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Abstract: We propose alternative methods for measurement of the global polarization of Λ hyperons. These

methods involve event averages of proton and Λ momenta in the laboratory frame. We carry out simulations using

these methods and show that all of them work equally well in obtaining the global polarization of Λ hyperons.
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1 Introduction

It is well-known that rotation and polarization are in-
herently correlated: the rotation of an uncharged object
can lead to spontaneous magnetization and polarization,
and vice versa [1, 2]. We expect that the same phenom-
ena exist in heavy ion collisions. It is straightforward to
estimate the huge global angular momenta that are gen-
erated in non-central heavy ion collisions at high energies
[3–8]. How such huge global angular momenta are con-
verted to particle polarization in the hot and dense mat-
ter, and how can the global polarization be measured, are
two core questions to be answered. Several theoretical
models are available that address the first question, e.g.
the microscopic spin-orbital coupling model [3, 4, 8, 9],
the statistical-hydro model [10–13] and the kinetic model
with Wigner functions [14–17], see Ref. [18] for a recent
review. As for the second question, the weak decay prop-
erty of Λ hyperons can be used for measurement of the
global polarization [3, 4]: the parity-breaking weak decay
of Λ into a proton and a pion is self-analyzing since the
daughter proton is emitted preferentially along the spin
of the Λ in its rest frame [5, 19]. The global polarization
of a vector meson can be measured using the angular dis-
tribution of its decay products, which is related to the
elements of its spin density matrix [4].

Recently, the global polarization of Λ and Λ̄ hyper-
ons was measured for collision energies below 62.4 GeV
[20, 21]. The average values of the global polarization for
Λ and Λ̄ are PΛ=(1.08±0.15)% and PΛ̄=(1.38±0.30)%.

The polarization of Λ̄ is somewhat larger than that of
Λ, and is thought to be caused by a negative (positive)
magnetic moment of Λ(Λ̄) in magnetic fields. However,
the difference is negligible, it is well within the error
bars, and the magnetic fields extracted from the data
are consistent with zero. The global polarization of Λ
and Λ̄ decreases with collision energy. This is due to the
fact that Bjorken scaling works better at higher ener-
gies. From the data one can estimate the local vorticity:
ω = (9±1)×1021s−1, implying that the matter created
in ultra-relativistic heavy ion collisions is the most vor-
tical fluid that exists in nature. The vorticity field of
the quark gluon plasma has been studied by many au-
thors using a variety of methods including hydrodynam-
ical models [22–24] and transport models [25, 26]. The
global polarization of Λ and Λ̄ has also been calculated
by hydrodynamical models [27, 28], the transport model
[29] and the chiral kinetic model [30].

The method used in the STAR experiment is by event
averaging of sin

(

φ∗

p−ψRP

)

, where φ∗

p and ψRP are the az-
imuthal angles, in the Λ rest frame, of the proton mo-
mentum and of the reaction plane, respectively [20, 21].
The orientation of the reaction plane cannot be directly
measured; it is derived from the event plane, itself deter-
mined from the direct flow. Therefore, a reaction plane
resolution factor was introduced to account for the finite
resolution of the reaction plane as given by the detector
[20, 21].

In this paper, we propose alternative methods for
measurement of the global polarization of Λ and Λ̄ hy-
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perons based on the Lorentz transformation. The ad-
vantage of these methods is that all event averages are
taken using momenta in the lab frame instead of the Λ
rest frame. We compare these methods by simulations
and show that all of them work equally well in obtaining
the global polarization of Λ hyperons.

2 Hyperon weak decay and polarization

The polarization of the Λ (and Λ̄) hyperons can be
measured by its parity-breaking weak decay Λ→p+π−.
The daughter proton is emitted preferentially along the
Λ polarization in its rest frame. The angular distribution
of the daughter proton reads

dN

dΩ∗
=

1

4π

(

1+αHPΛ

n
∗·p∗

|p∗|

)

