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Abstract: We calculate the decay constants of light and heavy-light pseudoscalar and vector mesons with improved

soft-wall holographic wavefuntions, which take into account the effects of both quark masses and dynamical spins. We

find that the predicted decay constants, especially for the ratio fV/fP, based on light-front holographic QCD, can be

significantly improved, once the dynamical spin effects are taken into account by introducing the helicity-dependent

wavefunctions. We also perform detailed χ2 analyses for the holographic parameters (i.e. the mass-scale parameter

κ and the quark masses), by confronting our predictions with the data for the charged-meson decay constants and

the meson spectra. The fitted values for these parameters are generally in agreement with those obtained by fitting

to the Regge trajectories. At the same time, most of our results for the decay constants and their ratios agree with

the data as well as the predictions based on lattice QCD and QCD sum rule approaches, with only a few exceptions

observed.
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1 Introduction

Inspired by the correspondence between string theory
in anti-de Sitter (AdS) space and conformal field theory
(CFT) in physical space-time [1–3], a class of AdS/QCD
approaches with two alternative AdS/QCD backgrounds
has been successfully developed for describing the phe-
nomenology of hadronic properties [4, 5]. In this direc-
tion, light-front (LF) holographic QCD exploits an ap-
proximate AdS5/QCD duality to obtain a Schrödinger-
like equation for the transverse wavefunctions (WFs) of
hadrons with massless quarks (see, for instance, Refs. [6–
9] for details), and has been successfully used to pre-
dict the spectroscopy of hadrons [10–18], the dynamical
observables such as the transition form factors and the
structure functions [19–21], and the behavior of the QCD
running coupling in the nonperturbative domain [22–24].
In this approach, the LF dynamics depends only on the
boost-invariant variable chosen as either the invariant
mass M0 or the invariant impact variable ζ, and the dy-

namical properties are encoded in the hadronic LF wave-
function (LFWF), which takes the form [6]

ψ(x,ζ,ϕ)=eiLϕX(x)
φ(ζ)√
2πζ

. (1)

The LF eigenvalue equation, PµP
µ|ψ〉 = M2|ψ〉, can

be then reduced to an effective single-variable LF
Schrödinger equation for φ(ζ),[

− d2

dζ2
−1−4L2

4ζ2
+U(ζ)

]
φ(ζ)=M2φ(ζ), (2)

which is relativistic, frame-independent and analytically
tractable [6]. This equation provides a first-order ap-
proximation to the light-front QCD eigenvalue problem
for hadrons in the valence Fock-state representation.

The effective potential U(ζ) in Eq. (2), which acts
on the valence Fock states of hadrons and enforces con-
finement at some scale, is holographically related to a
unique dilation profile in anti-de Sitter (AdS) space [8, 9].
After holographic mapping, one can arrive at a concise
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form of a colour-confining harmonic oscillator, U(ζ,J)=
λ2ζ2+2λ(J−1), in which

√
λ=κ is a mass-scale param-

eter. Using such a confining potential, one can then ob-
tain the eigenvalues, corresponding to the squares of the
hadron masses, by solving the LF Schrödinger equation.
In Refs. [13–16], the observed light meson and baryon
spectra are successfully described by extending the su-
perconformal quantum mechanics to the light-front and
its embedding in AdS space. Moreover, similar analyses
are further extended to the heavy-light hadrons [17].

The eigensolution of Eq. (2) gives the holographic
WF, which encodes the dynamical properties of the con-
sidered hadrons, and is given explicitly as [7, 19]

ψ(0)
n,L=

1
N

eiLϕ
√
x(1−x)ζLLL

n(|λ|ζ2)e−|λ|ζ
2/2, (3)

for a meson with LF angular momentum L and radial ex-
citation number n. Here LL

n is the associated Laguerre
polynomials, N =

√
(n+L)!/(n!π)|λ|(L+1)/2 the normal-

ization, and ζ2 =x(1−x)b2
⊥ with b⊥ being the invariant

transverse impact variable and x the momentum frac-
tion. This holographic WF has been widely used to eval-
uate the hadronic observables [18–20, 25–27].

It should be noted, however, that quark masses are
not taken into account in the holographic WF given by
Eq. (3). Keeping quarks massless is essential for reduc-
ing the dynamics to a single-variable problem; this is
also required by the underlying conformal symmetry of
QCD, and exhibits an exact agreement of the AdS equa-
tion of motion with the LF Hamiltonian [9]. In addi-
tion, the helicity indices have also been suppressed in
Eq. (3), which is legitimate if the helicity dependence of
the holographic WF decouples from the dynamics. Both
the limit of massless quarks and the assumption of helic-
ity independence are actually consistent with the semi-
classical approximation within which the AdS/QCD cor-
respondence is exact [9–11]. For realistic phenomenolog-
ical applications, however, it is essential to restore both
the quark-mass and helicity dependences of the WF, to
improve the predictions of holographic QCD compared
to data [7, 27–31]. In this paper, taking these two ef-
fects into account, we will revisit the decay constants of
pseudoscalar and vector mesons in the holographic QCD
framework.

The decay constant is an important ingredient in ap-
plying QCD to hard exclusive processes via the factoriza-
tion theorem [32–34], and provides essential information
on the QCD interaction between the valence quark and
anti-quark of the involved mesons. It also provides a
direct source of information on the Cabibbo-Kobayashi-
Maskawa matrix elements [35] and plays a significant role
in the neutral-meson mixing processes [36]. In LF holo-
graphic QCD, assuming that the helicity dependence of
the holographic WF decouples from the dynamics, one
can derive a simple factorizable formula for the decay

constant [19, 27],

fP=fV=2
√

2Nc

∫ 1

0

dx
∫

d2k⊥

16π3
ψ(x,k⊥), (4)

for both pseudoscalar and vector mesons. In Eq. (4), the
holographic WF in the k⊥ space, ψ(x,k⊥), is obtained
via Fourier transform from Eq. (3), with the explicit form
given by [9, 19]

ψ(x,k⊥)=
4π

κ

1√
x(1−x)

e−
k2
⊥

2κ2x(1−x) . (5)

It is obvious from Eqs. (4) and (5) that valid results for
different (qq̄′) bound states are possibly predicted only
when the quark-mass correction to the holographic WF
ψ(x,k⊥) is considered.

