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From geometry to non-geometry via T-duality *

B. Sazdović1)
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Abstract: Reconsideration of the T-duality of the open string allows us to introduce some geometric features in

non-geometric theories. First, we have found what symmetry is T-dual to the local gauge transformations. It includes

transformations of background fields but does not include transformations of the coordinates. According to this we

have introduced a new, up to now missing term, with additional gauge field AD
i (D denotes components with Dirichlet

boundary conditions). It compensates non-fulfilment of the invariance under such transformations on the end-points

of an open string, and the standard gauge field AN
a (N denotes components with Neumann boundary conditions)

compensates non-fulfilment of the gauge invariance. Using a generalized procedure we will perform T-duality of

vector fields linear in coordinates. We show that gauge fields AN
a and AD

i are T-dual to ?Aa
D and ?Ai

N respectively.

We introduce the field strength of T-dual non-geometric theories as derivatives of T-dual gauge fields along both

T-dual variable yµ and its double ỹµ. This definition allows us to obtain gauge transformation of non-geometric

theories which leaves the T-dual field strength invariant. Therefore, we introduce some new features of non-geometric

theories where field strength has both antisymmetric and symmetric parts. This allows us to define new kinds of

truly non-geometric theories.
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1 Introduction

String theory has more symmetries than point par-
ticle theory. This is the source of an unusual situation,
which is described by so-called non-geometry [1–3]. In
fact, when going around a loop in space-time the field
configuration is well defined only after applying some
string symmetry (T-duality) as a transition function.

Geometric spaces appear when diffeomorphisms and
gauge transformations have been used as transition
functions to overlap coordinate patches. According to
Ref. [3], there are two kinds of non-geometric back-
grounds. In the first case (a benign form, which for a
three-torus is usually referred to as a theory with Q-
flux) the background is locally geometric but globally
non-geometric. This is T-fold , when T-duality trans-
formations can be used as transition functions [4]. In
the second case (a severe form, which for a three-torus is
usually referred to as a theory with R-flux) we lose the
local geometric description of space-time points and the
background is non-geometric even locally. This is a mys-
terious background, when T-duality is performed along

some non-isometry directions.
In the great majority of papers, Abelian T-duality

has been applied along the coordinates with global shift
symmetry. A problem occurs when we try to perform T-
duality along the coordinates on which background fields
depend. Then we should apply the generalized Buscher’s
procedure, developed in Refs. [5, 6], where the metric and
Kalb-Ramond fields are coordinate-dependent. In that
case, the argument of T-dual background fields is not
simply the T-dual variable ya but it is the line integral
of world-sheet gauge fields va+ and va−. Explicitly, we have
V a[v+,v−]≡

∫

P
dξαvaα=

∫

P
(dξ+va++dξ−va−), which on the

solution for gauge fields turns to V a=−κθabyb+G−1abE ỹb,
where ˙̃ya=y

′
a and ỹ

′
a=ẏa. We will claim that in such cases

T-dual theories are locally non-geometric, although the
initial theory is geometric. So far we have two reasons
for that. Besides the fact that we perform T-dualization
along non-isometry directions, we obtain a locally non-
geometric background (the argument is the line integral).
The additional two features: non-commutativity of the
closed string coordinates and non-associativity, which
have been shown in Refs. [7, 8].
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In order to better understand non-commutativity, we
prefer to use a canonical method. It can help us to
reproduce nicely the main result of open string theory
and non-commutative geometry, discovered in Ref. [9].
In fact, we can solve the Neumann boundary condition
and obtain an effective theory with effective canonical
variables qi and pi and effective background, named the
open string background in Ref. [9]. Then, the initial
coordinate xi depends not only on effective coordinates
but also on effective momenta, xi = qi−2θij

∫ σ
dσ1pj .

Since qi and pi, as independent variables, satisfy stan-
dard Poisson brackets, it is clear that initial coordinates
non-commute. In Ref. [10] it is described how an anti-
symmetric field Bab, regarded as a magnetic field on the
Dp-brane, has an effect on non-commutativity.

In Refs. [11, 12] it has been shown that the com-
mutators of closed string coordinates are proportional
to the flux and winding number. For the relation be-
tween space-time symmetry and non-commutativity see
Ref. [13] and references therein. We can expect that in
the canonical formulation closed string coordinates, in
order to be non-commutative, should have similar ex-
pressions to the open string ones. However, closed string
coordinates do not have end points and so there are no
boundary conditions and so no effective coordinates.

In Ref. [7] this problem has been solved by T-duality
performed along non-isometry directions, so that T-dual
background fields depend on V µ. To understand the
essence it is useful to perform the Buscher procedure
on the Lagrangian in canonical form S =

∫

d2ξ[πµẋ
µ−

H(x,x′,π)]. The x-dependence comes from the argu-
ments of background fields. Then the corresponding aux-
iliary action (after gauging shift symmetry, putting the
corresponding field strength to zero and fixing the gauge,
see Section 3.3.1) takes the form Saux =

∫

d2ξ[πµv
µ
0 −

H(V,v1,π)−κ(vµ0 y′µ− vµ1 ẏµ)]. Formally, we substitute
ẋµ→ vµ0 , x

µ→V µ and add the last term. Now, we can
consider two cases. First, when we work only with isome-
try directions then we have H(v1,π) (the Hamiltonian H
does not depend on xµ and consequently on V µ). Varying
with respect to vµ0 we obtain the relation κy′µ=πµ. (Af-
ter integration over σ it produces a well known relation
between momenta and winding numbers). This relation
cannot help us, because T-dual variables yµ commute,
as they depend only on initial momenta and not on ini-
tial coordinates. The second case, when we work with
non-isometry directions, is more interesting. Then the
argument of T-dual background fields V µ is a non-local
expression because it is a line integral of both vµ0 and vµ1 .
So, variation with respect to vµ0 produces a new term
and we obtain κy′µ=πµ−κ

3
Bµνρx

′νxρ (see relation (2.22)
of Ref. [7]). Now, the T-dual variables yµ depend on
both initial variable xµ and its canonically conjugated
momentum πµ, which provides non-commutativity be-

tween T-dual variables yµ. The fact that this expression
is quadratic in coordinates provides non-associativity be-
tween T-dual variables yµ, see Ref.[8].

In the present article we are going to perform T-
dualization for a background with constant metric and
Kalb-Ramond fields but where the vector gauge fields
are linear in coordinates. We will do this in two ways:
in terms of vector fields and in terms of corresponding
field strengths. In the first case, T-dual gauge fields will
depend on the same expression V µ, introduced above.
So in this case, due to the presence of vector background
fields, the T-dual theory will be non-local and hence lo-
cally non-geometric. On the other hand, this theory can
be described as a theory with constant field strength,
but with both antisymmetric and symmetric parts of
field strength. So, in the second case, we can perform
standard Buscher T-duality and obtain explicitly T-dual
field strengths. The main contribution of the paper is
the relation between T-dual gauge fields and T-dual field
strengths. It is non-standard for two reasons. First, be-
cause we must use derivatives of vector fields with respect
to two variables: the T-dual variable yµ and its double
ỹµ. Second, because the T-dual field strength contains
both antisymmetric and symmetric parts. So, using T-
duality we are able to introduce some geometry (the field
strength in terms of gauge fields) for non-geometric the-
ories.

To prepare this, we will first reconsider the T-duality
of vector background fields. There is a standard way
to introduce vector fields at the end of an open string
(see for example Ref. [14]). In fact, gauge invariance of
the Kalb-Ramond field Bµν , which is valid for the closed
string, has failed on open string ends with Neumann
boundary conditions. To restore it we should add the
corresponding vector fields Aa at the string end-points.
Then neither the Kalb-Ramond field Bab nor the field
strength Fab=∂aAb−∂bAa are gauge invariant. There is
a new invariant quantity Bab=Bab+Fab.

We will show that there exists a procedure T-dual
to that explained in the previous paragraph. The main
point is to understand what is T-dual to the local gauge
invariance of the Kalb-Ramond field Bµν . In the space-
time formulation it is known that this is general co-
ordinate transformations, but the world-sheet action is
invariant under general coordinate transformations. It
does not fail on open string ends with Dirichlet boundary
conditions, as we need. We will show that a transforma-
tion which includes transformation of background fields
but not transformation of coordinates, is really T-dual
to the local gauge invariance. The closed string is invari-
ant under such symmetry on the equations of motion.
In this article we are going to show that this symme-
try fails on open string ends with Dirichlet boundary
conditions. In analogy with previous case we will intro-
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duce a corresponding additional vector field Ai, which
restores general coordinate transformations at the string
end-points.

In accordance with the boundary conditions, we will
rename the vector fields Aa to AN

a and Ai to A
D
i , where

AN
a are fields corresponding to the Neumann boundary

conditions and AD
i are fields corresponding to the Dirich-

let boundary conditions.
The Dirichlet vector field is not coupled with ẋµ but

with expression γ(0)µ (x), which depends on both ẋµ and
x′µ. We will introduce γ(0)µ (x) in Section 2 and we will
call it σ-momentum, because standard momentum πµ

and γ(0)µ (x) are components of the same world-sheet vec-
tor. Consequently, we introduce a pair of effective vec-

tor fields Aαµ (α=0,1) as a world-sheet and space-time
vector. Its world-sheet components: the standard one
A0µ is a coefficient in front of ẋµ and a new one A1µ is
a coefficient in front of x′µ. We will show that the field
strength corresponding toA0µ is antisymmetric while the
non-standard one, corresponding to A1µ, is symmetric.

The space-time equations of motion in the lowest or-
der in slope parameter α′ are a consequence of the re-
quirement of world-sheet conformal invariance on the
quantum level. We will consider the simplest solutions
for the closed string background fields (metric and Kalb-
Ramond field) which satisfy the space-time equations of
motion Gµν=const,Bµν=const. For gauge fields we will
choose non-trivial solutions of the space-time equations
of motion [15]: we will take them linear in coordinates
with infinitesimal coefficients, so that the field strength
is infinitesimal and constant. This is a non-trivial gener-
alization of the standard consideration in the literature.
As is well known [16], the constant part of the Dirich-
let vector field AD

i carries out uniform translation of the
Dp-brane. In the present article the vector field addi-
tionally contains an infinitesimal coordinate dependent
part. According to Ref. [16] such a term can produce
coordinate-dependent translations. In other words it can
curve the Dp-brane. We will assume that AD

i depends
only on coordinates xi orthogonal to Dp-brane. So, in
this paper we will work with a plane Dp-brane.

Let us now consider T-duality. In the present ar-
ticle we will work only with Abelian T-duality. When
we use the formulation with field strength, according
to Buscher’s procedure [17], we will gauge global shift
symmetry. In the formulation with vector gauge fields
we should apply the generalization of such procedure
Ref. [6]. Canonical momenta are T-dual to the σ-
derivative of the coordinates. After integration over σ it
turns to T-duality between momenta and winding num-
bers. On the other hand, canonical momenta are gen-
erators of the general coordinate transformations, while
the σ-derivative of the coordinates are generators of the
gauge symmetry [18–20]. It follows that general coor-

dinate transformations are T-dual to the gauge symme-
try, which is a fact used in double field theories. In the
open string case, after T-dualization additional vector
fields with Neumann boundary conditions turn into vec-
tor fields with Dirichlet boundary conditions, AN

a →?Ab
D,

and vice versa, AD
i →?Aj

N .
We are going to carry through T-dualization in two

ways: in terms of vector field and in terms of its field
strength. The first way is more challenging, because in
that case the vector field is not constant and Buscher’s
procedure cannot be applied. The part with vector field
which corresponds to the Dirichlet boundary conditions
does not possess even global symmetry. So, we will use
the T-dualization procedure of Ref. [6], which works in
absence of global symmetry. We explicitly find T-dual
vector fields in the form ?Aa

D(V ) = G−1abE AN
b (V ) and

?Ai
N(V )=G−1ijAD

j (V ). It shows that, as we expect, T-
dualization changes boundary conditions and exchanges
Neumann with Dirichlet vector fields. Additionally we
prove that T-dual vector fields do not depend only on the
dual coordinates yµ but on V µ, which besides yµ depends
also on its double ỹµ.

The second way of T-dualization is simpler, because
the field strength of the initial theory is constant. The
antisymmetric part F (a)µν can be considered an extension
of the Kalb-Ramond field while the symmetric part F (s)µν

can be considered an extension of the metric tensor. So,
it is easy to find complete T-dual background fields and
T-dual field strength.

The particular form of V µ =−κθµνyν+G−1µνE ỹν im-
plies several features connected with non-geometric the-
ories. For example, in Ref. [8] it was shown that it pro-
duces non-associativity of the coordinates, derived pre-
viously in the other way in Refs. [11, 12, 21–23]. In
geometric theories the field strength for an Abelian vec-
tor field is simply Fµν = ∂µAν−∂νAµ. Because in non-
geometric theories the vector field depends on V µ, we
expect that T-dual field strength will contain derivatives
with respect to both variables yµ and ỹµ.

