =b.Y,  (6)

where b, is the proportionality coefficient, which indeed
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(color online) Two examples of the experimental data and their treatment. Mass excess (a), 3-decay energy (b) as a function of

the charge number Z, and the fitted curves for A = 131. (c) and (d) are the same as (a) and (b) for A = 132. Solid curves in Fig. 2 (a)
and (c) denote the results of fitting the experimental mass excess with Eq. (2). Solid lines in Fig. 2 (b) and (d) denote the results of
fitting the experimental data Qg with Eq. (4), and dashed lines in Fig. 2 (b) and (d) denote the results of fitting the experimental data

025 with Eq. (5).

depends on 4.

On the other hand, the mass relations for mirror nuc-
lei can be obtained from Eq. (2). First, one needs to ex-
press the charge number Z with the mass number 4, i.e.,
Z= %(A +Y) for a pair of mirror nuclei. Then, the differ-
ence of mass excess for a pair of mirror nuclei for both
odd and even 4 with different Y = 1,2, 3, ... reads

AM =M[A, %(A + Y)] - M[A, %(A - Y)]

1
ZEbA(A_ZZA)Y- (7
Combining the three Egs. (3), (6), and (7), and taking the
hydrogen-neutron mass difference Appy_p, = —0.7825
MeV, we obtain
AM 1
T = bC = sz(A—Q,ZA)—A(lH,n). (8)

This result is consistent with those in Refs. [18,19].

Our results are presented in Fig. 4, where the mass differ-
ence of 95 pairs of mirror nuclei, scaled by the charge
difference Y, are plotted against A2/3 , and are seen to lie
on a straight line. The value of Y ranges from 1 (32 cases)
to 6 (1 case). The solid and dashed curves denote the res-
ults with and without the shell correction energies, re-
spectively. The shell correction energies are taken from
Ref. [20]. The thick solid curve shows some oscillations
and fluctuations due to the shell effect. When the shell
corrections are taken into account, the fluctuations of the
extracted b. are effectively reduced. The thin solid line
represents the straight line fit. We obtain
b, = 0.691A%3 -0.8724 MeV by fitting the left hand of
Eq. (8) for 251 A values, with an rms deviation of 0.384
MeV, which is the error associated with this method of
determining ac and ¢ , and it is smaller than in Ref. [18].
The intercept at 0.8724 is the contribution of the Cou-
lomb exchange term and the nuclear surface diffuseness
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Fig. 3. (color online) The mass parabola parameters Z4 (a),

ba (b), and AE (c) as a function of the nuclear mass number
A. The calculated values (blue solid curves) are compared
with early results of Bohr and Wheeler [3] (solid squares),
Dewdney [6] (solid circles) and X.Y. Li [7] (solid
triangles). Black solid curve in (c) is the pairing energy
term AE = 2P4, which is obtained by fitting the 3-decay en-
ergies.

correction term. If we assume the Coulomb energy ex-

z? . . o
ZCT(] —¢Z723), in which the contribution

of the Coulomb exchange term is taken into account, we
obtain ac = 0.691 MeV and ¢ =1.1914 MeV. The mirror-
nuclide method can be extended to include all values of 4
in Eq. (8), although mirror nuclides are observed for
A <75. The availability of the Coulomb energy coeffi-
cients for the complete range of 4 values should be help-
ful in studies addressing the variation of the Coulomb en-
ergy with the mass number.

pression E¢ =

3.3 Determination of the symmetry energy coefficient

asym from the relation of Z, and b,

35 ————

— 17—
o Mirror nuclei
Eq.(8) include S(N,Z)
— — Eq.(8) removed S(N,Z)
—fitting line
(b,=0.6910A7*-0.8724)

30

25 -

AMIY

0 5 10 15 20 25 30 35 40 45
A2/3
(color online) Scaled mass difference (solid squares)

Fig. 4.
of 95 pairs of mirror nuclei in the region 11<A<75 as a
function of 42/3. Solid and dashed curves represent the left-
hand side of Eq.(8) with and without the shell correction
energies, respectively, which are taken from Ref. [20]. Thin
solid line represents the straight line fit.