A simple generalization of Eq. (5) for massive quarks
follows from the Brodsky-Téramond ansatz [7], which
assumes that the momentum-space holographic WF is a
function of the invariant off-energy-shell quantity, rather
than only of the transverse momentum. This leads to
the following replacement in Eq. (5):

K0≡
k2
⊥

x(1−x)
→K=K0+m2

12 , m2
12≡

m2
1

x
+
m2

2

1−x
, (6)

where m1 and m2 are the masses of quark and anti-
quark in a (q1q̄2) Fock state, respectively. It has been
demonstrated that predictions based on the modified
holographic WF for massive quarks improve the descrip-
tion of data on the electromagnetic and photon-to-meson
transition form factors for π and η(′) mesons [28]. How-
ever, for the heavy-light mesons, it has been found that
the magnitude of the decay constants is grossly under-
estimated with increasing heavy-quark mass, because in
this case the longitudinal momentum fraction carried by
the light quark is pushed to a very small value [17]. In
order to remedy this evidently too strong suppression,
the heavy-quark mass term is further modified through
the replacement m2

Q→α2m2
Q with α∼0.5 (Q denotes the

relatively heavier quark in a two-quark bound state) [17].
More generally, as suggested in Ref. [37], the quark-mass
term in the exponential of the holographic WF can be ab-
sorbed into the longitudinal mode, f(x,m1,m2); as anal-
ysed in Refs. [18, 38–40], the mass-scale parameter m12

entering in f(x,m1,m2) should not necessarily be iden-
tified with the parameter κ characterizing the dilation
field. In this paper, this kind of generalized holographic
WF for massive quarks will be further studied and con-
fronted with the decay constants of light and heavy-light
mesons.

However, even with the quark mass included in the
modified WF, the holographic QCD prediction based on
Eqs. (3)–(6) still results in an unsatisfactory relation
fV/fP = 1 for a given (q1q̄2) pseudoscalar (P) and vec-
tor (V) multiplicity. This is obviously disfavored by the
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experimental data, for instance [41–44],

fρ/fπ≈1.615>1, fK∗/fK≈1.308>1. (7)

Such a tension indicates further possible improvement
of the holographic WF, such as by taking into account
the dynamical spin effects. In Refs. [29–31, 45–53], the
dynamical (i.e. momentum-dependent) spin WF, Sh,h̄

has been introduced to restore the helicity dependence
of the holographic WF. Even though such an improve-
ment seems to be phenomenologically successful, there
exists arbitrariness more or less in determining the ex-
plicit form of Sh,h̄. For a particular hadronic state with
assigned JPC quantum numbers, the spin-orbit wave-
function can be obtained uniquely by the interaction-
independent Melosh transformation [54] from the ordi-
nary equal-time static one, if we treat ψ(x,k⊥) as the
radial wavefunction in the LF space [55, 56]. In this
paper, we will account for the dynamical spin effects
in detail by using the helicity-dependent WF obtained
through the Melosh transformation, and show that the
holographic QCD predictions for fP, fV and fV/fP can
be significantly improved.

Our paper is organized as follows. In Section 2, the
theoretical framework and calculation for the decay con-
stants with the modified holographic WF are presented.
Our numerical results and discussions are then given in
Section 3. Finally, we give our conclusions in Section 4.

2 Theoretical framework

2.1 Improvements of holographic WF

As suggested in Ref. [37], a general form of the soft-
wall holographic WF including the quark-mass term for
a given (q1q̄2) ground state can be written as [18]

ψ(x,k⊥)=
4π

κ

1√
x(1−x)

e−
k2
⊥

2κ2x(1−x) f(x,m1,m2), (8)

with the longitudinal mode given by [18]

f(x,m1,m2)≡Nf(x)e
−

m2
12

2λ2
12 , (9)

where f(x)=1 in our case, λ12 is a mass-scale parameter,
and N is the normalization constant determined by the
condition ∫ 1

0

dxf2(x,m1,m2)=1. (10)

The holographic WF, ψ(x,k⊥), given by Eq. (8), with
N fixed by Eq. (10), automatically satisfies the usual
normalization condition∫ 1

0

dx
∫

d2k⊥

2(2π)3
|ψ(x,k⊥)|2=1. (11)

The dimensional parameter λ12 introduced in Eq. (9)
should not necessarily be identified with the dilation pa-

rameter κ[18, 38–40]. While the simplification λ12 = κ
is generally allowed for light hadrons, λ12 > κ is re-
quired to remedy the strong suppression caused by the
heavy-quark mass mQ [17]. Fitting to the mass spec-
tra and the decay constants of heavy-light mesons, the
authors of Ref. [18] have shown that λ12 scales gener-
ally as O(m1/2

Q ) with a universal value of the dilation
parameter κ= 0.55 GeV. It is therefore expected that
λ12 → κ in the limit of mQ → 0, and becomes signifi-
cantly large with increasing mQ. In addition, as found
in Refs. [18, 39, 40], a relatively larger value for κ is
also required in order to fit better the heavy-light hadron
spectra. Based on the above observations, we will choose
in this paper λ12/κ12=1.1,1.7,3.5,3.5 for Q=q,s,c,b for
simplicity, in which q=u,d and a subscript “12” is added
to the parameter κ to clarify its difference for different
(q1q̄2) mesonic states.