The case with T-dual vector fields includes additional
problems. The source of non-geometry is not only the ar-
gument V µ of the vector background field but also the
T-dual σ-momentum ?γµ(0)(y), which depends on both ẏµ
and y′µ. In that case we can analogously introduce T-

dual effective vector fields ?Aµ
0 (V ) and ?Aµ

1 (V ) in front
of ẏµ and y′µ respectively for both Neumann and Dirichlet
sectors. T-duality allows us to find their dependence on
the original vector fields Aµ:

?Aµ
α(Aµ),(α=0,1), which

is equivalent to dependence on the original field strength
?Aµ

α(Fµν),(α=0,1).
In the present article we will introduce the field

strengths of non-geometric theories. In geometric the-
ories, the term in the action with vector field (defined
as integration over τ) multiplied by ẋµ can be trans-
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formed to the term in the action with corresponding field
strength (with integration over d2ξ=dτdσ). We can take
this as a new definition for field strength. It agree with
the standard one for geometric theories and provides us
with new opportunities for non-geometric theories.

We can generalize such an approach to the case of
non-geometric theories. We will define the effective T-
dual field strength ?Fµν as the term in action with inte-
gration over d2ξ=dτdσ which is equivalent to the term
with effective vector fields ?Aµ

0 (V ) and ?Aµ
1 (V ) multi-

plied by ẏµ and y′µ respectively. As well as in the initial
theory, besides the standard term antisymmetric in µ,ν
indices ?Fµν

(a)=−?Fνµ

(a), it appears the new one is symmet-
ric in µ,ν indices ?Fµν

(s)=
?Fνµ

(s) . The T-dual effective field
strength depends on the initial one ?Fµν(Fµν). The ex-
pressions ?Aµ

α(Fµν) and
?Fµν(Fµν) allow us to eliminate

the initial field strength Fµν and find expression ?Fµν in
terms of ?Aµ

α. In fact, first we can find all antisymmetric
and symmetric derivatives of ?Aµ

α(Fµν) with respect to
both yµ and ỹµ. Comparing these results with the known
expression for ?Fµν(Fµν) we obtain the desired result.

Using the above results we will introduce genuinely
non-geometric theories. We will also discuss local gauge
symmetries of T-dual non-geometric theories as trans-
formation of T-dual effective vector fields ?Aµ

α(V ) which
does not change the T-dual field strength ?Fµν . We will
briefly discuss non-geometric matter fields.

2 T-duality of closed string

In this section we introduce some known features of
the bosonic closed string, which we are going to gener-
alize to the case of the open string in the next sections.
In particular, we consider T-dual background fields and
T-duality transformations in canonical form.

2.1 Closed bosonic string

Let us consider the closed bosonic string which prop-
agates in D-dimensional space-time described by the ac-
tion [24]

S[x]=κ

∫

Σ

d2ξ
√−g

[1

2
gαβGµν [x]+

εαβ√−gBµν [x]
]

∂αx
µ∂βx

ν ,

(ε01=−1). (1)

The string, with coordinates xµ(ξ), µ=0,1,...,D−1 is
moving in a non-trivial background, defined by the space
metric Gµν and the Kalb-Ramond field Bµν . Here gαβ is
the intrinsic world-sheet metric and the integration goes
over a two-dimensional world-sheet Σ with coordinates
ξα (ξ0=τ, ξ1=σ).

Choosing the conformal gauge gαβ=e
2Fηαβ, and in-

troducing light-cone coordinates ξ±= 1
2
(τ±σ), ∂±=∂τ±∂σ,

the action (1) can be rewritten in the form

S=κ

∫

Σ

d2ξ ∂+x
µΠ+µν∂−x

ν , (2)

where we introduce a useful combination of background
fields

Π±µν=Bµν±
1

2
Gµν . (3)

According to the action principle, variation of the
action (2) with respect to xµ produces an equation of
motion

∂+∂−x
µ+
(

Γ µ
νρ−Bµ

νρ

)

∂+x
ν∂−x

ρ=0, (4)

and boundary conditions

γ(0)µ (x)δxµ/σ=π − γ(0)µ (x)δxµ/σ=0=0, (5)

where Γ µ
νρ is the Christoffel symbol and we introduce

γ(0)µ (x) ≡ δS

δx′µ
=κ
[

2Bµν ẋ
ν−Gµνx

′ν
]

= κ
(

Π+µν∂−x
ν+Π−µν∂+x

ν
)

. (6)

The requirement of world-sheet conformal invariance
on the quantum level leads to the space-time equations
of motion, which at the lowest order in slope parameter
α′, for the constant dilaton field Φ=const, are

Rµν−
1

4
BµρσB

ρσ
ν =0, DρB

ρ
µν=0. (7)

Here Bµνρ=∂µBνρ+∂νBρµ+∂ρBµν is the field strength of
the field Bµν , and Rµν and Dµ are the Ricci tensor and
covariant derivative with respect to the space-time met-
ric. We will consider the simplest solutions of Eq. (7),

Gµν=const, Bµν=const, (8)

which satisfy the space-time equations of motion.

2.2 Sigma-model T-duality for closed string

Applying the Buscher T-dualization procedure along
all coordinates [17], we obtain the T-dual action

?S[y]=κ

∫

d2ξ ∂+yµ
?Πµν

+ ∂−yν=
κ2

2

∫

d2ξ ∂+yµθ
µν
− ∂−yν ,

(9)
where

θµν± ≡ − 2

κ
(G−1E Π±G

−1)µν=θµν∓ 1

κ
(G−1E )µν . (10)

The symmetric and antisymmetric parts of θµν± are
the inverse of the effective metric GE

µν and the non-
commutativity parameter θµν

GE
µν ≡Gµν−4(BG−1B)µν , θ

µν ≡− 2

κ
(G−1E BG−1)µν .(11)

Consequently, the T-dual background fields are

?Gµν=(G−1E )µν , ?Bµν=
κ

2
θµν . (12)
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Note that the dual effective metric is just the inverse of
the initial metric

?Gµν
E ≡?Gµν−4(?B?G−1?B)µν=(G−1)µν , (13)

and we will need the following relations

(?B?G−1)µν=−(G−1B)µν , (?G−1?B)µ
ν=−(BG−1)µν .

(14)

2.3 T-duality transformations of closed string

The T-duality transformation, connecting the vari-
ables xµ of the initial closed string theory with its corre-
sponding T-dual ones yµ, takes the form [5]

∂±x
µ∼=−κθµν± ∂±yν , (15)

where the symbol ∼= denotes the T-duality relation.
From this equation we can find the T-dual transfor-

mation laws for ẋµ and x′µ,

ẋµ ∼= −κθµν ẏν+(G−1E )µνy′ν , (16)

x′µ ∼= (G−1E )µν ẏν−κθµνy′ν . (17)

It has been shown in Ref. [5] that the T-dual of the
T-dual action is the original one. The corresponding T-
dual transformation is the inverse of Eq. (15),

∂±yµ∼=−2Π∓µν∂±xν , (18)

and consequently the transformation laws for ẏµ and y′µ
are equal to

ẏµ ∼= −2Bµν ẋ
ν+Gµνx

′ν , (19)

y′µ
∼= Gµν ẋ

ν−2Bµνx
′ν . (20)

Using the expression for the canonical momentum of
the original theory,

πµ≡
δS

δẋµ
=κ
[

Gµν ẋ
ν−2Bµνx

′ν
]

, (21)

and of the T-dual theory,

?
π
µ≡ δ

?S

δẏµ
=κ
[

(G−1E )µν ẏν−κθµνy′ν
]

, (22)

we can rewrite the transformations (17) and (20) in the
canonical form,

κx′µ∼=?
π
µ , πµ

∼=κy′µ . (23)

This relation connect momenta and winding numbers.
It was shown in Refs. [18–20] that πµ is the genera-

tor of general coordinate transformations while x′µ is the
generator of gauge symmetry. Then, Eq. (23) shows that
these symmetries are T-dual to each other.

Since ∂αx
µ={ẋµ,x′µ} is a world-sheet vector, varia-

tion with respect to ∂αx
µ,

π
α
µ≡

δS

δ∂αxµ
={πµ,γ

(0)
µ (x)}, (24)

is also a world-sheet vector. So, the momentum πµ

and variable γ(0)µ (x), which will play important roles in

the analysis of boundary conditions, are components of
the same world-sheet vector. From now on we will call
γ(0)µ (x) σ-momentum.

3 T-duality of open string

In this section we will consider boundary conditions
on the open string end-points and adapt T-duality for
such restrictions. Essentially, all changes will happen
on the string end points, although it is useful to rewrite
some expressions formally as if they are on the world-
sheet.

We will consider vector gauge field AN
a with Neumann

boundary conditions, which appears regularly in the lit-
erature. It is a p+1 dimensional vector on the Dp-brane.
It compensates the not-implemented gauge symmetry of
the Kalb-Ramond field at the open string end-points. In
this article we additionally introduce the D−p−1 di-
mensional vector field AD

i with Dirichlet boundary con-
ditions, orthogonal to the Dp-brane, which with previous
ones completes a D-dimensional vector. It compensates
the not-implemented general coordinate transformations
at the open string end-points. We will show that field
AD

i is T-dual to the AN
a one, as well as that the gen-

eral coordinate transformations are T-dual to the gauge
symmetry of the Kalb-Ramond field.

3.1 T-duality between Dirichlet and Neumann

boundary conditions

Unlike the closed string, the open string must satisfy
boundary conditions at the string end-points. For an ini-
tial string they take forms (5) and (6) while for a T-dual
string we have

?γµ(0)(y)δyµ/σ=π − ?γµ(0)(y)δyµ/σ=0=0, (25)

where according to Eq. (9) the T-dual σ-momentum is

?γµ(0)(y) ≡
δ?S

δy′µ
=κ
[

κθµν ẏν−(G−1E )µνy′ν

]

= κ
[

2?Bµν ẏν−?Gµνy′ν

]

=
κ2

2

(

θµν− ∂−yν+θ
µν
+ ∂+yν

)

. (26)

We can rewrite the T-dual transformations (16) and (19)
in the form

−κẋµ∼=?γµ(0)(y), γ(0)µ (x)∼=−κẏµ . (27)

Note that we can put Eqs. (23) and (27) in compact,
world-sheet covariant forms,

κ∂αx
µ ∼= δ?S

δ(εαβ∂βyµ)
=−εαβ?πβµ ,

κ∂αyµ ∼=
δS

δ(εαβ∂βxµ)
=−εαβπβ

µ . (28)
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Let us show that the above equations connect the
Dirichlet and Neumann boundary conditions.

1) If the end points (we will denote them with ∂Σ as a
boundary of the world-sheet Σ) of the initial string sat-
isfy Neumann boundary conditions (which means that
variation of some string end points δxa/∂Σ with a =
0,1,··· ,p is arbitrary) then γ(0)a (x)/∂Σ=0. Together with
Eq. (27) it produces ẏa/∂Σ=0, which means that edges
of the dual string are fixed. This is by definition the
Dirichlet boundary conditions for a T-dual string.

2) Similarly, if the end points of an initial string sat-
isfy Dirichlet boundary conditions (it means that the
edges of the string are fixed) then ẋi/∂Σ = 0 where
i = p+1,··· ,D−1. Together with Eq. (27) it produces
?γi(0)(y)/∂Σ=0, which according to Eq. (25) means that
variations of the corresponding dual string end points
δyi/∂Σ are arbitrary. This is by definition the Neumann
boundary conditions for a T-dual string.

3.2 Neumann and Dirichlet vector background

fields

The action of closed string theory (1) is invariant un-
der local gauge transformations,

δΛGµν=0, δΛBµν=∂µΛν−∂νΛµ . (29)

The open string theory is not invariant under these trans-
formations. In Ref. [14] has been shown that for open
strings,

δΛS[x]=2κ

∫

dτ(Λµẋ
µ/σ=π−Λµẋ

µ/σ=0). (30)

We already denoted the coordinates with Neumann
boundary conditions with xa and those with Dirichlet
boundary conditions with xi. This means that δxa/σ=π
and δxa/σ=0 are arbitrary, which produces γ(0)a (x)/σ=π=
γ(0)a (x)/σ=0 = 0. On the other hand, δxi/σ=π = 0 and
δxi/σ=0=0, so that γ(0)i (x)/σ=π and γ(0)i (x)/σ=0 are ar-
bitrary. So, because both string end points for xi co-
ordinates satisfy Dirichlet boundary conditions, we have
ẋi/σ=0=ẋ

i/σ=π=0 and consequently,

δΛS[x]=2κ

∫

dτ(Λaẋ
a/σ=π−Λaẋ

a/σ=0). (31)

To obtain gauge invariant action we should add the
term

SAΛ
[x]=2κ

∫

dτ(Aaẋ
a/σ=π−Aaẋ

a/σ=0), (32)

where the newly introduced vector field Aa transforms
with the same gauge parameter Λa,

δΛAa=−Λa . (33)

Therefore, adding the term SAΛ
[x], we obtain the open

string action invariant under local gauge transformations
with parameter Λa.

It is natural to ask:
1) whether T-dual transformations of local gauge

transformations exist (29);
2) whether we can add some term SAξ

[x] in order to
obtain open string action invariant under such T-dual
transformation;

3) whether the terms SAΛ
[x] and SAξ

[x] are connected
by T-duality transformations as well as their origins.

In this article we will show that the answers to all
these questions are affirmative. We can expect such a
conclusion, because if T-duality is valid in the case of an
open string then any step in the original theory should
have a partner in the T-dual version.