, (1)

where αH is the hyperon decay parameter, PΛ is the
Λ global polarization; n∗, p∗ and Ω∗ are the Λ polariza-
tion, the proton momentum and its solid angle in the rest
frame of the hyperon, respectively, labeled by the super-
script ′∗′. We note that Eq. (1) is Lorentz invariant by
observing

n
∗·p∗ = −nµp

µ=−n·p,

E∗

p =
1

2mΛ

(m2
Λ+m

2
p−m

2
π),

|p∗| =
1

2mΛ

√

[m2
Λ−(mp−mπ)2][m2

Λ−(mp+mπ)2], (2)

where pµ and pµΛ are the four-momenta of the proton
and the hyperon in any frame, respectively, and nµ is
the space-like four-vector of the hyperon polarization in
a general frame. We now focus on the lab frame and
the hyperon rest frame. We use pµ, pµΛ and nµ to label
quantities in the lab frame; all quantities with the su-
perscript ′∗′ are in the hyperon rest frame. The Lorentz
transformation of the Λ polarization is,

nµ=Λµ
ν(−vΛ)n

∗ν , (3)

where Λµ
ν(−vΛ) is the Lorentz transformation with vΛ=

pΛ/EΛ. The Λ polarization in the rest frame n∗ν has
the form n∗µ=(0,n∗) where n∗ is the three-vector of the
polarization with |n∗|2<1. From Eq. (3) we have

nµ=(n0,n)=

(

n
∗·pΛ

mΛ

,n∗+
(n∗·pΛ)pΛ

mΛ(mΛ+EΛ)

)

. (4)

We can also express n∗µ in terms of nµ,

n∗µ = Λµ
ν(vΛ)n

ν , (5)

or explicitly,

n∗µ=(0,n∗) =

(

0,n−
pΛ(n·pΛ)

EΛ(EΛ+mΛ)

)

. (6)

The polarization four-vector of a particle is always
orthogonal to its four-momentum, n·pΛ=n

0EΛ−n·pΛ=0,

so we can express n0 in term of n, n0 = n ·vΛ. One
can verify that nµ in Eq. (4) satisfies n0=n·vΛ. From
(n0)2−|n|2=−|n∗|2 and n0=n·vΛ, we can solve for |n|2

giving

|n|2=
|n∗|2

1−|vΛ|2(n̂·v̂Λ)2
. (7)

We see that when |vΛ|
2(n̂·v̂Λ)

2→1, |n|2→∞, i.e. |n|2

is not bounded. In case of transverse polarization, i.e.
n̂·v̂Λ=0, we have |n|2=|n∗|2<1.

In the lab frame, a 3-dimensional vector (e.g. impact
parameter, global angular momentum, beam direction)
can be written as a=axex+ayey+azez, where (ex,ey,ez)
are the three basis directions.

3 STAR method for measurement of the

Λ hyperon polarization

In this section we describe briefly the method used in
the STAR experiment for measurement of the Λ hyperon
polarization [21]. From Eq. (13), we can determine the
Λ polarization in its rest frame by taking the event av-
erage of the direction of the proton momentum p̂

∗. We
then make a projection onto the direction of the global
angular momentum eL,

PΛ=
3

αH

〈p̂∗·eL〉ev=
3

αH

〈cosθ∗〉
ev

(8)

where θ∗ is the angle, in the Λ rest frame, between the
proton momentum and the global angular momentum
corresponding to the reaction plane. We have the fol-
lowing relation

cosθ∗=sinθ∗psin
(

φ∗

p−ψRP

)

, (9)

where θ∗p and φ∗

p are the polar and azimuthal angles of
p̂

∗, respectively, and ψRP is the azimuthal angle of the
reaction plane. We integrate over θ∗p in Eq. (1) to obtain

dN

dφ∗

p

=

∫ π

0

dθ∗psinθ
∗

p

dN

dΩ∗
=

1

2π
+
1

8
αHPΛsin

(

φ∗

p−ψRP

)

,

(10)

which gives the polarization in terms of the azimuthal
angle of the daughter proton,

PΛ =
8

παH

〈

sin
(

φ∗

p−ψRP

)〉

ev
, (11)

with

〈

sin
(

φ∗

p−ψRP

)〉

ev
=

∫ 2π

0

dφ∗

p

dN

dφ∗

p

sin
(

φ∗

p−ψRP

)

. (12)

In the STAR experiment, the azimuthal angle of
the reaction plane cannot be directly measured. It is
determined from the measurement of the event plane
given by the direct flow. This introduces a reaction
plane resolution factor in the denominator of Eq. (11),
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R(1)
EP=

〈

cos
(

ψRP−ψ
(1)
EP

)〉

ev
, where ψ(1)

EP is the azimuthal

angle of the event plane determined by the direct flow.