As the description of the motion of the constituents
in terms of the inner momentum vectors is independent
of the motion of the system as a whole, the wavefunction
of a bound state must be a simultaneous eigenfunction
of the mass operator as well as the angular momentum
operators J2 and J3, and should depend, therefore, only
on the inner momentum vectors and spins of the con-
stituents. This implies that the wavefunction for a (q1q̄2)
bound state with a given spin J should be spin depen-
dent. As a result, the helicity-dependent LFWF in k⊥

space can be generally written as

Ψh,h̄(x,k⊥)=Sh,h̄(x,k⊥)ψ(x,k⊥), (12)

where ψ(z,k⊥) has already been given by Eq. (8),
while Sh,h̄(x,k⊥), with h (h̄) being the helicity of the
(anti-)quark, is the helicity-dependent wavefunction ob-
tained by the interaction-independent Melosh transfor-
mation [54] from the ordinary equal-time static one, and
constructs a state with definite (J,J3) out of the light-
front helicity eigenstates (h,h̄).

Explicitly, the covariant form of the spin-orbit wave-
function can be written as [56–59]

Sh,h̄(x,k⊥)=
ū(k1,h)( 6P̄+M0)×Γ v(k2,h̄)√

2M̄0(M0+m1+m2)
, (13)

where P̄ ≡ k1 +k2, and M̄2
0 ≡ M2

0 − (m1−m2)2, with
M2

0 = m2
1+k2

⊥
x1

+ m2
2+k2

⊥
x2

being the invariant mass squared
of a (q1q̄2) bound state. For the pseudoscalar and vector
mesons, we have

ΓP=γ5, ΓV=−6̃ε, (14)

with the polarization vectors given explicitly by

ε̃0 =
1
M0

(
P+,

−M2
0 +P 2

⊥

P+
,P⊥

)
, (15)

ε̃± =
(

0,
2
P+

ε⊥·P⊥,ε⊥

)
, ε⊥≡∓

1√
2
(1,±i). (16)
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While the transverse polarization vectors ε̃± coincide
with ε± of the vector meson, the longitudinal one ε̃0 is
different from ε0 of the vector meson, with the latter
given by

ε0=
1
M

(
P+,

−M2+P⊥

P+
,P⊥

)
, (17)

where M and P µ = (P+,P−,P⊥) are the physical mass
and four-momentum of the meson, respectively. Here,
we would like to emphasize that the covariant helicity-
dependent wavefunction Sh,h̄(x,k⊥) given by Eq. (13)
can automatically satisfy the normalization condition∑

hh̄

S†
h,h̄

(x,k⊥)Sh,h̄(x,k⊥)=1. (18)

This in turn indicates that the total normalization con-
dition ∑

h,h̄

∫ 1

0

dx
∫

d2k⊥

2(2π)3
|Ψh,h̄(x,k⊥)|2=1, (19)

is also automatically satisfied by the helicity-dependent
LFWF Ψh,h̄(x,k⊥) defined by Eq. (12).

In analogy with the leading-order helicity structure of
the photon WF [32], the authors of Refs. [45–53] assume
a simple form of the helicity WF for the vector meson,
Sh,h̄ =N ū(k1,h)

x
6 ε v(k2,h̄)

1−x
, with the dimensional constant

N determined by Eq. (19). Obviously, in such an anal-
ogy, the assumed form of Sh,h̄ for the vector meson is
incomplete because the photon is massless.

2.2 Decay constants with improved holographic
WF

The decay constants are defined by

〈0|q̄2γµγ5q1|P (p)〉=ifPp
µ , (20)

for a pseudoscalar meson, and

〈0|q̄2γµq1|V (p,λ)〉=fVMVε
µ
λ , (21)

〈0|q̄2σµνq1|V (p,λ)〉=ifT
V (εµλP ν−ενλP µ), (22)

for a vector meson with longitudinal (λ=0) and trans-
verse (λ=±) polarizations, respectively.

In the framework of LF quantization, adopting the
Lepage-Brodsky (LB) conventions and the light-front
gauge [32, 60], and working in the leading valence Fock-
state approximation, we can expand a mesonic eigenstate
|M〉 by the noninteracting two-particle Fock states as

|M〉 =
∑
h,h̄

∫
dk+d2k⊥

(2π)32
√
k+(P+−k+)

×Ψh,h̄(k+/P+,k⊥)|k+,k⊥,h;P+−k+,−k⊥,h̄〉.
(23)

With the LF helicity spinors uh and vh, the dynamical

Dirac (quark) field is expanded as [9, 60]

ψ+(x) =
∫

dk+

√
2k+

d2k⊥

(2π)3

×
∑

h

[
bh(k)uh(k)e−ik·x+d†h(k)vh(k)eik·x]

,

(24)

in terms of particle creation and annihilation operators,
which satisfy the equal LF-time anti-commutation rela-
tions

{b†h(k),bh′(k′)} = {d†h(k),dh′(k′)}
= (2π)3δ(k+−k′+)δ2(k⊥−k′

⊥)δhh′ . (25)

Using the above formulae, we can generally express
the left-hand-side of Eqs. (20)–(22) as

〈0|q̄Γ ′q|M〉 =
√
Nc

∑
h,h̄

∫
dxd2k⊥

(2π)32
√
xx̄

ψ(x,k⊥)