We expect that for every characteristic of the initial
theory we can find the corresponding one in T-dual the-
ory. In fact, we have the following table of related terms
in initial and T-dual theory:

Gµν Bµν −κẋa γ(0)i (x) LGT AN
a (x) AD

i (x)
?Gµν ?Bµν ?γa(0)(y) −κẏi ? ?Aa

D(V ) ?Ai
N(V )

where LGT is the abbreviation for local gauge transfor-
mations and the question mark is for an unknown sym-
metry which we expect to be “transformation T-dual to
the local gauge transformation”. It will allow us to intro-
duce the Dirichlet vector fields AD

i in analogy with the
same procedure in which Neumann vector fields AN

a were
introduced in Ref.[14]. An interesting result has been
obtained, that Dirichlet and Neumann vector fields, AD

i

and AN
a , are coupled to the T-dual expressions γ(0)i (x)

and −κẋa respectively. Later we will find that Dirichlet
and Neumann vector fields are also T-dual to each other,
which will complete the table above.

In Refs. [18–20] it has been shown that the generator
of the local gauge transformations is σ-derivative of the
coordinates x′µ. Briefly, if the variation of the energy-
momentum tensor δT± can be written as the Poisson
bracket of some generator Γ with energy-momentum ten-
sor T±, namely if the relation

δT±={Γ,T±}, (34)

is satisfied, then the corresponding transformation of
background fields is the target-space symmetry of the
theory. For Γ→ΓΛ=2κ

∫

dσΛµx
′µ, we just obtain trans-

formations (29).
According to Eq. (23) the corresponding T-dual gen-

erator is Γξ=2
∫

dσξµπµ, with the following transforma-
tions of background fields:

δξGµν = −2(Dµξν+Dνξµ),

δξBµν = −2ξρBρµν+2∂µ(Bνρξ
ρ)−2∂ν(Bµρξ

ρ). (35)

These transformations have exactly the form of general
coordinate transformations for background fields and
they are symmetry transformations of the space-time ac-
tion.
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Are they symmetries of the σ-model action? The dif-
ference is transformation of the coordinates, which does
not appear explicitly in target-space but is present in
σ-model action. In fact, the energy-momentum tensor
does not depend explicitly on the coordinates, and the
above consideration does not give us information about
transformations of the coordinates. In order to distin-
guish from standard general coordinate transformations
(which includes transformation of xµ), those without
transformation of xµ we will call transformations gen-
erated by πµ.

To better understand what one we have to choose as
a T-dual to local gauge transformations in the σ-model
action, it is useful to make transformations (35) of the
background fields (metric tensor Gµν and Kalb-Ramond
field Bµν) with parameter ξµ and the transformations
of the string coordinates xµ with a different parameter
δxµ = ξ̄µ. Then, using the equation of motion (4) we
obtain

δξS[x] = −2
∫

dτ
[

(ξµ−ξ̄µ)G−1µνγ(0)ν (x)/σ=π

−(ξµ−ξ̄µ)G−1µνγ(0)ν (x)/σ=0

]

, (36)

where σ-momentum γ(0)µ (x), defined in Eq. (6), is an ex-
pression which appears in the boundary conditions of the
original theory.

First, we can conclude that at interior points of the
string, on the equations of motions, the action is invari-
ant even under separate transformations of background
fields and of the string coordinates. For general coor-
dinate transformations we have ξµ = ξ̄µ, and the whole
action is invariant. This is true even without using equa-
tions of motion. So, in the case of σ-model action for an
open string, we cannot accept reparametrization as a T-
dual of local gauge transformations. Such a choice does
not allow us to add the corresponding vector fields, which
should be T-dual to the fields Aa, introduced above.

Therefore, as a T-dual to local gauge transformations
we will try to impose the transformations (35), the part
of general coordinate transformations, which include the
transformations of background fields but do not include
the transformations of the string coordinates xµ. Then
we have ξ̄µ/σ=π=ξ̄µ/σ=0=0 and

δξS[x] = −2
∫

dτ
(

ξµG
−1µνγ(0)ν (x)/σ=π

−ξµG−1µνγ(0)ν (x)/σ=0

)

. (37)

Note that this relation is a strong indication that we
are on the right track, because according to Eq. (27) ẋµ

and γ(0)µ (x) are expressions T-dual to each other. So,
we obtained non-trivial transformations as we need and
the transformations (29) and (35) are connected by T-
duality. From now on, for transformation (35) we will

use expression: T-dual to local gauge transformations.
Let us for simplicity assume that both metric tensor

and Kalb-Ramond fields have a form

Gµν=

(

Gab 0

0 Gij

)

, Bµν=

(

Bab 0

0 Bij

)

. (38)

Then for Neumann boundary conditions we have
γ(0)a (x)/σ=π=γ

(0)
a (x)/σ=0=0, and thus on the equation of

motion (4) we are left only with coordinates that satisfy
Dirichlet boundary conditions,

δξS[x] = −2
∫

dτ
(

ξiG
−1ijγ(0)j (x)/σ=π

−ξiG−1ijγ(0)j (x)/σ=0

)

. (39)

Consequently, on the equations of motion the closed
string is invariant under transformations (35), while it
is violated on the open string endpoints with Dirichlet
boundary conditions. It remains to discuss the relation
of transformations (35) as a symmetry T-dual to the lo-
cal gauge transformations, with well known general co-
ordinate transformations. The similarity is obvious, be-
cause the first transformations are part of the second
ones. There are two differences. One is a lack of trans-
formation of the coordinates and the other is that trans-
formations (35) are symmetric only on the equations of
motion. From the point of view of T-duality the second
one is not a big surprise because, as it is well known, the
equations of motion and Bianchi identity are T-dual to
each other. So, local gauge transformations are symme-
tries of the action without equations of motion, while its
T-dual residual general coordinate transformations are
symmetries of the action on the equations of motion.

The next steps are similar to those in the case of local
gauge transformations. To obtain action invariant under
residual general coordinate transformations we should
add the term

SAξ
[x] = −2

∫

dτ
(

AiG
−1ijγ(0)j (x)/σ=π

−AiG
−1ijγ(0)j (x)/σ=0

)

, (40)

where the vector field Ai transforms with the gauge pa-
rameter of the residual general coordinate transforma-
tions ξi

δξAi=−ξi . (41)

Note that variation of SAξ
[x] does not include variation

of metric G−1ij and σ-momentum γ(0)j (x). In fact, Ai is

infinitesimal and variation of G−1ij or γ(0)j (x) will pro-
duce infinitesimals of the second order, which we will
neglect.

So, the full gauge invariant action for an open string
is

083106-7



Chinese Physics C Vol. 42, No. 8 (2018) 083106

Sopen[x] = S[x]+SAΛ
[x]+SAξ

[x]=κ

∫

Σ

d2ξ
√−g

[1

2
gαβGµν [x]+

εαβ√−gBµν [x]
]

∂αx
µ∂βx

ν

+2κ

∫

dτ
[(

AN
a [x]ẋ

a− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=π−
(

AN
a [x]ẋ

a− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=0

]

. (42)

Consequently, the nontrivial background fields are Aa→
AN

a and Ai → AD
i , where we introduced the indices N

and D for vector fields corresponding to Neumann and
Dirichlet boundary conditions.

Note that the variables

Bab = Bab+∂aA
N
b −∂bAN

a , Gab=Gab ,

Bij = Bij−2Ak
DBkij+2∂i(BjkG

−1kqAD
q )

−2∂j(BikG
−1kqAD

q ),

Gij = Gij−2(∂iAD
j +∂jA

D
i ), (43)

are gauge invariant under Eq. (35), Eq. (29) and trans-
formations of the vector fields δAN

a =−Λa and δA
D
i =−ξi,

and consequently they are physical. For further benefit
let us introduce notations

F (a)ab =∂aA
N
b −∂bAN

a , F (s)ij =−2(∂iAD
j +∂jA

D
i ). (44)

We are going to use the conformal gauge and the
light-cone coordinates, so that the first term in Sopen ob-
tains the form of the action (2). For constant metric and
Kalb-Ramond fields we have

Sopen[x]=κ

∫

Σ

d2ξ∂+x
µΠ+µν∂−x

ν

+2κ

∫

dτ
[(

AN
a [x]ẋ

a− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=π

−
(

AN
a [x]ẋ

a− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=0

]

. (45)

In the literature AN
a [x] is known as a massless vector

field on the Dp-brane while AD
i [x] is known as massless

scalar oscillations orthogonal to the Dp-brane. These
are terms in relation to the Lorentz transformations that
preserve the Dp-brane.

Note that inclusion of vector background fields
changes the σ-momentum γ(0)i , defined in Eq. (6). In
fact, we will get an additional infinitesimal term linear
in the vector background fields. It is multiplied by an-
other infinitesimal, AD

i , and consequently we will neglect
it.

It is common to take both the vector and the massless
scalar fields to be constant, when the Buscher procedure
can be applied. The constant massless scalar field per-
forms uniform translation of the Dp-brane [16]. We are
going to use the generalized procedure [5, 6], so we are
able to consider vector and massless scalar fields linear in
coordinates with infinitesimal coefficients. As explained
in Ref. [16], coordinate-dependent massless scalar fields
produce coordinate-dependent translations, which curve

the Dp-brane. Consequently, our approach is able to de-
scribe an infinitesimally curved Dp-brane. We are not
going to do this in the present article, because for sim-
plicity we will assume later in Eq. (46) that AD

i (x) de-
pends only on xi coordinates and not on xa.

3.3 T-dual background fields of open string

Let us perform the T-dualization procedure on the
theory described by the action (45). The first term con-
tains constant background fields and so we can apply
the standard Buscher’s procedure of Section 2.2. The re-
maining two terms are nontrivial because the background
fields AN

a and AD
i are coordinate-dependent. To simplify

the situation we will assume that the vector fields are
linear in coordinates,

AN
a (x)=A

0
a−

1

2
F (a)ab x

b , AD
i (x)=A

0
i−

1

4
F (s)ij x

j , (46)

so that the corresponding field strengths are constant.
The coefficients F (a)ab and F (s)ij are defined in Eq. (44).
The first coefficient is antisymmetric under a,b indices
while the second is symmetric under i,j indices.

These forms of background fields satisfy the addi-
tional space-time equations of motion for open strings
[15]. In our notation they take the form

βa = −1

2
Ba

b∂bΦ+G−1E
bc∂cBba

+G−1E
bc

(

1

2
Ba

dBdbeBe
c+K

µ
acBµν∂bf

ν

)

,

[1mm]βµ =
1

2
∂µΦ+G−1E

ab(
1

2
Bb

cBµac−Kµab), (47)

where

Bab=Bab+F
(a)
ab , GE

ab=Gab−4BacG
−1cdBdb , (48)

Bµνρ is the field strength of the Kalb-Ramond field Bµν

defined in Section 2.1 and Kµ
ab is the extrinsic curvature.

According to our assumptions Φ=const and Bab=const.
So, GE

ab=const and Babc=0. Since we are working with a
plane Dp-brane the extrinsic curvature is zero and both
β-functions vanish.
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Note that the part with Dirichlet vector field

SD
A [x] = −2

∫

dτ
[(

AD
i [x]G

−1ijγ(0)j (x)
)

/σ=π

−
(

AD
i [x]G

−1ijγ(0)j (x)
)

/σ=0

]

= 2κ

∫

dτ
[(

2ẋi(BG−1)i
jAD

j [x]+x
′iAD

i [x]
)

/σ=π

−
(

2ẋi(BG−1)i
jAD

j [x]+x
′iAD

i [x]
)

/σ=0

]

, (49)

using the form of the vector field (46) after partial inte-
gration over τ , can be rewritten as

SD
A [x] = 2κ

∫

dτ
[(

2ẋiAD
i [G

−1Bx]+x′iAD
i [x]

)

/σ=π

−
(

2ẋiAD
i [G

−1Bx]+x′iAD
i [x]

)

/σ=0

]

. (50)

So, we can conclude that following forms of the Dirichlet

vector field are equivalent,

(BG−1)i
jAD

j [x]
∼=AD

i [G
−1Bx]. (51)

3.3.1 Auxiliary action

Because parts with vector fields depend on the coor-
dinate xµ itself and not on its derivatives with respect to
τ and σ, it is not possible to apply the standard Buscher’s
procedure. So, we will need generalized T-duality, devel-
oped in Ref. [5]. Even more, the part with AD

i (x) does
not have the global shift symmetry, because the expres-
sion γ(0)i contains the part Gijx

′j which is not the to-
tal derivative with respect to integration variable τ . So,
we should apply the T-dualization procedure of Ref. [6],
which works in the absence of global symmetry.