4 Alternative methods

In this section, we introduce alternative methods for
measurement of the Λ hyperon polarization. The ad-
vantage of these methods is that the polarization can be
measured using the proton momentum in the lab frame.

We start with the formula for the Λ polarization vec-
tor in its rest frame,

−→
PΛ=

3

αH

〈p̂∗〉
ev
. (13)

We can project the above onto the direction of the global
polarization, which we assume to be along the y-axis, see
Fig. (1).

We now try to evaluate 〈p̂∗〉
ev
. To this end, we use

the following Lorentz transformation of the proton mo-
mentum,

p = p
∗+

pΛ(p
∗·pΛ)

mΛ(EΛ+mΛ)
+
E∗

p

mΛ

pΛ, (14)

where E∗

p is determined by the masses of the proton, pion
and Λ, as in Eq. (2). We take the event average of 〈p〉

ev
,

〈p〉
ev

= 〈p∗〉
ev
+

〈

pΛ(p
∗·pΛ)

mΛ(EΛ+mΛ)

〉

ev

, (15)

where we have used 〈pΛ〉ev=0.
In order to evaluate the second event average in the

right-hand-side of Eq. (15), we make two assumptions:
(1) pΛ and p

∗ are statistically independent, so we have
〈pΛ(pΛ·p

∗)〉ev≈ei

〈

p
i
Λp

j

Λ

〉

ev

〈

p
∗

j

〉

ev
, where pΛ=eip

i
Λ with

i=x,y,z; and (2)
〈

p
i
Λp

j

Λ

〉

ev
=〈|pi

Λ|
2〉evδij . Eq. (15) then

becomes

〈p̂∗

x〉ev ≈
1

|p∗|

(

1+

〈

|px
Λ|

2

(EΛ+mΛ)mΛ

〉

ev

)

−1

〈px〉ev ,

〈

p̂
∗

y

〉

ev
≈

1

|p∗|

(

1+

〈

|py

Λ|
2

(EΛ+mΛ)mΛ

〉

ev

)

−1

〈py〉ev ,

〈p̂∗

z〉ev ≈
1

|p∗|

(

1+

〈

|pz
Λ|

2

(EΛ+mΛ)mΛ

〉

ev

)

−1

〈pz〉ev . (16)

We choose a coordinate system as in Fig. 1: the im-
pact parameter vector is along the x-axis, the global
orbital momentum is along the y-axis, and the beam
direction is along the negative z-axis. In the coordi-
nate system used in the experiment, the beam direc-
tion is along the negative z-axis, and the impact pa-
rameter vector (reaction plane) is at an azimuthal an-
gle ψRP relative to the x-axis. In the new coordi-
nate system, we have p

x
Λ,p = |pT

Λ,p|cos(φΛ,p−ψRP) and
p

y

Λ,p=|pT
Λ,p|sin(φΛ,p−ψRP), where φΛ,p are the azimuthal

angles of the Λ hyperon and proton, respectively.

We can further simplify Eq. (16) by using the elliptic
flow coefficients. The distribution of pΛ is not isotropic
but satisfies

〈|px
Λ|

2〉ev ≈
〈

|pT
Λ |

2
〉

ev
〈cos2(φΛ−ψRP)〉ev

≈
〈

|pT
Λ |

2
〉

ev

1

2

(

1+vΛ2
)

,

〈|py

Λ|
2〉

ev
≈

〈

|pT
Λ |

2
〉

ev

〈

sin2(φΛ−ψRP)
〉

ev

≈
〈

|pT
Λ |

2
〉

ev

1

2

(

1−vΛ2
)

, (17)

where vΛ2 is the elliptic flow of the Λ hyperon. Since the
global angular momentum is along the y-axis, we have
〈px〉ev = 〈pz〉ev =0, and the only non-vanishing compo-
nent is

〈

p̂
∗

y

〉

ev
≈

1

|p∗|

(

1+

〈

|pT
Λ|

2sin2(φΛ−ψRP)