×Sh,h̄(x,k⊥)v̄h̄(x̄,−k⊥)Γ ′uh(x,k⊥),
(26)

where x̄=1−x, and Γ ′=γµγ5, γµ and σµν , corresponding
respectively to Eqs. (20), (21) and (22). Taking the plus
component (µ= +) of the currents from Eqs. (20) and
(21), and plugging in the spin-orbit wavefunction given
by Eq. (13), we finally arrive at

fP =
√
Nc

π

∫ 1

0

dx
∫

d2k⊥

(2π)2
ψ(x,k⊥)√

xx̄

1√
2M̄0

(x̄m1+xm2) ,

(27)

fV =
√
Nc

π

∫ 1

0

dx
∫

d2k⊥

(2π)2
ψ(x,k⊥)√

xx̄

× 1√
2M̄0

(
x̄m1+xm2+

2k2
⊥

M0+m1+m2

)
, (28)

in which we take the λ=0 component for evaluating fV.
For fT

V , taking µ=+, λ=± and multiplying both sides
of Eq. (22) by ε∗ν , we can obtain

fT
V =

√
Nc

π

∫ 1

0

dx
∫

d2k⊥

(2π)2
ψ(x,k⊥)√

xx̄

× 1√
2M̄0

(
x̄m1+xm2+

k2
⊥

M0+m1+m2

)
. (29)

While the decay constants fP and fV can be extracted
from experiment through the decays P− → `−ν̄`(γ),
V 0 → `+`− and τ−→M−ντ [41–44, 61, 62], the trans-
verse one fT

V is not that easily accessible in experiment
and hence has to be estimated theoretically. It is also
noted that fT

V is scale dependent due to the nonzero
anomalous dimension of the tensor current. In the holo-
graphic QCD framework, the scale dependence of fT

V

can be roughly identified by introducing an ultravio-
let cut-off on the transverse momenta, i.e.,

∫
d2k⊥ →∫ |k⊥|<µd2k⊥ [63, 64]. As has been found in, for instance,
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Refs. [45–51], the scale evolution of fT
V is not significant

when µ > 1 GeV; therefore, the predictions based on
Eq. (29) should be viewed to hold only at some low-
energy scale µ ∼ 1 GeV. Results at higher scales can
be obtained from fT

V (1 GeV) through the leading-order
renormalisation-group improved relation

fT
V (µ)=fT

V (1GeV)
[

αs(µ)
αs(1GeV)

]CF
β0

, (30)

where CF = (N2
C−1)/(2NC) and β0 = 11−2/3nf , with

NC and nf being the number of colours and flavours,
respectively.

From the theoretical expressions, Eqs. (27), (28) and
(29), for the decay constants of mesons composed of the
same (q1q̄2) constituents, we can make the following qual-
itative observations:

1) Comparing Eqs. (27) and (28), our results for
fP and fV indicate the experimentally favored relation
fV > fP, which is significantly different from the tradi-
tional result fV=fP implied by Eq. (4). Our predictions
for the decay constants can, therefore, be improved once
the dynamical spin effect is taken into account in the
LFWF.

2) In the heavy quark limit, the dynamical spin effect
becomes trivial and the traditional result given by Eq. (4)
is, therefore, expected to be recovered from Eqs. (27)–
(29). This can be inferred from the following analyses.
Assuming q1 to be a heavy quark, which implies that
m1�m2 and m2

1�k2
⊥, we can then neglect safely the

terms proportional to k2
⊥ in the bracket of Eqs. (28) and

(29), leading to the same residual (x̄m1+xm2) (or x̄m1 if
m2 is also neglected) in the numerator of Eqs. (27)–(29).
With the same approximation, on the other hand, one
can easily find that the denominator can be simplified as

√
xx̄M̄0=

√
(x̄m1+xm2)2+k2

⊥'(x̄m1+xm2), (31)

which cancels exactly the residual in the bracket of
Eqs. (27)–(29). Therefore, one can finally find that our
results given by Eqs. (27), (28) and (29) all coincide with
the traditional result given by Eq. (4), and fP=fV =fT

V

in the heavy quark limit, which is generally expected in
the heavy quark effective theory [65].

3) From Eqs. (27), (28) and (29), one can also find
an interesting relation

fP+fV=2fT
V , (32)

which is a consequence of the LF approach [58, 59]. Such
a relation agrees surprisingly well with the old SU(6)
symmetry relation [66]. Moreover, it is also generally fol-
lowed in the lattice QCD (LQCD) and QCD sum rules
(QCDSR) approaches.

Equipped with the formulae and analyses given
above, we will then present our numerical results and
discussions in the next section.

3 Numerical results and discussion

3.1 Fit for the holographic parameters

As is well known, the decay constant, once mea-
sured experimentally, would provide a severe test for
the adequacy of the wavefunction. In order to de-
termine the values of the holographic parameters, the
mass-scale parameter κ and the quark masses, we will
first perform a detailed χ2-analysis for these parame-
ters, by confronting our results with the experimentally
well-measured charged-meson decay constants fP and fV,
which are collected in the second column of Table 1. Here
fP and fV are extracted from the purely leptonic decays
P±→ `±ν` [41, 42] and from the one-prong hadronic τ
decays τ±→V ±ντ [43, 44], respectively.