Following Ref. [6], let us introduce the auxiliary ac-
tion,

Saux[v±,y] = κ

∫

Σ

d2ξ
[

vµ+Π+µνv
ν
−+

1

2
(vµ+∂−yµ−∂+yµvµ−)

]

+2κ

∫

dτ
{[

AN
a (∆V )va0−

1

κ
AD

i (∆V )G−1ijγ(0)j (V )
]

/σ=π

−
[

AN
a (∆V )va0−

1

κ
AD

i (∆V )G−1ijγ(0)j (V )
]

/σ=0

}

, (52)

where γ(0)i (V ) ≡ κ(2BijV̇
j−GijV

′j) = κ(2Bijv
j
0−Gijv

j
1)

have been defined in accordance with Eq. (6). It can be
obtained from the action (45), by making substitutions,

∂±x
µ→vµ± , ẋµ→vµ0 , x′µ→vµ1 , xµ→∆V µ , (53)

and adding the Lagrange multiplier term with Lagrange
multiplier yµ. This action is constructed in the form of
the gauge fixed action. Here vµ± are some auxiliary fields,
which take over the role of the gauge fields. Similarly to
Refs. [5–7], the argument of the background fields is the
line integral of the auxiliary fields taken along a path P
(from ξ0 to ξ),

∆V µ[v+,v−]≡
∫

P

dξαvµα=

∫

P

(dξ+vµ++dξ−vµ−). (54)

It is easy to show that the auxiliary action Saux[x]
(52) turns to the initial action Sopen[x] (45). Note that,
also in Refs. [5, 6], the equation of motion with respect
to yµ forces the “field strength” to vanish,

∂+v
µ
−−∂−vµ+=0, (55)

which is just the condition for the path independence of
∆V µ. Using the solution of Eq. (55),

vµ±=∂±x
µ, (56)

one obtains ∆V µ(ξ)=xµ(ξ)−xµ(ξ0), and taking xµ(ξ0)=0
the auxiliary action reduces to the initial one (45).

3.3.2 T-dual action

The next step is to find the equations of motion with
respect to the auxiliary fields vµ±. To prepare this, let us
first rewrite the part of the action (52) with integration
over dτ to the integration over d2ξ=dτdσ. We obtain

Saux[v±,y] = κ

∫

Σ

d2ξ
[

vµ+Π+µνv
ν
−+

1

2
(vµ+∂−yµ−∂+yµvµ−)

]

+κ

∫

Σ

d2ξ

{

[

AN
a (V )(va++v

a
−)

−2AD
i (V )G−1ij

(

Π−jkv
k
++Π+jkv

k
−

)]

∆(σ)

}

,

(57)

where ∆(σ)≡δ(σ−π)−δ(σ) and we used the relations

vµ±=v
µ
0±vµ1 , (58)

and Eq. (6) for γ(0)i (x).
Let us first calculate the variation over the arguments

V µ of the vector background fields. Using the form (46)
of these fields and zero order equation of motion we can
reexpress the term with vector fields from Eq. (57) in the
form

SA[v±,y] = κ

∫

Σ

d2ξ

{

[

AN
a (V )(va++v

a
−)+2AD

i (G
−1Π+V )vi+

+2AD
i (G

−1Π−V )vi−

]

∆(σ)

}

. (59)
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It helps us to find the variation with respect to arguments
V µ of the background fields,

δV Saux[v±,y] = κ

∫

Σ

d2ξ
{

(δva++δv
a
−)A

N
a (V )

+2δvi+A
D
i (G

−1Π+V )

+2δvi−A
D
i (G

−1Π−V )
}

∆(σ). (60)

Now, the equations of motion after variation with respect
to the auxiliary fields vµ∓ are:

Π∓µνv
ν
±+

1

2
∂±yµ+

[

∓2AN
a (V )∓2Π∓ijG−1jkAD

k (V )

∓2AD
i (G

−1Π∓V )
]

∆(σ)=0. (61)

Introducing new variablesA±µ(V )={A±a(V ),A±i(V )},
A±a(V ) ≡ AN

a (V ),

A±i(V ) ≡ Π∓ijG
−1jkAD

k (V )+AD
i (G

−1Π∓V )

= −1

4

(

BG−1F (s)+F (s)G−1B∓F (s)
)

ij
V j ,

(62)

or in components,

A0a(V ) = AN
a (V ), A1a(V )=0,

A0i(V ) = (BG−1)i
jAD

j (V )+AD
i (G

−1BV )

= A(0)0i −
1

4
(BG−1F (s)+F (s)G−1B)ijV

j ,

A1i(V ) = −A(0)Di +
1

4
F (s)ij V

j=−AD
i (V ), (63)

we can rewrite the above equation as

Π∓µνv
ν
±+

1

2
∂±yµ∓2A±µ(V )∆(σ)=0. (64)

We introduced a pair of effective vector fields Aαµ=
{A0µ ,A1µ} instead of the initial one Aµ={AN

a ,A
D
i }. So,

we doubled the number of vector fields, but there are two
constraints on the effective vector fields,

A1a(V )=0, A0i(V )=−(BG−1)ijA1j(V )−A1i(G−1BV ).
(65)

The second constraint we can also rewrite in the
forms

(Π+G
−1)i

jA+j(V )+A+i(G−1Π+V )

= (Π−G
−1)i

jA−j(V )+A−i(G−1Π−V ). (66)

Using Eq. (51), from now on the i-components of
Eqs. (62) and (63) we will express as

A±i(V )=2Π∓ijG
−1jkAD

k (V ), A0i(V )=2(BG−1)i
jAD

j (V ).
(67)

Multiplying Eq. (64) from the left with 2κθ±, we can
solve it in terms of vµ±,

vµ± = −κθµν± ∂±yν±4κθµν± A±ν(V )∆(σ)

= −κθµν±
(

∂±yν∓4A±ν(V )∆(σ)
)

, (68)

or in components,

vµ0 = −κθµν
[

ẏν−4A1ν∆(σ)
]

+G−1E
µν
[

y′ν−4A0ν∆(σ)
]

,

vµ1 = −κθµν
[

y′ν−4A0ν∆(σ)
]

+G−1E
µν
[

ẏν−4A1ν∆(σ)
]

.(69)

Substituting Eq. (68) in Eq. (54) we obtain

V µ=−κθµν(yν−4Ãν)+G
−1
E

µν(ỹν−4Aν)=V
µ
0 +V

µ
1 , (70)

where

ỹµ ≡ −εαβ

∫

dξα∂βyµ=

∫

(dτy′µ+dσẏµ), (71)

Aµ ≡
∫

dξαAαµ∆(σ)=

∫

(dτA0µ+dσA1µ)∆(σ),

Ãµ ≡ −εαβ

∫

dξαAβµ∆(σ)=

∫

(dτA1µ+dσA0µ)∆(σ).

The finite part V µ
0 and the infinitesimal one V µ

1 take
a form

V µ
0 =−κθµνyν+G−1E

µν ỹν , V µ
1 =4κθµνÃν−4G−1E

µνAν .
(72)

We are going to substitute the solution (68) back into
the action (57). First we calculate

vµ+Π+µνv
ν
− = −κ

2
∂+yµθ

µν
− ∂−yν+2κA+µ(V )θµν− ∂−yν∆(σ)

−2κ∂+yµθµν− A−ν(V )∆(σ)

+8κA+µ(V )θµν− A−ν(V )∆2(σ), (73)

and

1

2
(vµ+∂−yµ−∂+yµvµ−)

= κ∂+yµθ
µν
− ∂−yν−2κA+µ(V )θµν− ∂−yν∆(σ)

+2κ∂+yµθ
µν
− A−ν(V )∆(σ). (74)

Consequently, the first part of the T-dual action is

vµ+Π+µνv
ν
−+

1

2
(vµ+∂−yµ−∂+yµvµ−)

=
κ

2
∂+yµθ

µν
− ∂−yν+8κA+µ(V )θµν− A−ν(V )∆2(σ). (75)

Substituting the solution (68) into the part of the
action (57) with vector background fields, we have

[

AN
a (V )(va++v

a
−)−2AD

i (V )G−1ijBjk(v
k
++v

k
−)+A

D
i (V )(vi+−vi−)

]

∆(σ)

= 2
[

AD
i (V )G−1ij ẏj−

1

κ
AN

a (V )?γa(0)(y)
]

∆(σ)+4κAN
a (θ

ab
+ A+b−θab−A−b)∆2(σ)−4AD

i G
−1ij(A+j−A−j)∆2(σ), (76)
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where ?γa(0)(y) has been defined in Eq. (26). Similarly
to the case of the initial theory, open string T-dual σ-
momentum has an additional infinitesimal term propor-
tional to the T-dual vector fields. We will neglect it
because it is multiplied by another infinitesimal AN

a (V ).
Since the vector fields are infinitesimal, we can ne-

glect all terms bilinear in the vector fields which helps us
to avoid trouble with ∆2(σ). Consequently, the T-dual
action takes the form

?S[y] =
κ2

2

∫

d2ξ ∂+yµθ
µν
− ∂−yν+2κ

∫

dτ
[(

AD
i (V )G−1ij ẏj

− 1

κ
AN

a (V )?γa(0)(V )
)

/σ=π

−
(

AD
i (V )G−1ij ẏj−

1

κ
AN

a (V )?γa(0)

)

/σ=0(V )
]

. (77)

3.3.3 T-dual background fields

Because T-dual action should have the same form as
the initial one (45) but in terms of T-dual fields,

?S[y] = κ

∫

d2ξ∂+yµ
?Πµν

+ ∂−yν+2κ

∫

dτ
[(

?Ai
N(V )ẏi

− 1

κ
?Aa

D(V )?G−1ab
?γb(0)(V )

)

/σ=π

−
(

?Ai
N(V )ẏi−

1

κ
?Aa

D(V )?G−1ab
?γb(0)(V )

)

/σ=0

]

,

(78)

we can express T-dual background fields in terms of the
initial ones,

?Πµν
+ =

κ

2
θµν− , ?Aa

D(V )=G−1abE AN
b (V ),

?Ai
N(V )=G−1ijAD

j (V ). (79)

As one might expect, the T-dual metric and T-dual Kalb-
Ramond fields remain the same as in the closed string
case, Eq. (9).

With the help of last two relations we can find effec-
tive T-dual vector fields in analogy with first relation in
Eq. (67) and first relation in Eq. (62),

?Aa
±(V )=2?Πab

∓
?G−1bc

?Ac
D(V )=κθab± A

N
b (V ),

?Ai
±(V )=?Ai

N(V )=G−1ijAD
i (V ). (80)

In analogy with second relation in Eq. (67), or from the
previous relations, we have,

?Aa
0(V ) = 2(?B?G−1)ab

?Ab
D(V )=κθabAN

b (V ),
?Aa

1(V ) = −?Aa
D(V )=−G−1abE AN

b (V ),
?Ai

0(V ) = ?Ai
N(V )=G−1ijAD

j (V ), ?Ai
1(V )=0. (81)

We introduced two effective T-dual vector fields
?Aµ

α = {?Aµ
0 ,

?Aµ
1} instead of the initial one ?Aµ =

{?Aa
D ,

?Ai
N}, but we have two constraints,

?Aa
0(V )=−2(?B?G−1)ab

?Ab
1(V )=2(G−1B)ab

?Ab
1(V ),

?Ai
1(V )=0. (82)

The first relation we can rewrite in the forms

?Πab
+

?G−1bc
?Ac

+(V ) = ?Πab
−

?G−1bc
?Ac

−(V ),

Π−ab
?Ab

+(V ) = Π+ab
?Ab

−(V ). (83)

Let us make two observations. First, vector fields
corresponding to Neumann (Dirichlet) boundary con-
ditions of the initial theory AN

a (x) in front of ẋa in
Eq. (45) (AD

i (x) in front of γ(0)i in Eq. (45)) after T-
dualization turn to the fields corresponding to Dirichlet
(Neumann) boundary conditions of the T-dual theory
?Aa

D(V ) in front of ?γa(0) in Eq. (78) (?Ai
N(V ) in front of

ẏi in Eq. (78)). Therefore, T-duality interchanges Neu-
mann with Dirichlet gauge fields. Second, the T-dual
vector background fields depend not on yµ but on the
finite part of Eq. (72),

V µ→V µ
0 =−κθµνyν+G−1µνE ỹν . (84)

We can neglect the infinitesimal part V µ
1 because it al-

ways appears in the argument of the vector background
fields, with an infinitesimal coefficient. So it will produce
the square of the vector fields, which we will neglect.

The variable ỹµ naturally appears in Buscher’s ap-
proach, as a part of variable V µ when we perform T-
dualization along coordinates on which background fields
depend. Then we must introduce gauge invariant coordi-
nates which are line integrals of the covariant derivatives.
The corresponding argument of T-dual background fields
V µ is a solution of T-dual transformation laws and de-
pends not only on yµ, but is a linear combination of
both yµ and ỹµ. Therefore, the variable V µ(yµ,ỹ), and
not variable yµ, is T-dual to x

µ.
The variable ỹµ is defined in terms of yµ, see

Eq. (3.45), as a line integral of σ and τ derivatives of
yµ. It produces non-locality of the arguments of back-
ground fields, which in our formulation is the source of
non-geometry. On the finite part of the equation of mo-
tion (a case that always happens) it does not depend
on the integration path. Because it always appears as a
part of variable V µ, we can take for it the same bound-
ary conditions as for variable yµ. Then the variable V µ

has definite boundary conditions.
The variable ỹµ, as a part of V µ, is significant be-

cause it distinguishes non-geometric from geometric the-
ories. In the literature, these kinds of theories are recog-
nized as theories with R-flux. Some authors refer to them
as exotic configurations. I expect that just background
field dependence on V µ(yµ,ỹµ) is the source of these ex-
otic non-geometric behavior. In fact, as was shown in
Ref. [5], the presence of ỹµ produces non-commutativity
of the closed string variables and non-associativity.