(EΛ+mΛ)mΛ

〉

ev

)

−1

×〈|pT |sin(φp−ψRP)〉ev

≈
1

|p∗|

[

1+
1

2

(

1−vΛ2
)

〈

|pT
Λ |

2

(EΛ+mΛ)mΛ

〉

ev

]

−1

×〈|pT |sin(φp−ψRP)〉ev (18)

In the central rapidity region |pz
Λ|≪|pT

Λ | and |pT
Λ |≈

|pΛ|, so that Eq. (18) becomes

〈

p̂
∗

y

〉

ev
≈

1

|p∗|

[

1+
1

2
(1−vΛ2 )(〈γΛ〉ev−1)

]

−1

×〈|pT |sin(φp−ψRP)〉ev (19)

In the non-relativistic limit, γΛ≈1 and |vΛ|≈0, we obtain

〈

p̂
∗

y

〉

ev
≈

1

|p∗|
〈|pT |sin(φp−ψRP)〉ev (20)

The difference with respect to the STAR method is that
now we are taking the event average using the proton
momenta in the lab frame.

Another method is to use the Lorentz transformation
of the energy associated with Eq. (14)

Ep=γΛE
∗

p+
p

∗·pΛ

mΛ

(21)

to replace (p∗ ·pΛ)/mΛ with Ep−γΛE
∗

p . Eq. (14) then
becomes

p = p
∗+(Ep−γΛE

∗

p)
pΛ

EΛ+mΛ

+
E∗

p

mΛ

pΛ

= p
∗+

Ep

EΛ+mΛ

pΛ+
E∗

p

EΛ+mΛ

pΛ. (22)

Taking the event average and using 〈pΛ/(EΛ+mΛ)〉≈0,
we obtain

〈p∗〉ev = 〈p〉ev−

〈

EΛ

EΛ+mΛ

EpvΛ

〉

ev

= mp

〈

γp

(

vp−
γΛ
γΛ+1

vΛ

)〉

ev

, (23)
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RP
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φRP

ψ+2
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x’
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T
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OAMLy, 

z

p
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p

Beam

Fig. 1. (color online) In the coordinate system (x,y,z), the beam direction is along the negative z-direction, the
impact parameter vector is in the x-direction, and the orbital angular momentum is in the y-direction. The direc-
tion of the proton momentum can be described by the polar angle θp and the azimuthal angle φp. The coordinate
system (x′,y′,z′) is used in experiment. The z′-axis is just the z-axis. The azimuthal angle of the impact parameter
vector in the (x′,y′,z′) system is ψRP.

where γp and γΛ are Lorentz contraction factors for the
proton and Λ hyperon, respectively. The right-hand-side
of the above equation involves only momenta in the lab
frame. We can project Eq. (23) onto the y-direction
(the direction of the orbital angular momentum) to ob-
tain

〈

p
∗

y

〉

ev
.

With
〈

p̂
∗

y

〉

ev
given by one of Eqs. (18, 19, 23), we can

obtain the global polarization of Λ from Eq. (13). In the
next section we compare these methods by simulations.

5 Simulation results with UrQMD

The UrQMD model [31, 32] has been used to produce
an ensemble of Λ hyperon four-momenta (EΛ,pΛ) from
Au+Au collisions with an impact parameter of 6 fm and
collision energies listed in Table 1. In each event there

are a few Λ hyperons produced. All these hyperons are
collected. Each hyperon is allowed to decay into a pro-
ton and a pion, whose angular distribution in the Λ rest
frame is given by

dN

dΩ∗
=

1

4π

(

1+αHPΛ

n
∗·p∗

|p∗|

)

, (24)

where PΛ denotes the Λ polarization. By taking a spe-
cific value of PΛ, we sample proton momenta in Λ rest
frames. For each Λ hyperon, the proton momentum in
its rest frame is then boosted back to the lab frame.
In this way we create an ensemble of proton momenta
in the lab frame. With the ensemble of momenta for
protons and Λ hyperons, we obtain

〈

p
∗

y

〉

ev
. Here we

choose the direction of the global angular momentum
along the y-direction. Finally, we obtain PΛ from Eq.
(13). Simulation results for the global polarization of

Λ hyperons using the methods given by Eqs. (8, 11, 18,
23, 19) are shown in Table 1. We see that all proposed
methods give equivalent results to the STAR method.
Fig. 2 shows the dependence of the simulation results on
the rapidity ranges. We conclude that all methods work
well for the chosen rapidity ranges, except method Eq.
(19) when used in the full rapidity range, or in ranges
[−1.5,1.5] and [−1,1]. This is understandable since Eq.
(19) is only valid for central rapidity. When applied
in the rapidity range [−0.5,0.5], this method also works
well.