Table 1. Experimental data [42, 43] and theoretical results in LQCD [67–69], QCDSR [62, 70, 71], LFQM [58, 59],
and this work for the decay constants (in unit of MeV). The values in bold in the last two columns denote our
predictions for the corresponding decay constants, the experimental data (if they exist) of which are not used as
constraints during the fits. See text for further details.

data LQCD QCDSR LFQM SI SII

fπ 130.3±0.3 130.2±1.7 — 131 130.2+3.0
−2.8 130.3+3.6

−3.3

fρ 210±4 199±4 206±7 215 166+2
−4 210+6

−6

fK 156.1±0.5 155.6±0.4 — 155 153.4+2.8
−2.0 156.4+4.4

−9.1

fK∗ 204±7 — 222±8 223 186+2
−3 204+7

−9

fD 203.7±4.7 211.9±1.1 204.0±4.6 206.0±8.9 206.5+4.9
−8.2 203.5+4.6

−4.6

fD∗ — 223.5±8.4 250±8 259.6±14.6 226.6+ 5.9
−10.2 230.1+6.2

−6.2

fDs 257.8±4.1 249.0±1.2 243.2±4.9 267.4±17.9 233.1+5.0
−5.4 257.8+7.3

−5.5

fDs∗ — 268.8±6.6 290±11 338.7±29.7 254.7+6.3
−6.7 289.7+6.3

−4.5

fB 188±25 187.1±4.2 204.0±5.1 204±31 193.4+ 4.7
−10.6 187.2+4.0

−4.3

fB∗ — 185.9±7.2 210±6 225±38 198.7+ 4.9
−11.3 193.1+4.3

−4.6

fBs — 227.2±3.4 234.5±4.4 281±54 225.5+6.2
−7.2 227.1+6.6

−5.2

fB∗s — 223.1±5.4 221±7 313±67 231.9+6.6
−7.6 234.0+6.4

−5.2
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It is also known that the measured meson masses
can put another strong constraint on the holographic
parameters [10–13, 17, 18, 38–40]. To this end, we
will adopt the following master formula for the meson
masses [18, 38]

M2
nJ =4κ2

(
n+

L+J
2

)
+

∫ 1

0

dxm2
12f

2(x,m1,m2)+∆M2
C ,

(33)

where the first term reflects the limit of parity doubling
between vector and axial mesons, and the second is due
to the inclusion of the longitudinal mode f(x,m1,m2),
which accounts for the quark-mass dependence of the
soft-wall holographic WF. The last term in Eq. (33)
results from the contribution of an additional colour
Coulomb-like potential due to the one-gluon exchanges
between quarks [72, 73], and reads [18, 38]

∆M2
C =−64α2

s(µ
2
12)m1m2

9(n+L+1)2
, (34)

with µ12=2m1m2/(m1+m2). The strong coupling αs(µ2
12)

depends on the number of quark flavours involved, Nf ,
and takes the “freezing” form [74, 75]

αs(µ2)=
12π

(33−2Nf )ln
µ2+M2

B

Λ2

, (35)

where Λ is the QCD scale parameter, and MB the back-
ground mass. Numerically, we take as input Λ=(420±
5) MeV and MB = (855±10) MeV [18, 38]. The shift
of M2 due to ∆M2

C is negative and proportional to the
quark mass squared. This implies that the term ∆M2

C

plays an important role in constraining the holographic
parameters.

Under the separate constraints from the decay con-
stants fπ,ρ and the masses mπ,ρ, the allowed spaces for
κq̄q and mq, with q=u,d, are shown in Fig. 1(a). We can
see that a small κq̄q ∼ 0.54 GeV with mq ∼ 0.33 GeV is
favored by mπ,ρ and fπ, but disfavored by fρ; however,
a relatively large κq̄q∼0.68 GeV with mq∼0.25 GeV is
favored by fπ,ρ, but disfavored especially by mρ. Such
a tension is caused mainly by the different requirements
for the dilation parameter κq̄q from fρ and mρ. On the
other hand, even though our result for fρ is still lower
than the experimental data, f exp.

ρ = 210 GeV [43], the
observed tension has been significantly moderated com-
pared to the case obtained without including the dynam-
ical spin effect, fρ = 170 GeV [38]. Motivated by these
observations, we will divide our detailed fits and analyses
into two scenarios dubbed scenario I (SI) and scenario II
(SII), respectively, together with the following two com-
ments:

fp
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Fig. 1. (color online) The fitted spaces for κq̄q and
mq under the separate constraints from fπ,ρ and
mπ,ρ at 95% C.L. (a), as well as under their com-
bined constraint (b). See text for further expla-
nation.

1) For the decay constant fV, there has been a de-
bate about the zero-mode [76–79] contribution to the
matrix element of the weak current defined by Eq. (21),
in the standard LF (SLF) formalism. In Refs. [80, 81],
Jaus claimed that the zero-mode contribution to fV can-
not be avoided even for the case of the plus component
of the weak current; while the authors of Refs. [82–84]
found that this contribution may be model dependent,
especially on the form of the meson vertex operator. Our
result, Eq. (28), is obtained in the zero-binding-energy
limit (i.e. the four-momenta of the meson and its con-
stituents are all on-mass-shell); while the manifestly co-
variant LF (CLF) approach allows a nonzero binding en-
ergy and leads to the result (the zero-mode contribution
is now included) [80, 85, 86]

fCLF
V =

√
Nc

4π3

∫ 1

0

dx
∫

d2k⊥
ψ(x,k⊥)√

xx̄

1√
2M̄0

× 1
M

[
xx̄M2+k2

⊥+m1m2

+x(m1+m2)
k2
⊥+m2

2−x̄2M2

x̄(M0+m1+m2)

]
(36)

obtained with the plus component of the current and
the longitudinal polarization vector εµ0 . Numerically, we
find a ∼20% enhancement for fV obtained with Eq. (36)
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Table 2. Fitted results for the parameter κ and quark masses (in unit of GeV) in both SI and SII. The results for
κ obtained by fitting to the Regge trajectories [9, 17] are also given for comparison.