Later, in Sections 5 and 6, we will see that ỹµ has
a central role in the definition of field strength for non-
geometric theories, and is a basic variable for truly non-
geometric theories.
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Note that the T-dual of the T-dual produces the ini-
tial background fields. For example,

??AN
a (x)=

?G−1ab
?Ab

D(V )=GE
abG

−1bc
E AN

c (x)=A
N
a (x),

??AD
i (x)=

?G−1Eij
?Aj

N(V )=GijG
−1jkAD

k (x)=A
D
i (x). (85)

From Eqs. (56) and (68) we can find the T-dual trans-
formation law,

∂±x
µ∼=−κθµν± ∂±yν±4κθµν± A±ν(V )∆(σ), (86)

while its inverse is

∂±yµ∼=−2Π∓µν∂±xν±4A±µ(x)∆(σ). (87)

In fact the last transformation can be obtained after T-
dualization of the T-dual action (77). Both transforma-
tions differ from the closed string ones by the infinitesi-
mal term which contains vector background fields A±µ.
3.4 Relation with standard approach

There are significant differences between present and
standard T-duality transformations of the open string.
First, we are working with constant field strength (gauge
field linear in compactified coordinates) while in the stan-
dard approach the field strength is zero (gauge field
is independent of compactified coordinates). Second,
and most important, in the present article both Neu-
mann and Dirichlet gauge fields are introduced through
the boundary coupling in the action: the Neumann one
through coupling with ẋa and the Dirichlet one through
coupling with γ(0)i . As a difference of the standard ap-
proach they are treated in the same way. The Lagrangian
treatment of Dirichlet gauge fields through the term
AD

i G
−1ijγ(0)i has not previously been presented in the

literature. We will see that the problem with the stan-
dard approach is that it misses such a Dirichlet part in
the action. Third, which is a more technical difference,
in the standard approach T-duality has been performed
along one direction while in our approach it is performed
along an arbitrary set of directions.

Let us start with the choice of auxiliary action. For
discussion of this subsection it is useful to introduce T-
dual coordinates ya through the part of the action

∆Saux=
κ

2

∫

Σ

d2ξyaF
a
+−=

κ

2

∫

Σ

d2ξya(∂+v
a
−−∂−va+), (88)

which can be reexpressed as

∆Saux=
κ

2

∫

Σ

d2ξ(va+∂−ya−∂+yava−)+κ
∫

∂Σ

dτ yav
a
0 . (89)

The last term changes boundary part (59) in such a way
that

AN
a →AN

a +
1

2
ya . (90)

Note that according to the relation δAN
a = −Λa, this

additional term is just a gauge transformation with

Λa=− 1
2
ya. So, up to gauge transformation this choice of

auxiliary action is equivalent to the previous one (52).
Let us for the sake of discussion preserve this bound-

ary term (not gauge it away). To understand the rela-
tionship between ours and previous approaches [25, 26],
let us reduce our case to the standard one. We will
suppose that the field strengths for both Neumann and
Dirichlet gauge fields are zero, which means that these
fields are constant. Finally, because this is the first time
Lagrangian treatment of Dirichlet gauge fields has been
performed, we should put the Dirichlet field of the initial
action equal to zero, AD

i =0.
The T-dual action must have the same form as the

initial one but in terms of T-dual fields. According to
Eq. (79) and taking into account the new term (90), we
obtain an expression for T-dual vector fields,

?Aa
D=G−1abE

(

AN
b +

1

2
yb

)

, ?Ai
N=G−1ijAD

j . (91)

Because the standard approach started with AN
a =const

and AD
i =0, it produces

?Aa
D=G−1abE (AN

b +
1

2
yb),

?Ai
N=0. (92)

Let us stress that in the standard approach, T-dual ac-
tion does not contain either Neumann or Dirichlet vec-
tor fields. Generally, a term with T-dual Neumann fields
?Ai

N could be recognized as a coefficient in front of ẏi,
but according to the last relation it is zero. This is a
consequence of the fact that one did not know how to
include initial Dirichlet fields and had to put it to zero.
It follows that the T-dual Neumann field is also zero.

In the standard approach one cannot recognize the
T-dual Dirichlet vector field ?Aa

D, which according to
the present paper should be in front of ?γµ(0)(y). So, for
consistency of the standard approach, one should require
that it vanishes, ?Aa

D=0. According to Eq. (92), this is
in fact the Dirichlet boundary condition of the standard
approach, ya=−2AN

a .
Consequently, the problem of the standard approach,

which has been solved in the present article, is igno-
rance in introducing the Dirichlet background field in
both initial and T-dual Lagrangians. It means that the
consistency of the standard approach ?Aa

D=0 produces
ya = −2AN

a . This has the interpretation of Dirichlet
boundary conditions for T-dual theory. This is an ex-
ternal condition which has not been obtained from the
Lagrangian. If we perform T-duality along one direction
(let us say a=1), than we obtain the well known result
of the standard approach, y=−2AN .

4 T-duality in terms of field strengths

In the previous section we investigated the T-duality
of the vector fields. In the initial (geometric) the-
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ory we considered gauge fields linear in coordinates xµ.
We obtained that the gauge fields of the T-dual (non-
geometric) theory are linear in the new variable V µ,
which is a function of the T-dual coordinate yµ and its
double ỹµ.

Generally, it is not clear how to define the field
strength for non-geometric theories. So we will go a
roundabout way. It is known that in geometric the-
ories, if both ends of the open string are attached to
the same Dp-brane, the term in the action which con-
tains the vector background field with integration over τ
can be transformed to the term in the action which con-
tains corresponding field strength with integration over
d2ξ=dτdσ. We are going to generalize such a relation to
non-geometric theories.

4.1 Field strengths of initial theory

After some direct calculation for Neumann vector
fields we obtain

SN
A [x] = 2κ

∫

dτ
[(

AN
a [x]ẋ

a
)

/σ=π−
(

AN
a [x]ẋ

a
)

/σ=0

]

,

= −2κ
∫

d2ξẋaFabx
′b=κ

∫

d2ξ∂+x
aFab∂−x

b ,

(93)

where only the antisymmetric part contributes,

Fab = F (a)ab =F (a)ab =∂aA
N
b (x)−∂bAN

a (x)

= ∂aA0b(x)−∂bA0a(x), F (s)ab =0. (94)

We can trivially reexpress Eq. (93) in a form where
the effective background vector field A0a is multiplied
with ẋa,

SN
A [x]=2κ

∫

dτ
(

A0a[x]ẋa/σ=π−A0a[x]ẋa/σ=0
)

. (95)

We introduce the names effective background vector

field Aa and corresponding effective field strength Fab

for variables obtained in this way. In this simplest case
we have a standard picture: one effective vector field
A0a=AN

a and corresponding antisymmetric effective field
strength Fab=F (a)ab . In the next cases the situation will
be more complicated.

Instead of Eq. (94) we can also accept the relation
(93) as definitions of the field strength for geometric
theories. Let us extend this definition to non-standard
theories. Unlike Neumann vector fields, which are cou-
pled with ẋa, Dirichlet vector fields are coupled with σ-
momentum γ(0)j (x), which will produce additional prob-
lems. Using the finite part of the equation of motion

ẍi=x′′i, we have

SD
A [x] = 2κ

∫

dτ
[(

− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=π

−
(

− 1

κ
AD

i [x]G
−1ijγ(0)j (x)

)

/σ=0

]

,

= κ

∫

d2ξ∂+x
iFij∂−x

j . (96)

Now, both symmetric and antisymmetric parts con-
tribute

Fij=F (a)ij +
1

2
F (s)ij , (97)

where

F (a)ij =
[

∂i

(

2BjkG
−1kqAD

q

)

−∂j
(

2BikG
−1kqAD

q

)]

=
1

2

(

BikG
−1kqF (s)qj +F (s)ik G

−1kqBqj

)

= F (a)ij =∂iA0j(x)−∂jA0i(x) , (98)

and

F (s)ij =−2(∂iAD
j +∂jA

D
i )=F

(s)
ij =2

(

∂iA1j(x)+∂jA1i(x)
)

.

(99)
For the Dirichlet sector, an analogy with the standard

approach does not exist. In that case both components
of the effective background vector field, A0i and A1i, as
well as both ẋi and x′i, contribute. So, we can reexpress
Eq. (96) as

SD
A [x] = 2κ

∫

dτ
[(

A0i[x]ẋi−A1i[x]x′i
)

/σ=π

−
(

A0i[x]ẋi−A1i[x]x′i
)

/σ=0

]

,

= 2κηαβ
∫

dτ
(

Aαi[x]∂βx
i/σ=π−Aαi[x]∂βx

i/σ=0

)

= 2κ

∫

dτ
(

Aαi[x]ẋ
αi/σ=π−Aαi[x]ẋ

αi/σ=0

)

, (100)

where A0i[x] has been defined in Eq. (67), A1i[x]
in Eq. (63), and we introduced the notation ẋαi =
{ẋi,−x′i}=ηαβ∂βxi.

Note that, although we work with an initial theory,
this action does depend on A1i[x] and the vector field
couples not only with ẋi but also with x′i. This is conse-
quence of the fact that the original vector field AD

i (x) is
not multiplied by ẋi but by σ-momentum G−1ijγ(0)j (x).

4.2 Field strengths of T-dual theory

The case with T-dual theory is more complicated be-
cause the vector fields depend on V µ, which is a function
of two variables, yµ and ỹµ.
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4.2.1 The case of Dirichlet vector fields

For Dirichlet vector fields, with the help of the finite
part of the equation of motion ÿa=y

′′
a , we find

?SD
A [y] = 2κ

∫

dτ
[(

− 1

κ
?Aa

D(V )?G−1ab
?γb(0)(y)

)

/σ=π

−
(

− 1

κ
?Aa

D(V )?G−1ab
?γb(0)(y)

)

/σ=0

]

,

= κ

∫

d2ξ∂+ya
?Fab∂−yb . (101)

Here we have

?Fab=?Fab
(a)+

1

2
?Fab

(s) , (102)

where the antisymmetric part,

?Fab
(a) = κ

(

?GE
?θ?F ?B−?B?F T ?θ?GE

)ab

−1

2
(?F a

c
?Gcb−?Gac?F T

c
b)

= 2?Bac(?F T ?G−1−?G−1?F )cd
?Bdb

−1

2
(?F a

c
?Gcb−?Gac?F T

c
b), (103)

and symmetric part,

?Fab
(s)=−4(?F ?B+?B?G−1?F ?G)

ab
, (104)

are expressed in terms of coefficient ?F a
b, defined with

the relation

?Aa
D(V )=?Aa

0−
1

2
?F a

bV
b . (105)

Taking into account that with the help of Eq. (79),
from the first relation in Eq. (46) and Eq. (105) we have
?F a

b=G
−1ac
E Fcb, and it follows that:

?Fab
(a) = −κ2θacF (a)cd θ

db−G−1acE F (a)cd G
−1db
E

= −κ
2

2

[

θac+ F
(a)
cd θ

db
++θac− F

(a)
cd θ

db
−

]

, (106)

and

?Fab
(s) = −2κ

[

G−1acE F (a)cd θ
db+θacF (a)cd G

−1db
E

]

= κ2
[

θac+ F
(a)
cd θ

db
+−θac− F (a)cd θ

db
−

]

. (107)

Note that neither of these depend on the symmetric part
F (s)ab . Because, according to Eq. (94) F (a)ab =F (a)ab , we can
rewrite the above equations in terms of effective field
strength F (a)ab ,

?Fab
(a) = −κ2θacF (a)cd θ

db−G−1acE F (a)cd G
−1db
E

= −κ
2

2

[

θac+ F (a)cd θ
db
++θac− F (a)cd θ

db
−

]

, (108)

and

?Fab
(s) = −2κ

[

G−1acE F (a)cd θ
db+θacF (a)cd G

−1db
E

]

= κ2
[

θac+ F (a)cd θ
db
+−θac− F (a)cd θ

db
−

]

. (109)

In the Dirichlet sector of T-dual theory we can re-
express the term ?SD

A [y] in the “standard” form where
the effective vector fields ?Aa

α are multiplied by the
ẏαa = {ẏa,−y′a}= ηαβ∂βya, so that the term with vector
background fields takes the form

?SD
A [y]=2κηαβ

∫

dτ
(

?Aa
α[V ]∂βya/σ=π−?Aa

α[V ]∂βya/σ=0

)

=2κ

∫

dτ
(

?Aa
α[V ]ẏαa /σ=π−?Aa

α[V ]ẏαa /σ=0

)

, (110)

where ?Aa
0 [V ] and ?Aa

1 [V ] have been defined in Eq. (81).