The symmetry energy coefficient plays an important
role in nuclear physics and astrophysics. In this study, the
symmetry energy coefficient agm is deduced and ex-
pressed by the two parameters Z, and b,. First, we insert
Egs. (1) and (3) into the expression (5) and take the Q
value of the double B-decay of the mother nuclide (4,Z-
1), to obtain

03(A,Z-1)=MA,Z-1)-MA,Z+1)

=B(A,Z+1)-B(A,Z-1)+2A¢H-pn)

( 16asym 4a,

A AR

The Q value of the double g-decay of (4,Z-1) in Eq. (5) is
written as

)z +8agym +1.5649.  (9)

0x(A,Z—1) = =2bA(Z - Zy), (10)
then, the symmetry energy coefficient agm is obtained by
solving the combination of Egs. (9) and (10), that is

(2bsZs—1.5649)  baZa
Agym = . = (11)

There are two forms for describing the mass-dependent
symmetry coefficient. One was proposed by Danielewicz
and Lee, agym(A) =So/(1+kA™1/3) [21], where Sy is the
volume-symmetry energy coefficient of the nucleus, and
k is the ratio of the surface-symmetry coefficient to the
volume-symmetry coefficient. The other form is fre-
quently employed, and it is written as agym(A) =
So(1—kA~13) [22—27]. Fig. 5 shows the symmetry en-
ergy coefficient agm(A) as a function of A from Eq. (11).
The open circles denote the results without the shell cor-
rections. These exhibit some odd-even staggering and
fluctuations, which could be caused by the nuclear resid-
ual pairing interaction and the nuclear surface diffuse-
ness correction effect. The blue solid curve and the red
dashed curve denote the results of two analytic expres-
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Fig. 5. (color online) The symmetry energy coefficient for

finite nuclei agm(A) as a function of the mass number 4
from Eq. (11) (open circles). Shell corrections S(N,Z) from
Ref. [20] are removed from the mass excess of nuclei. Blue
solid curve and red dashed curve denote the results of two
analytic expressions, in which the coefficients are determ-
ined by fitting to the open circles.

sions, in which the coefficients are determined by fitting
open circles. By performing a two-parameter fit of
asym(A), attained previously with the relation Eq. (11), we
obtained the values of S¢ and x. Within the 95% confid-
ence interval, S =26.575+0.271 and « = 0.99 +0.035, and
the corresponding rms deviation is 389 keV, if the mass
dependence of the symmetry energy coefficient is agym(A) =
So(1-«A~'73). By adopting aym(A) = So/(1+kA™/3), one
obtains So=30.102+0.741 MeV and «=2.091+0.166
with an rms deviation of 398 keV. This result is shown in
Fig. 5 by the red dashed curve. The obtained values of S

and « are in agreement with So=(31.1+£1.7) MeV and
k =(2.31£038), given by Min Liu [28].

4 Summary

In summary, we proposed a method to determine two
important parameters, Z4 and b,, in the well-known Bohr-
Wheeler mass parabola. The linear relation between the
total double B-decay energy and the charge number Z is
deduced based on the isobaric mass parabola, which only
includes two parameters, Z4 and bs. The values of these
two parameters were obtained by fitting 251 4 values of
the experimental total double 8-decay energies of nuclei
compiled in the AME2016 database. The advantage of
this approach is that we could remove the pairing energy
term P, in the process, which causes odd-even variation,
as well as the mass excess M(A,Z,) of the most stable
nuclide. The Coulomb energy coefficient ac = 0.691 MeV
was determined from the mass difference relation for mir-
ror nuclei 0.5b4(A —2Z,) = Ao g—ny+ac(A?3 —1.0583¢), and
¢ =1.1914 MeV. The symmetry energy coefficients in the
mass dependence given in the two forms, asm(A),
asym(A) = 30.102/(1+2.091A73), and agym(A) = 26.575(1—
0.994713), were determined by fitting the relation
asym(A) = 0.25b,Z4. The obtained values of Sy and « are
in agreement with the results in other references. This im-
plies that the proposed method for determining the Cou-
lomb energy coefficient and the symmetry energy coeffi-
cient is reliable. Further work is in progress, which in-
cludes a comparison of the experimental data and the res-
ults of several theoretical mass tables.
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