κq̄q κq̄s κq̄c κs̄c κq̄b κs̄b

SI 0.540+0.007
−0.010 0.602+0.007

−0.006 0.765+0.032
−0.018 0.836+0.020

−0.021 0.918+0.014
−0.034 0.994+0.020

−0.022

SII 0.680+0.021
−0.021 0.674+0.026

−0.020 0.783+0.020
−0.020 0.942+0.018

−0.012 0.892+0.013
−0.014 0.975+0.011

−0.011

Refs. [9, 17] [0.54,0.59] [0.54,0.59] [0.655,0.736] [0.735,0.766] [0.963,1.13] [1.11,1.16]

mq ms mc mb

SI 0.379+0.042
−0.024 0.594+0.007

−0.027 1.64+0.05
−0.03 5.17+0.10

−0.03

SII 0.252+0.012
−0.010 0.593+0.158

−0.101 1.5 4.8

compared to that with Eq. (28). However, the enhance-
ment reduces to be ∼ 10% when using the results ob-
tained with the perpendicular components of the current
and the transverse polarization vector εµ± [86]. Although
such an enhancement is favored by the current data, the
CLF approach is plagued by the self-consistency prob-
lem, i.e., fCLF

V ,λ=0 6= fCLF
V ,λ=± [86]. The same problem also

exists in the SLF formalism followed in this paper, i.e.,
fSLF

V ,λ=0 6=fSLF
V ,λ=±, with the latter obtained by taking the

combination (µ=⊥,λ=±). Interestingly, such a prob-
lem can be “resolved” by using the “Type II” correspon-
dence proposed in Ref. [85], and it is found numerically
that fCLF

V ,λ=0 = fCLF
V ,λ=± = fSLF

V [85]. It is also noted that
our result given by Eq. (28) does not change under the
“Type II” replacement. If so, our result for fV is ac-
ceptable. However, the physical origin of the “Type II”
correspondence is still unclear, even though it is helpful
to maintain the self-consistency of the LF formalisms.

Therefore, in SI, we consider only the constraints
from fP and mP,V , but leave fV as our predictions, due
to the above issues complicated by the zero-mode con-
tribution and the self-consistency problem.

2) In deriving the master formula for the meson
masses, Eq. (33), we include only the one-gluon ex-
change contribution to the effective potential U(ζ). How-
ever, further corrections to U(ζ) exist. For instance, the
hyperfine-splitting potential [87–89] was found to provide
addition small negative (positive) contributions to M2

for pseudoscalar (vector) mesons [18, 38]. In Ref. [90],
an additional constant term was added to the effective
potential, to control the masses of the ground state. In
fact, we find that any modification to the effective po-
tential may significantly affect the light-meson masses.
For example, if the hyperfine-splitting contribution is in-
cluded, the result κq̄q ∼ 0.68 GeV with mq ∼ 0.25 GeV
will be allowed by mπ even though it is still disfavored
by mρ.

Therefore, due to the above issues of possible fur-
ther modifications to the meson masses, and in order to
show clearly the dependence of the decay constant on
the holographic parameters, we consider in SII only the
constraints from fP and fV, while discarding those from

M2.
Our final χ2-fitting results for the holographic pa-

rameters in both SI and SII are shown in Figs. 1(b), 2,
3 and 41), with the corresponding best-fit results sum-
marized in Table 2, in which the results for κ obtained
by fitting to the Regge trajectories [9, 17] are also listed
for comparison. With the fitted holographic parameters
given in Table 2, our theoretical results for the decay
constants are then collected in Table 1, in which the pre-
dictions based on LQCD [67–69], QCDSR [62, 70] and
LFQM [58, 59] approaches are also listed for compari-
son. The following two subsections are devoted to our
detailed analyses for a given (q1q̄2) state.

3.2 Light mesons

Under the combined constraint from π and ρ mesons,
the fitted results in both SI and SII are shown in
Fig. 1(b). For the mass-scale parameter κq̄q (q=u,d), it is
found that our result in SI, κSI

q̄q =0.540+0.007
−0.010GeV, agrees

remarkably well with the result [0.54,0.59]GeV obtained
by fitting to the Regge trajectories of (q̄q) states [9].
However, compared with these results, a relatively larger
value, κSII

q̄q =0.680+0.021
−0.021GeV, in SII is required to fit fρ.

This implies that SII might be refuted unless there ex-
ists an unknown negative potential for vector mesons.
For the light-quark mass, on the other hand, it is found
that our result, mSI

q ∼ 0.379GeV, is much larger than
that obtained in Ref. [9], due to the inclusion of the neg-
ative colour Coulomb-like potential contribution; such a
relatively large light-quark mass is also favored by the
decay constants of light pseudoscalar mesons, which can
be seen from Eq. (27).

Using the best-fit values of κq̄q and mq obtained in SI
and SII, we get 1.28(SI) and 1.61(SII) for the ratio fρ/fπ.
Although still smaller than the data 1.62 [42, 43], our
result 1.28(SI) has in fact been significantly improved
compared with the traditional one, fρ/fπ =1, obtained
without considering the dynamical spin effect. Further-
more, using Eq. (36) to include the zero-mode contri-
bution, we obtain fρ/fπ = 1.58(SI), agreeing well with
the data. This implies that the zero-mode contribution is

1) In our χ2-fits, as a conservative choice, an additional 1% error is assigned to the experimental data if its significance is larger than
100 σ. In addition, the LQCD results for fBd and fBs are used in the fits due to the lack of corresponding experimental data.
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Fig. 2. (color online) The fitted spaces for κq̄s and ms under the separate constraints from the masses and decay
constants of K and K∗ mesons at 95% C.L. in SI (a) and SII (b), as well as under their combined constraint (c).
See text for further explanation.

Table 3. Summary of our results for the ratios of decay constants. The results given by the LQCD and QCDSR
approaches are also listed for comparison. See text for detailed discussion.