4.2.2 The case of Neumann vector fields

For the T-dual case, corresponding to the Neumann
vector field Ai

N(V ), we define the field strength

?F ij=?F ij

(a)+
1

2
?F ij

(s) , (111)

with the relation

?SN
A [y]=2κ

∫

dτ
[(

?Ai
N(V )ẏi

)

/σ=π−
(

?Ai
N(V )ẏi

)

/σ=0

]

=κ

∫

d2ξ∂+yi
?F ij∂−yj . (112)

After some calculations we obtain

?F ij

(a) =−?Bik (?F T )k
j−?F i

k
?Bkj , (113)

and

?F ij

(s) =−?F i
k
?Gkj−?Gik (?F T )k

j , (114)

where the coefficient ?F i
j is defined as

?Ai
N(V )=?Ai

0−
1

2
?F i

jV
j . (115)

Using second equation in Eq. (46), Eq. (79) and
Eq. (115), we obtain ?F i

j=G
−1ikF (s)kj and consequently,

?F ij

(a)=−
κ

4

(

θikF (s)kq G
−1qj+G−1ikF (s)kq θ

qj
)

, (116)

and

?F ij

(s)=−
1

2

(

G−1ikE F (s)kq G
−1qj+G−1ikF (s)kq G

−1qj
E

)

. (117)

We can eliminate F (a)ij and F (s)ij from Eqs. (98), (99)

and (116) and express ?F ij

(a) in terms of F (a)ij and F (s)ij .
This is not a direct calculation, but we can check that
expression

?F ij

(a) = −κ2θikF (a)kq θ
qj−G−1ikE F (a)kq G

−1qj
E

−κ
2

(

G−1ikE F (s)kq θ
qj+θikF (s)kq G

−1qj
E

)

, (118)
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is a proper solution. Similarly, we can eliminate the same
variables F (a)ij and F (s)ij from Eqs. (98), (99) and (117)

and express ?F ij

(s) in terms of F (a)ij and F (s)ij :

?F ij

(s) = −κ2θikF (s)kq θ
qj−G−1ikE F (s)kq G

−1qj
E

−2κ
(

G−1ikE F (a)kq θ
qj+θikF (a)kq G

−1qj
E

)

. (119)

Similarly, in the Neumann sector of T-dual theory we
can reexpress the term ?SN

A [y] in the form

?SN
A [y] = 2κηαβ

∫

dτ
(?

Ai
α[V ]∂βyi/σ=π−?Ai

α[V ]∂βyi/σ=0

)

=2κ

∫

dτ
(?

Ai
α[V ]ẏαi /σ=π−?Ai

α[V ]ẏαi /σ=0

)

, (120)

where the effective vector fields ?Ai
α[V ] =

{?Ai
0[V ],?Ai

1[V ]} introduced in Eq. (81) are multiplied
by ẏαi ={ẏi,−y′i}=ηαβ∂βyi. We have put it in the sug-
gestive form of Eq. (110) although it is much simpler.
Because, according to Eq. (81), ?Ai

1[V ]=0, it has a form

?SN
A [y]=2κ

∫

dτ
[(

?Ai
0(V )ẏi

)

/σ=π−
(

?Ai
0(V )ẏi

)

/σ=0

]

.

(121)

4.3 T-dual field strength in terms of initial one

Let us introduce the complete field strengths

Fµν=F (a)µν+
1

2
F (s)µν , F (a)µν =

(

F (a)ab 0

0 F (a)ij

)

, F (s)µν =

(

0 0

0 F (s)ij

)

,

(122)
which contain the Neumann parts F (a)ab defined in
Eq. (94), as well as the Dirichlet ones F (a)ij and F (s)ij de-
fined in Eqs. (98) and (99). Then, taking into account
that according to Eq. (65) A1a(x)=0, we can rewrite the
action with vector background fields as:

SA(x) =SN
A (x)+SD

A (x)

= 2κηαβ
∫

dτ
(

Aαµ[x]∂βx
µ/σ=π−Aαµ[x]∂βx

µ/σ=0

)

= κ

∫

d2ξ∂+x
µFµν∂−x

ν , (123)

where the expressions for the terms SN
A (x) and SD

A (x)
have been defined in Eqs. (95) and (100). Note that
SA(x) has the same form as the initial action and ac-
cording to Eq. (122) contains both symmetric and anti-
symmetric parts. So, the other way to introduce vector
background fields is to substitute the Kalb-Ramond field
Bµν and metric Gµν with

Bµν→Bµν=Bµν+F (a)µν , Gµν→Gµν=Gµν+F (s)µν . (124)

Note that according to Eq. (43) the new variables are
just gauge invariant ones. Then the open string action

takes the form

Sopen=κ

∫

d2ξ∂+x
µ
(

Bµν+
1

2
Gµν
)

∂−x
ν . (125)

Because all background fields in this action are con-
stant, we already know the form of T-dual fields for such
an action. In analogy with Eq. (12) we have

?Gµν=(G−1E )µν , ?Bµν=
κ

2
Θµν , (126)

where according to Eq. (162),

GE
µν≡Gµν−4(BG−1B)µν , Θµν≡− 2

κ
(G−1E BG−1)µν . (127)

Taking into account that the vector background fields
and consequently their field strengths are infinitesimal,
we can separate the infinitesimal part of ?Bµν ,

?Fµν

(a) = −G−1µρE F (a)ρσ G
−1σν
E −κ2θµρF (a)ρσ θ

σν

−κ
2

(

G−1µρE F (s)ρσ θ
σν+θµρF (s)ρσ G

−1σν
E

)

= −κ
2

2

(

θµρ+ F (a)ρσ θ
σν
+ +θµρ− F (a)ρσ θ

σν
−

)

+
κ2

4

(

θµρ+ F (s)ρσ θ
σν
+ −θµρ− F (s)ρσ θ

σν
−

)

. (128)

and the infinitesimal part of ?Gµν ,

?Fµν

(s) = −G−1µρE F (s)ρσ G
−1σν
E −κ2θµρF (s)ρσ θ

σν

−2κ
(

G−1µρE F (a)ρσ θ
σν+θµρF (a)ρσ G

−1σν
E

)

= −κ
2

2

(

θµρ+ F (s)ρσ θ
σν
+ +θµρ− F (s)ρσ θ

σν
−

)

+κ2
(

θµρ+ F (a)ρσ θ
σν
+ −θµρ− F (a)ρσ θ

σν
−

)

. (129)

Here θµν± has been defined in Eq. (163) and the com-
plete T-dual field strengths

?Fµν = ?Fµν

(a)+
1

2
?Fµν

(s) ,

?Fµν

(a) =

(

?Fab
(a) 0

0 ?F ij

(a)

)

, (130)

?Fµν

(s) =

(

?Fab
(s) 0

0 ?F ij

(s)

)

,

contain Neumann parts ?Fab
(a) and

?Fab
(s) as well as Dirich-

let ones ?F ij

(a) and
?F ij

(s). Therefore, taking into account

that F (s)ab =0, Eq. (128) is in complete agreement with
Eq. (108) and Eq. (118), as well as Eq.(129) being in
complete agreement with Eqs. (109) and (119).

5 Field strength for non-geometric the-

ories

In our approach, a characteristic feature of non-
geometric theories are background dependence on vari-
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able V µ, which includes dependence on both T-dual co-
ordinate yµ and its double ỹµ. In Refs. [7] and [8] it was
shown that V µ-dependence produces non-commutativity
and non-associativity of the closed string coordinates. It
is also the origin of difficulties in defining field strength
for non-geometric theories. In this section we offer a so-
lution to this problem and define the field strength of
non-geometric theories which include derivation with re-
spect to both yµ and ỹµ.

In geometric theories the field strength for an Abelian
vector field Aµ(x) is defined simply as Fµν=∂µAν−∂νAµ,
where with ∂µ we denote derivation with respect to the
variable xµ. In non-geometric theories the vector field
Aµ(V ) depends on V µ=−κθµνyν+G−1µνE ỹν , which means
that it depends on two variables yµ and ỹµ. Generally
speaking, in order to obtain the field strength for non-
geometric theories, we should have the derivative with
respect to both variables yµ and ỹµ.

5.1 Non-geometric field strengths in terms of

effective gauge fields

For the initial theory, according to Eqs. (94), (98)
and (99) and taking into account that A1a=0, we have

F (a)µν = ∂µA0ν(x)−∂νA0µ(x),

F (s)µν = 2
[

∂µA1ν(x)+∂νA1µ(x)
]

. (131)

The antisymmetric part has a standard form, but we also
obtain a non-trivial symmetric part.

Let us consider the field strengths of T-dual non-
geometric theories. Until now we obtained the com-
plete expressions for T-dual field strengths ?Fµν for non-
geometric theories. The next step is to write out these
expressions in terms of derivatives of T-dual gauge fields
?Aa

0(V ) and ?Aa
1(V ) with respect to variables yµ and ỹµ,

and find local gauge symmetries in such cases.
With the help of the first line in Eq. (81) and Eq. (84)

we find the antisymmetric parts,

?
yFab

0(a) ≡ ∂ay
?Ab

0(V )−∂by ?Aa
0(V )=−κ2(θF(a)θ)ab ,

[1mm]?ỹFab
1(a) ≡ ∂aỹ

?Ab
1(V )−∂bỹ ?Aa

1(V )=−(G−1E F(a)G
−1
E )ab ,(132)

and symmetric parts,

?
yFab

1(s) ≡ ∂ay
?Ab

1(V )+∂by
?Aa

1(V )

[1mm] = −κ
2
(G−1E F(a)θ+θF(a)G

−1
E )ab ,

[1mm]?ỹFab
0(s) ≡ ∂aỹ

?Ab
0(V )+∂bỹ

?Aa
0(V )

[1mm] = −κ
2
(G−1E F(a)θ+θF(a)G

−1
E )ab , (133)

where with ∂ay and ∂aỹ we denote partial derivations with
respect to ya and ỹa.

With the help of the last line in Eq. (81) and Eq. (84),

for the ij sector, we have

?
yF ij

0(a) ≡ ∂iy
?Aj

0(V )−∂jy ?Ai
0(V )

[1mm] = −κ
4
(G−1F(s)θ+θF(s)G

−1)ij ,

[1mm]?ỹF ij

0(s) ≡ ∂iỹ
?Aj

0(V )+∂jỹ
?Ai

0(V )

[1mm] = −1

4
(G−1F(s)G

−1
E +G−1E F(s)G

−1)ij .(134)

Because according to Eq. (81), ?Ai
1(V )=0, all corre-

sponding field strengths (both symmetric and antisym-
metric parts) vanish, ?

yF ij
1 =0=?

ỹF ij
1 .

Comparing Eq. (132) with Eq. (106) we find

?Fab
(a) =

?
yFab

0(a)+
?
ỹFab

1(a)

[1mm] = ∂ay
?Ab

0(V )−∂by ?Aa
0(V )+∂aỹ

?Ab
1(V )−∂bỹ ?Aa

1(V ).

(135)

Similarly, comparing Eq. (133) with Eq. (107) we have

?Fab
(s) =2

(

?
ỹFab

0(s)+
?
yFab

1(s)

)

[1mm] = 2
(

∂aỹ
?Ab

0(V )+∂bỹ
?Aa

0(V )+∂ay
?Ab

1(V )+∂by
?Aa

1(V )
)

.

(136)

For the Dirichlet sector, comparing Eq. (116) with
the first relation in Eq. (134), we obtain

?F ij

(a)=
?
yF ij

0(a)=∂
i
y
?Aj

0(V )−∂jy ?Ai
0(V ), (137)

while comparing Eq. (117) with the second relation in
Eq. (134) we have

?F ij

(s)=2?
ỹF ij

0(s)=2
(

∂iỹ
?Aj

0(V )+∂jỹ
?Ai

0(V )
)

. (138)

Taking into account that ?Ai
1(V )=0, we can conclude

that the same relations are valid for both Neumann and
Dirichlet sectors. Consequently, such a form is valid for
complete field strengths, and with µ,ν indices we have

?Fµν

(a) = ∂µy
?Aν

0(V )−∂νy ?Aµ
0 (V )+∂µỹ

?Aν
1(V )−∂νỹ ?Aµ

1 (V ),

?Fµν

(s) =2
[

∂µỹ
?Aν

0(V )+∂νỹ
?Aµ

0 (V )+∂µy
?Aν

1(V )+∂νy
?Aµ

1 (V )
]

.

(139)

If we define yαµ ={y0µ=yµ,y1µ=−ỹµ} and ∂µα≡ ∂

∂yαµ
=

{ ∂

∂yµ
, ∂

∂ỹµ
}, we can rewrite the above equations in a com-

pact form,

?Fµν

(a) = ηαβ
[

∂µα
?Aν

β(V )−∂να ?Aµ
β(V )

]

,

?Fµν

(s) = −2εαβ
[

∂µα
?Aν

β(V )+∂να
?Aµ

β(V )
]

. (140)
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Finally, we have

?Fµν = ?Fµν

(a)+
1

2
?Fµν

(s)

= ηαβ
[

∂µα
?Aν

β(V )−∂να ?Aµ
β(V )

]

−εαβ
[

∂µα
?Aν

β(V )+∂να
?Aµ

β(V )
]

= (ηαβ−εαβ)∂µα ?Aν
β(V )−(ηαβ+εαβ)∂να ?Aµ

β(V ).

(141)

We can check this expression in another way. From
Eqs. (110) and (120) we have,

?SA[y] =
?SD

A [y]+?SN
A [y]

= 2κηαβ
∫

dτ
(?

Aµ
α[V ]∂βyµ/σ=π−?Aµ

α[V ]∂βyµ/σ=0

)

.

(142)

After transition from integration over τ to integration
over d2ξ=dτdσ and partial integration over τ , we obtain

?SA[y]=κ

∫

d2ξ∂+yµ
?Fµν∂−yν , (143)

where ?Fµν is just Eq. (141), obtained previously in the
other way.