6 Summary

The method used in the STAR experiment for mea-
surement of the global polarization of Λ hyperons is by
event averaging of sin

(

φ∗

p−ψRP

)

, where φ∗

p and ψRP are

the azimuthal angles of the proton momentum in the Λ
rest frame and of the reaction plane, respectively. We
propose several alternative methods for measurement of
the Λ global polarization. Based on the Lorentz transfor-
mation of momenta, we express the global polarization
in terms of momenta of protons and Λ hyperons in the
lab frame, and the event average is then taken of rele-
vant quantities in this frame. To test these methods, we
used the UrQMD model to produce an ensemble of Λ
hyperon momenta and then sampled the angular distri-
bution of protons and pions following the weak decay of
Λ hyperons. By taking event averages of relevant quan-
tities as function of momenta of protons and Λ hyperons
in the lab frame, we determined the global polarization.
The simulations showed that all proposed methods work
equally well as the STAR method.
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Table 1. Simulation results for the global polarization of Λ hyperons. We set PΛ =1/3, i.e. the Λ hyperons are
completely polarized. By analyzing the momentum distribution of daughter protons in the lab frame, we determine
the Λ polarization. The results of five methods are presented: methods 1 and 2, Eqs. (8,11) are used in the STAR
experiment [21]; methods 3–5, given by Eqs. (18, 23, 19) are proposed in this paper. The number of events collected
are 4×104 at 200 GeV and 2.5×104 at other energies. The results of method 1-4 are from events in the full rapidity
range, while those of method 5 are in the rapidity range [−0.5,0.5].

energy/ method 1 method 2 method 3 method 4 method 5 number of Λs

GeV Eq. (8) Eq. (11) Eq. (18) Eq. (23) Eq. (19) (full rapidity)

200 0.33581 0.335851 0.3324 0.33014 0.308495 1304795

180 0.330877 0.33141 0.326565 0.329057 0.306966 927717

140 0.338745 0.337673 0.338942 0.335862 0.351934 892533

120 0.333962 0.333688 0.329696 0.334152 0.318965 995522

100 0.336686 0.334685 0.34669 0.34522 0.360992 971596

62.4 0.331964 0.33118 0.324133 0.333466 0.353216 918787

40 0.330536 0.330302 0.332092 0.331782 0.323459 795837

39 0.337252 0.337516 0.332983 0.331683 0.312195 847367

19.6 0.328531 0.328434 0.339587 0.328939 0.31276 707868

7.7 0.341257 0.3417 0.364069 0.34862 0.302301 434697

E (GeV)
0 50 100 150 200

Λ
P

0.1

0.15

0.2

0.25

0.3

0.35

0.4
     Full Rapidity

Eq.(8)
Eq.(11)
Eq.(18)
Eq.(19)
Eq.(23)

E (GeV)
0 50 100 150 200

Λ
P

0.1

0.15

0.2

0.25

0.3

0.35

0.4
     -1.5 < y < 1.5

Eq.(8)
Eq.(11)
Eq.(18)
Eq.(19)
Eq.(23)

E (GeV)
0 50 100 150 200

Λ
P

0.1

0.15

0.2

0.25

0.3

0.35

0.4
     -1 < y < 1

Eq.(8)
Eq.(11)
Eq.(18)
Eq.(19)
Eq.(23)

E (GeV)
0 50 100 150 200

Λ
P

0.1

0.15

0.2

0.25

0.3

0.35

0.4
     -0.5 < y < 0.5

Eq.(8)
Eq.(11)
Eq.(18)
Eq.(19)
Eq.(23)

Fig. 2. (color online) The dependence of simulation results on rapidity ranges for the global polarization of the Λ
hyperon. The same parameters and number of events are used as in Table 1.
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