LQCD QCDSR SI SII

fT
ρ (2GeV)/fρ 0.76 [91] , 0.63 [69] 0.69±0.04 [95] 0.78 0.71

fT
K∗ (2GeV)/fK∗ 0.77 [96] 0.73±0.04 [95] 0.80 0.77

fDs/fD 1.173±0.003 [42] 1.170±0.023 [70] 1.129 1.267

fDs∗/fD∗ 1.21±0.06 [97] , 1.16±0.06 [98] 1.16±0.04 [70] 1.12 1.26

fD∗/fD 1.078±0.036 [68, 99] 1.215±0.030 [70] 1.097 1.131

fDs∗/fDs 1.087±0.020 [68, 99] 1.19 [70] 1.093 1.124

fBs/fB 1.215±0.007 [42] 1.154±0.021 [70] 1.166 1.213

fB∗s /fB∗ 1.20 [68, 99] 1.13±0.25 [70] 1.17 1.21

fB∗/fB 0.958±0.022 [68, 99] , 1.051±0.017 [100] 1.020±0.011 [70] 1.027 1.032

fB∗s /fBs 0.974±0.010 [68, 99] 0.94 [70] 1.028 1.030

possibly important and worth further theoretical in-
vestigation. In addition, our predictions for the ratio
fT

ρ (2GeV)/fρ, 0.78(SI) and 0.71(SII)1), are also com-
parable with those obtained in the LQCD and QCDSR
approaches, for instance, fT

ρ (2GeV)/fρ = 0.76 [91],
0.63 [69] (LQCD), and fT

ρ (2GeV)/fρ = 0.72 [92–94],
0.69±0.04 [95] (QCDSR).

With the best-fit values of mq obtained in SI and SII
as inputs, the fitted results for the (sq̄) system are shown
in Fig. 2. From Fig. 2(a), it can be seen clearly that the

parameters in SI are strictly bounded at κq̄s∼0.6 GeV
with ms∼0.59 GeV under the constraints from fK, mK

and mK∗ . At the same time, compared with SI, a rela-
tively large κq̄s∼0.67 GeV is required by fK∗ in SII, as
shown by Fig. 2(b). Such a situation is similar to what
has been observed in the π and ρ systems, but the tension
between SI and SII for κq̄s is not so serious. The final
combined fitting results are shown in Fig. 2(c). Numer-
ically, we find that our fitted result κq̄s =0.602GeV(SI)
is consistent with the result [0.54,0.59]GeV obtained by

1) Here the NLO scaling factor fT
V (2GeV)/fT

V (1GeV)=0.876 has been used.
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Fig. 3. (color online) The fitted spaces for κq̄c, κs̄c and mc under the separate constraints from the masses and

decay constants of D(∗) (a) and D
(∗)
s (b) mesons at 95% C.L. in SI, as well as under their combined constraint in

SI (c) and SII (d). The dashed line corresponds to mc=1.5 GeV.

fitting to the Regge trajectories [9]; it is, however, larger
than κq̄q=0.540GeV(SI). This is explained by the signif-
icant flavour-symmetry-breaking effect indicated by the
data fK/fπ=1.2 [42].

It is also found from Table 1 that the tension between
the theoretical prediction in SI and the data for fK∗ is
not as serious as that observed for fρ. Using the best-fit
values of κq̄s and mq,s, we obtain fK∗/fK=1.21(SI) and
1.31(SII), being consistent with the experimental value
of 1.31 [42, 43]. In addition, we obtain fT

K∗(2GeV)/fK∗=
0.80(SI) and 0.77(SII), which are also comparable with
the predictions fT

K∗(2GeV)/fK∗=0.77 [96] (LQCD), and
fT
K∗(2.2GeV)/fK∗ =0.72 [94], 0.73±0.04 [95] (QCDSR).

For convenience of comparison, the LQCD and QCDSR,
as well as our results for the ratios of decay constants,
are summarized in Table 3.

3.3 Heavy-light mesons

With the best-fit values of mq,s as inputs, we now
perform a χ2-analysis for the holographic parameters in
the families of heavy-light mesons, including D(∗), D(∗)

s ,
B(∗) and B(∗)

s . In this case, because the effect of different
mq,s in the two scenarios is trivial, the main difference
between SI and SII is now due to whether the heavy-
light meson masses are taken into account as constraints
or not.

For the D(∗) and D(∗)
s mesons, the allowed parameter

spaces are shown in Fig. 3. From Fig. 3(a), it can be seen
that the solution with κq̄c∼0.76GeV and mc∼1.6 GeV
is allowed simultaneously by mD, mD∗ and fD (there is
currently no available data for fD∗). Moreover, such a
quark mass mc ∼ 1.6GeV is also favored by mDs and
mD∗s

as shown by Fig. 3(b). However, the experimental
data on fDs requires a quite different κs̄c. This tension is
in fact caused by the observation that the experimental
data fDs/fD = 1.266 [42] indicates a significant flavour-
symmetry breaking effect and hence results in a large
difference between κq̄c and κs̄c.

Under the combined constraint from the masses and
decay constants of the D(∗) and D(∗)

s mesons, our final fit-
ted results in SI for the holographic parameters κq̄c, κs̄c

and mc are shown in Fig. 3(c), with the corresponding
numerical results given in Table 2. It is found that the
fitted result κq̄c = 0.765+0.032

−0.018GeV is in good agreement
with that obtained by fitting to the heavy-light hadron
spectra [17]; however κs̄c =0.836+0.020

−0.021GeV is a little bit
larger than the result [0.735,0.766]GeV [17], which is due
to the effect of fDs analyzed above. In SII, the fitted re-
sults are shown in Fig. 3(d). In this case, because the
decay constants fD∗(s)

cannot be extracted from exper-
iment for the moment, it is hard for the charm-quark
mass to be well bounded; hence we take mc=1.5GeV as
input, and present in Table 2 the fitted results for κq̄c

and κs̄c.
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Fig. 4. (color online) The fitted spaces for κq̄b, κs̄b and mb under the separate constraints from the masses and

decay constants of B(∗) (a) and B
(∗)
s (b) mesons at 95% C.L. in SI, as well as under their combined constraint in

SI (c) and SII (d). The dashed line corresponds to mb=4.8 GeV.