Let us stress that the field strength of the initial the-
ory is a particular case of Eq. (141). In fact, in that case
background fields depend only on xµ and not on x̃µ. So,
if in Eq.(141) we omit terms which contain derivatives
with respect to the tilde variable ỹµ=−y1µ, we obtain a
relation of the same form as that in Eq. (131).

Equation (141) we can consider as a general defini-
tion of the field strength for both geometric and non-
geometric theories. Note that besides the antisymmetric
part ?Fµν

(a) it also contains a symmetric part ?Fµν

(s) . In
the definition of both parts, the derivatives with respect
to both T-dual coordinate yµ and to its double ỹµ con-
tribute.

The unusual form of ?Fµν is a consequence of two
facts. First, the T-dual vector field ?Aa

D(V ) is not mul-
tiplied by ẏa but by T-dual σ-momentum ?G−1ab

?γb(0);
and second, the T-dual vector fields depend on V µ (see
Eq. (84)) which is a function of both yµ and ỹµ.

6 Genuinely non-geometric theories

Until now we have used a generalized Buscher pro-
cedure to establish a new structure for non-geometric
theories defined in terms of effective vector fields
Aµ
0 (V ),Aµ

1 (V ) and effective field strength Fµν . It is im-
portant to stress that effective vector fields are not in-
dependent. The initial vector fields are connected with
Eqs. (65) and (66), and the T-dual ones with Eq. (82).

Now we are able to separate from the Buscher ap-

proach and establish new kinds of non-geometric theo-
ries. We can preserve the obtained structure Eqs. (141)-
(143), and omit the relation between effective vector
fields. Consequently, in all obtained theories we will have
a nontrivial field A1a(V ). Moreover, we can define new
background field dependence on the arguments. As well
as T-dual background fields dependent on

V µ(y)=−κθµνyν+G−1µνE ỹν=−2?Bµνyν+
?Gµν ỹν , (144)

(see Eq. (84)), which is a solution for xµ of the finite part
(for A±µ=0) of T-dual transformation laws (86), we will
take that the initial background fields are dependent on
Vµ(x), which is a solution for yµ of the finite part of the
inverse T-dual transformation laws (87). So it takes the
form

Vµ(x)=−2Bµνx
ν+Gµν x̃

ν , (145)

and depends on x̃µ=
∫

(dτx′µ+dσẋµ), which makes the
theory non-geometric. Therefore all theories, includ-
ing the initial one, will be non-geometric. Our vector
fields of genuinely non-geometric theories are A±µ[Vµ(x)]
and ?Aµ

±[V
µ(y)], where the arguments are defined in the

above expressions.
Now new duality transformations take a simple form,

A±µ[Vµ(x)]→?Aµ
±[V

µ(y)]=κθµν± A±ν [V µ(y)]. (146)

Then, for example, the inverse T-dual transformation
produces non-trivial relations

2Bµν
?Aν

0 [V
µ(y)]−Gµν

?Aν
1 [V

µ(y)]→A0µ[Vµ(x)],
2Bµν

?Aν
1 [V

µ(y)]−Gµν
?Aν

0 [V
µ(y)]→A1µ[Vµ(x)]. (147)

The constraints (82) on the T-dual effective fields force
the Neumann part to zero, A1a = 0, but without these
constraints A1a is non-trivial. Also, the fields Aαµ de-
pend on Vµ(x) and we have truly non-geometric theo-
ries. In Section 6.2. we will introduce a matter non-
geometric field. The part ψ1(V ), corresponding to gauge
field Aµ

1 (V ), prevents regression to the geometric theory
after T-dualization.

There exist a few different approaches to genuinely
non-geometric theories. For more details see Ref. [27]
and references therein.

6.1 Local gauge symmetries of non-geometric

theories

We are ready to find gauge transformations of the
vector fields in non-geometric theories. To be definite,
we will use T-dual fields ?Aµ

α[V
µ(y)], but similar expres-

sions are valid for initial fields Aαµ[Vµ(x)]. By our defi-
nition the action (123) is proportional to field strength,
and consequently it is gauge invariant. So, it is enough
to find a transformation which leaves the action (123)
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unchanged. It is easy to see that transformation,

?Aµ
α[V ]→?Aµ

α[V ]+∂µαλα(y
α), (λα(y

α)≡{λ0(y),λ1(ỹ)})
(148)

or equivalently in components,

?Aµ
0 [V ]→ ?Aµ

0 [V ]+∂µy λ0(y),
?Aµ

1 [V ]→ ?Aµ
1 [V ]+∂µỹ λ1(ỹ),

(149)
satisfy this condition because

ηαβ
∫

dτ ∂µαλα(y
α)∂βyµ/∂Σ

=

∫

dτ
(

∂µy λ0(y)ẏµ−∂µỹ λ1(ỹ) ˙̃yµ
)

/∂Σ

=

∫

dτ
(

λ̇0−λ̇1
)

/∂Σ=0. (150)

Consequently, the expression for field strength in
Eq. (141) should be invariant under gauge transforma-
tions,

δ ?Aµ
α[V ]=∂µαλα(y

α), (151)

or in components,

δ ?Aµ
0 [V ]=∂µy λ0(y), δ ?Aµ

1 [V ]=∂µỹ λ1(ỹ). (152)

It easy to check that this is true. In fact variation of
the antisymmetric part (the coefficient in front of ηαβ)
vanishes in the same way as in geometric theory (par-
tial derivatives commute). Variation of the symmetric
part (the coefficient in front of εαβ) vanishes because we
have derivatives with respect to both yµ and ỹµ of the
parameter λ which depend on only one of these variables.

The transformation (149) we can take as the defini-
tion of gauge transformations for non-geometric theories.

6.2 Non-geometric matter fields

In the description of T-dual non-geometric fields we
introduced a pair of T-dual coordinates y0µ = yµ and
y1µ= ỹµ, as well as a pair of effective vector fields Aµ

0 (V )
and Aµ

1 (V ). Each vector field transforms with its gauge
parameter λ0(y) and λ1(ỹ). So, it is natural to introduce
a pair of spinor matter fields ψ0(V ) and ψ1(V ) with La-
grangian

L=ψ̄0(V )iγµ∂
µ
yψ0(V )+ψ̄1(V )iγµ∂

µ
ỹψ1(V ). (153)

As well as in the standard electrodynamics, it is in-
variant under global symmetries,

ψ(λ0)
0 (V )=e−iλ0ψ0(V ), ψ(λ1)

1 (V )=e−iλ1ψ1(V ).

(λ0,λ1=const) (154)

Now, we can gauge these symmetries requiring that La-
grangian (153) is invariant under corresponding local
symmetries with parameters λ0(y) and λ1(ỹ). This can
be achieved by introducing covariant derivatives,

∂µy→Dµ
y=∂

µ
y+i

?Aµ
0 (V ), ∂µỹ→D̃µ

ỹ=∂
µ
ỹ+i

?Aµ
1 (V ). (155)

With the help of Eqs. (149) and (154) we can easily
check that the covariant derivatives really transform as

[

Dµ
yψ0(V )

](λ0) = e−iλ0(y)Dµ
yψ0(V ),

[

D̃µ
ỹψ1(V )

](λ1)

= e−iλ1(ỹ)D̃µ
ỹψ1(V ). (156)

Consequently, the interaction Lagrangian obtains the
form

Lint=−ψ̄0(V )γµψ0(V )?Aµ
0 (V )−ψ̄1(V )γµψ1(V )?Aµ

1 (V ).
(157)

It is possible to form the Lagrangian for gauge fields
in non-geometric theories by constructing the scalar
from the gauge invariant field strength (141). In anal-
ogy with electrodynamics we can write ?L∼ ?Fµν ?Fµν ,
while in analogy with Born-Infeld theory we have ?L∼
√

−det(ηµν+2πα′?Fµν). The equations of motion and
other features of non-geometric theories, which follow
from these Lagrangians, will be discussed elsewhere.

We offer a possible interpretation of such a non-
geometric theory. The fields with index 0, ψ0(V ) and
?Aµ

0 (V ), are standard ones and we can suppose that they
represent known spinor and gauge fields. The fields with
index 1, ψ1(V ) and ?Aµ

1 (V ), are new ones and we can
suppose that they describe some so far unknown physics.
It might be interesting to consider its possible relation
with dark matter and dark energy.

7 Example: three-torus with D1-brane

In this section we will take the example of a three-
torus with D1-brane. We will perform T-dualization
along all coordinates and obtain the T-dual three-torus
with D0-brane.

7.1 Initial theory

We will start with definition of the background fields
of the initial theory and introduce effective vector back-
ground fields and effective field strengths for a three-
torus with D1-brane.

7.1.1 Background fields of initial theory

The coordinates of the D=3 dimensional torus are
denoted by x0,x1,x2. In our particular example, nontriv-
ial components of the background are

Gµν=







1 0 0

0 −1 0

0 0 −1






, Bµν=







0 B 0

−B 0 0

0 0 0






, (158)

which produce

Π±µν≡Bµν±
1

2
Gµν=

1

2







±1 2B 0

−2B ∓1 0

0 0 ∓1






. (159)
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We will examine a D1-brane defined with the Dirich-
let boundary conditions x2(τ,σ)/σ=0 = x2(τ,σ)/σ=π =
const. This means that according to our convention we
will have p=1, a,b=0,1 and i,j =2. So, we will work
with Neumann background fields A0N and A1N and Dirich-
let background field A2D.

Such a configuration produces γ(0)2 =κx′2 and the ac-
tion (45) takes the form

Sopen[x] = κ

∫

Σ

d2ξ∂+x
µΠ+µν∂−x

ν

+2κ

∫

dτ
[(

AN
0 [x]ẋ

0+AN
1 [x]ẋ

1+AD
2 [x]x

′2
)

/σ=π

−
(

AN
0 [x]ẋ

0+AN
1 [x]ẋ

1+AD
2 [x]x

′2
)

/σ=0

]

. (160)

Note an unusual coupling of AD
2 with x′2.

It is easy to find effective metric and non-
commutativity parameters

GE
µν=







GE 0 0

0 −GE 0

0 0 −1






, θµν=







0 θ 0

−θ 0 0

0 0 0






, (161)

where

GE≡1−4B2 , θ≡ 2B

κGE

. (162)

We will also need an expression for the combination of
background fields,

θµν± =θµν∓ 1

κ
G−1µνE =













∓ 1

κGE

θ 0

−θ ± 1

κGE

0

0 0 ± 1

κ













. (163)

According to Eq. (46) the nontrivial vector back-
ground fields are:

AN
0 (x) = A00−

1

2
F (a)x1 ,

[1mm]AN
1 (x) = A01+

1

2
F (a)x0 , (164)

AD
2 (x) = A02−

1

4
F (s)x2 ,

where F (a) ≡ F (a)01 = ∂0A
N
1 −∂1AN

0 and F (s) ≡ F (s)22 =
−4∂2AD

2 . Consequently, the field strength of the initial
theory is

Fµν=F
(a)
µν +

1

2
F (s)µν =









0 F (a) 0

−F (a) 0 0

0 0
1

2
F (s)









. (165)

Note the unusual appearance of symmetric field strength
F (s).

7.1.2 Effective vector background fields and effective
field strength

We introduce effective vector background fields,
which in our example of a three-torus withD1-brane take
the forms of Eqs. (62) and (67),

A±0(x) = AN
0 (x),

A±1(x) = AN
1 (x), (166)

A±2(x) = ∓AD
2 (x),

or in components,

A00(x)=AN
0 (x), A01(x)=AN

1 (x), A10(x)=0=A11(x),
A02(x)=0, A12(x)=−AD

2 (x). (167)

Note that the constraints on the effective fields, Eqs. (65)
and (66), are satisfied.

The effective field strength is equivalent to the initial
field strength in Eqs. (94), (98) and (99):

Fµν=Fµν , F (a)µν =∂µA0ν(x)−∂νA0µ(x), (168)

F (s)00 =0, F (s)11 =0, F (s)22 =4∂2A12(x). (169)

7.2 T-dual theory

Using the method described above, we will compute
background fields and field strengths after T-dualization
along all coordinates. We will obtain a T-dual three-
torus with D0-brane.

7.2.1 Background of T-dual theory

According to Eq. (84), in T-dual theory the vector
background fields depend not only on the dual coordi-
nate yµ but on the expression

V µ=













1

GE

(−2By1+ỹ0)
1

GE

(2By0−ỹ1)
−ỹ2













, (170)

where ỹµ is defined in Eq. (71). The T-dual action (77)
takes the form

?S[y] =
κ2

2

∫

d2ξ ∂+yµθ
µν
− ∂−yν

+2κ

∫

dτ
[(

−AD
2 (V )ẏ2−

1

GE

AN
0 (V )(2Bẏ1−y′0)

− 1

GE

AN
1 (V )(−2Bẏ0+y′1))

)

/σ=π

−
(

−AD
2 (V )ẏ2−

1

GE

AN
0 (V )(2Bẏ1−y′0)

− 1

GE

AN
1 (V )(−2Bẏ0+y′1)

)

/σ=0

]

, (171)

where we used Eq. (26) for σ-momenta,

?γ0(0)=
κ

GE

(2Bẏ1−y′0), ?γ1(0)=
κ

GE

(−2Bẏ0+y′1). (172)
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Consequently, according to Eq. (79) the T-dual back-
ground fields are

?Gµν = G−1µνE =











1

GE

0 0

0 − 1

GE

0

0 0 −1











,

?Bµν =
κ

2
θµν=

κ

2







0 θ 0

−θ 0 0

0 0 0






, (173)

and

?A0D(V ) =
1

GE

AN
0 (V ),

?A1D(V ) = − 1

GE

AN
1 (V ), (174)

?A2N(V ) = −AD
2 (V ).

Note that now we have one T-dual Neumann and two
T-dual Dirichlet vector fields. It means that the T-
dual three-torus has a D0-brane defined with the Dirich-
let boundary conditions y0(τ,σ)/σ=0 = y0(τ,σ)/σ=π =
const and y1(τ,σ)/σ=0 = y1(τ,σ)/σ=π = const, as well
as ỹ0(τ,σ)/σ=0= ỹ0(τ,σ)/σ=π= const and ỹ1(τ,σ)/σ=0=
ỹ1(τ,σ)/σ=π=const.

The T-dual effective vector background fields in term
of initial ones are ?Aµ

±=κθµν± A±ν which, with the help
of Eq. (166), is equivalent to Eq. (80). So, in the case of
the present example we have:

?A0±(V ) = ∓ 1

GE

A±0(V )+κθA±1(V )

= ∓ 1

GE

AN
0 (V )+κθAN

1 (V ), (175)

?A1±(V ) = −κθA±0(V )± 1

GE

A±1(V )

= −κθAN
0 (V )± 1

GE

AN
1 (V ), (176)

?A2±(V ) = ±A±2(V )=−AD
2 (V ) . (177)

Rewriting this in components, or according to
Eq. (81), we obtain:

?A00(V ) = κθAN
1 (V ),

?A10(V ) = −κθAN
0 (V ), (178)

?A20(V ) = −AD
2 ,

[2mm]?A01(V ) = − 1

GE

AN
0 (V ),

?A11(V ) =
1

GE

AN
1 (V ), (179)

?A21(V ) = 0,

where GE and θ are defined in Eq. (162). Note that the
constraints of Eq. (82) are satisfied.

7.2.2 T-dual transformation laws

The T-dual transformation laws from a three-torus
with D1-brane to dual three-torus with D0-brane, in ac-
cordance with Eq. (86), take the form

∂±x
0∼=± 1

GE
(∂±y0∓4A±0)−κθ(∂±y1∓4A±1),

∂±x
1∼=κθ(∂±y0∓4A±0)∓ 1

GE
(∂±y1∓4A±1),

∂±x
2∼=∓(∂±y2∓4A±2) , (180)

while the inverse, from Eq. (87), is

∂±y0∼=±∂±x0−2B∂±x1±4A±0 ,
∂±y1∼=2B∂±x

0∓∂±x1±4A±1 ,
∂±y2∼=∓∂±x2±4A±2 . (181)

Note that the expression for V µ (170) is a solution of
the finite part of Eq. (180), for A±0=A±1=0.

7.2.3 T-dual field strength

In Eq. (165) we introduced the field strength of the
vector background fields on the string end-points for ini-
tial theory of a three-torus with D1-brane. Now, we are
going to express the field strength of its T-dual three-
torus with D0-brane obtained after dualization along all
coordinates.

In the T-dual Dirichlet sector, with the help of
Eq. (163), we have

κθµρ± F (a)ρσ κθ
σν
± =

F (a)
G2E







±4B −(1+4B2) 0

1+4B2 ∓4B 0

0 0 0






, (182)

where F (a) ≡ F (a)01 = F (a)01 ≡ F (a). So, according to
Eqs. (108) and (109) we find

?Fab
(a)=−

F (a)
G2E







0 −(1+4B2) 0

1+4B2 0 0

0 0 0






, (183)

and

?Fab
(s)=2

F (a)
G2E







4B 0 0

0 −4B 0

0 0 0






. (184)

The only nontrivial term in the Neumann sector is the
second term in Eq. (119), ?F22(s)=−F (s)22 =−F (s)22 ≡−F (s).
Consequently, the complete field strength of the T-dual
three-torus with D0-brane is
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?Fµν = ?Fµν

(a)+
1

2
?Fµν

(s)=

















4F (a)B
G2E

F (a)(1+4B2)

G2E
0

−F
(a)(1+4B2)

G2E
−4F (a)B

G2E
0

0 0 −F (s)

















, (185)

where F (a) ≡ F (a)01 = ∂0A
N
1 −∂1AN

0 and F (s) ≡ F (s)22 =
−4∂2AD

2 . In terms of T-dual fields we have F (a) =
−GE (∂0

?A1D+∂1
?A0D) and F (s)=4∂2

?A2N .
Since in our particular case F (a) = F (a) and F (s) =

F (s), we can write

?Fµν = ?Fµν

(a)+
1

2
?Fµν

(s)

=

















4F (a)B

G2E

F (a)(1+4B2)

G2E
0

−F
(a)(1+4B2)

G2E
−4F (a)B

G2E
0

0 0 −F (s)

















,

(186)

where F (a) and F (s) have been introduced after
Eq. (164). Again, besides antisymmetric field strength
we have a non-trivial symmetric part of field strength
F (s).

7.2.4 Non-geometric three-torus with D0-brane

The basic relation (141) of the field strength of non-
geometric theories can be expressed in the form

?Fµν=∂̂µ+
?Aν

+−∂̂ν−?Aµ
− , (187)

where ∂̂µ±=∂
µ
y±∂µỹ and ?Aµ

±=
?Aµ

0±?Aµ
1 .

In the case of a three-torus it becomes the expression

?Fµν=











∂̂0+
?A0+−∂̂0−?A0− ∂̂0+

?A1+−∂̂0−?A1− ∂̂0+
?A2+−∂̂0−?A2−

∂̂1+
?A0+−∂̂1−?A0− ∂̂1+

?A1+−∂̂1−?A1− ∂̂1+
?A2+−∂̂1−?A2−

∂̂2+
?A0+−∂̂2−?A0− ∂̂2+

?A1+−∂̂2−?A1− ∂̂2+
?A2+−∂̂2−?A2−











. (188)

The term with effective background fields of T-dual
action (142) takes the form

?SA[y] = 2κ

∫

dτ
[(?

Aµ
0 [V ]ẏµ−?Aµ

1 [V ]y′µ

)

/σ=π

−
(?

Aµ
0 [V ]ẏµ−?Aµ

1 [V ]y′µ

)

/σ=0

)]

. (189)

Note that ?Aµ
1 [V ] is multiplied by y′µ, not by ẏµ.

Let us stress that only the first term in Eq. (187)
?Fµν

standard = ∂µy
?Aν

0−∂νy ?Aµ
0 is the standard one. The

other three terms are new and unusual. One is also anti-
symmetric, but with derivation with respect to ỹµ, while
the other two are symmetric.

7.3 Genuinely non-geometric three-torus

If we preserve the relation between effective back-
ground fields we can go back to the initial geometric
theory. As explained at the beginning of Section 6, if
we want to introduce the new kind of theory we can use
the obtained structure from Eqs.(187)-(189) and suppose
that: firstly, the effective background fields and corre-
sponding field strengths are independent; and secondly,

that background fields depend on the solutions of T-
duality transformations. In that case we will lose the
possibility to go back to the initial theory with inverse
T-dualization. So, all our theories will be genuinely non-
geometric.

With the constraints for effective vector fields the
Neumann part of A1µ is zero,

A1µ=







0

0

−AD
2






, (190)

but without constraints we have the non-trivial expres-
sion

A1µ=









2B?A11−?A00
−2B?A01+?A10

?A20









. (191)

The initial vector fields A±µ depend on the solution
of the finite part of inverse T-dual transformation laws
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(181),

Vµ(x)=









−2Bx1+x̃0

2Bx0−x̃1

−x̃2









. (192)

The T-dual ones ?Aµ
±, depend on V µ(y) defined in

Eq. (170), which is the solution of the finite part of the
T-dual transformation laws (180).

The local gauge symmetry is defined with Eq. (152),
while the matter fields can be introduced with Eqs. (153)
and (157).

8 Conclusions

In the present article, using T-duality of the vector
fields, we are able to introduce a new definition for a
geometrical feature (the field strength) in non-geometric
(T-dual) theories.

We started with T-duality of the vector gauge fields.
In string theory the gauge fields appear at the bound-
aries of the open string. Their role is to enable complete
local gauge symmetries. In fact, there are two impor-
tant symmetries of the closed string theory: local gauge
symmetry of the Kalb-Ramond field and general coor-
dinate transformations. In Section 3.2 we showed that
the symmetry T-dual to local gauge symmetry includes
transformations of the background fields but does not
include transformations of the string coordinates. Both
symmetries fail at the open string end-points. The func-
tion of gauge fields is to restore these symmetries at the
end-points. So, they are defined only on the open string
boundary and not on the whole world-sheet. The cor-
responding term in the action is a line integral over the
world-sheet boundary.

To each of the above symmetries of the string the-
ory there corresponds an appropriate vector gauge field.
As a consequence of the boundary conditions only parts
of these gauge fields survive. From a gauge field corre-
sponding to local gauge symmetry of the Kalb-Ramond
field, the components along coordinates with Neumann
boundary conditions survive. From a gauge field cor-
responding to restricted general coordinate transforma-
tions, the components along coordinates with Dirichlet
boundary conditions survive. So, we obtained one com-
plete vector field {AN

a ,A
D
i }, µ=(a,i). The action which

describes field AN
a is a standard one (see for example

Ref. [14]), while introduction of the action for field AD
i

is the contribution of the present article.
There are several important results in the present ar-

ticle. First, we added a new term AD
i [x]G

−1ijγ(0)j (x)/∂Σ
in the action (45) which corresponds to the Dirich-
let boundary conditions and which compensates not-
implemented general coordinate transformations at

string end-points. We considered the case when the vec-
tor gauge field is linear in coordinates, so that it satisfies
the open string space-time equations of motion.

Second, we perform T-duality along all the coordi-
nates. We used a new approach for T-dualization in
the absence of global symmetry [6]. We showed that
such T-dualization exchanges: 1) Neumann with Dirich-
let boundary conditions; 2) initial Dirichlet vector fields
AD

i (x) with T-dual Neumann vector fields ?Ai
N(V ) (also

initial Neumann vector fields AN
a (x) with T-dual Dirich-

let vector fields ?Aa
D(V )); and 3) local gauge transfor-

mations with general coordinate transformations. Note
that in initial theory the gauge fields depend on xµ while
in T-dual non-geometric theory they depend on the non-
local variable V µ. This is the cause of many interesting
consequences.

Third, we introduced field strength for T-dual theo-
ries. The final expression is in accordance with the re-
sult obtained in another way, with direct T-dualization
of the action with field strength. Using the fact that T-
duality transformation turns geometric to non-geometric
theories we can express effective T-dual field strength
?Fµν as a derivation of effective gauge fields ?Aµ

α(V ),
see Eq. (141). Because the arguments of non-geometric
theories depend on V µ = −κθµνyν+G−1µνE ỹν , the cor-
responding field strength contains derivatives with re-
spect to both yµ and ỹµ. We also find that field strength
(141) is invariant under gauge transformations of non-
geometric theories (149).

Fourth, when we omit the relation between effec-
tive background fields Aµ

α(V ), proclaiming them inde-
pendent, and introduce new arguments of background
fields as a solution of T-dual transformation laws, we
will not be able to go back to the initial geometric the-
ory. So, all our theories in any duality frame become
truly non-geometric.

In another paper [28] we reproduce the results of the
present article in the double space introduced in Ref. [29].
Let us stress that there is an essential difference between
our approach and that of double field theories [30, 31].
In double field theories there are two coordinates, the
initial xµ and its double, denoted as x̃µ. The variable
x̃µ corresponds to our yµ but we have an additional dual
coordinate ỹµ defined in first relation of Eq. (71). It
plays an essential role in the definition of field strength
for non-geometric theories.

It will be interesting to establish a relation between
our formulation and the recent work of other authors on
double field theory. The fact that double field theory
does not depend on ỹµ suggests that in order to find
a relation between these theories we should eliminate
the variable ỹµ, expressing it in terms of yµ. For exam-
ple, it is possible to introduce a Lagrange multiplier λµ

and add the term λµ(ẏµ−̃y′µ) to the Lagrangian in order to
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introduce the relation between these variables as a con-
straint. Then ỹµ becomes an independent variable, but
we pay the price of introducing a new variable λµ.

There may be a new, more general theory such that
both double field theory and our theory formulated in
double space are some particular cases of that general
theory.

Consequently, in the present paper we extended fea-
tures of non-geometric theories to the case of an open
string. In the formulation with gauge fields, similar to
the closed string case, the non-geometry can be noticed
in arguments of T-dual gauge fields (non-local expres-

sions of V a). Non-standard couplings of Dirichlet field,
not only with ẋµ but also with x′µ, should also be men-
tioned. In the formulation with field strength, the T-
dual field strength is derivative of vector gauge fields
with respect to both the T-dual variable yµ and its dou-
ble ỹµ. It depends not only on the antisymmetric but
also on the symmetric part. This can be seen from the
T-dual expression for field strength, Eq. (141), which is
the main contribution of this paper. All these features
are completely new and in any case they require further
investigations.
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74: 2734 (2014)
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