With the best-fitted holographic parameters as in-
puts, we further present in Table 1 our results for the
decay constants of charmed mesons. It can be seen that,
except for a slightly smaller fDs in SI, our results are
generally in agreement with those obtained in the LQCD
and QCDSR approaches, as well as with the experimen-
tal data. In addition, we obtain

fDs/fD = 1.129(SI),1.267(SII);
fDs∗/fD∗ = 1.124(SI),1.259(SII), (37)

which agree with the LQCD [42, 97, 98] and averaged
QCDSR [70] results,

fDs/fD = 1.173±0.003(LQCD),1.170±0.023(QCDSR);
(38)

fDs∗/fD∗ = 1.21±0.06,1.16±0.06(LQCD),
1.16±0.04(QCDSR). (39)

Here we should mention that most of the theoretical pre-
dictions for fDs/fD are smaller than the current data,
fDs/fD∼1.266 [42]. Finally we obtain

fD∗/fD = 1.097(SI),1.131(SII);
fDs∗/fDs = 1.093(SI),1.124(SII), (40)

which are also in agreement with the values obtained in
the LQCD [68, 99] and QCDSR [70] approaches

fD∗/fD=1.078±0.036(LQCD),1.215±0.030(QCDSR);
(41)

fDs∗/fDs =1.087±0.020(LQCD),1.19(QCDSR). (42)

For the B(∗) and B(∗)
s mesons, the allowed param-

eter spaces are shown in Fig. 4. It can be seen from
Figs. 4(a) and 4(b) that the solution κq̄b∼0.92GeV and
κs̄b ∼ 1.00GeV with the same mb ∼ 5.1 GeV is allowed
simultaneously by mB(s)

, mB∗(s)
and fB(s)

. It is also found
that the constraint on mb is dominated by mB(s)

and
mB∗(s)

, while the constraints on κq̄b and κs̄b are domi-
nated by fB and fBs , respectively. Different from the
case for the charmed mesons, there is no significant ten-
sion between the constraints from B(∗) and B(∗)

s mesons.
Under the combined constraint from the masses and

decay constants of B(∗) and B(∗)
s mesons, our fitting re-

sults in SI for the parameters κq̄b, κs̄b and mb are shown
in Fig. 4(c), and the corresponding numerical results are
given in Table 2, which are also found to be in agreement
with those obtained by fitting to the heavy-light hadron
spectra [17]. Similar to the case for the charmed mesons,
it is also hard for the holographic parameters in SII to
be well bounded due to the lack of data for the decay
constants fB∗(s)

, as shown by Fig. 4(d). The fitted results
for κq̄b and κs̄b listed in Table 2 are, therefore, obtained
by taking mb=4.8GeV.

With the best-fitted holographic parameters as in-
puts, our results for the decay constants of bottom
mesons, which are also listed in Table 1, are generally
in agreement with those obtained in the LQCD and

073102-10



Chinese Physics C Vol. 42, No. 7 (2018) 073102

QCDSR approaches, but with a few exceptions to be
discussed below. In addition, our results for the ratios

fBs/fB = 1.166(SI),1.213(SII);
fB∗s

/fB∗ = 1.167(SI),1.212(SII), (43)

agree with the averaged results obtained in the LQCD
and QCDSR approaches [42, 68, 70, 99],

fBs/fB = 1.215±0.007(LQCD),1.154±0.021(QCDSR);
(44)

fB∗s
/fB∗ = 1.20(LQCD),1.13±0.25(QCDSR). (45)

On the other hand, we obtain

fB∗/fB = 1.027(SI),1.032(SII);
fB∗s

/fBs = 1.028(SI),1.030(SII), (46)

which are approximately equal to but a little bit larger
than one. Comparing with the results obtained in the
LQCD and QCDSR approaches [68, 70, 99, 100],

fB∗/fB = 0.958±0.022,1.051±0.017(LQCD),
1.020±0.011(QCDSR); (47)

fB∗s
/fBs = 0.974±0.010(LQCD),0.94(QCDSR), (48)

we can find the following differences: In our approach, for
a given (q1q̄2) state, the relation fV/fP>1 is always sat-
isfied and can reach to one only in the heavy quark limit,
which has been analyzed in the last section and can also
be seen from Eqs. (27) and (28). While the QCDSR pre-
dictions [70] support fB∗/fB>1, the relation fB∗/fB<1
is predicted by most of the LQCD evaluations, for in-
stance, in Refs. [68, 99, 101], but with the exception of
that obtained with Nf =2 dynamical quarks [100]. In ad-
dition, both the LQCD and QCDSR approaches support
the relation fB∗s

/fBs < 1. As a consequence, more pre-
cise information from both theoretical and experimental
sides is needed to resolve these discrepancies.

4 Conclusion

In this paper, the decay constants of light and heavy-
light pseudoscalar and vector mesons have been evalu-
ated with the improved soft-wall holographic wavefunc-
tions, which are now modified to take the effects of both
quark masses and dynamical spins into account prop-
erly. Taking the masses and measured decay constants
of these mesons as constraints, we have performed de-
tailed χ2-analyses to determine the holographic parame-
ters, the mass-scale parameter κ and the quark masses,
in two different scenarios. With the best-fitted parame-
ters as inputs, we also presented our theoretical results
for the decay constants as well as some important ratios
among them. Our main findings can be summarized as
follows:

1) Our results for the decay constants in the holo-
graphic QCD formalism, especially for the ratio fV/fP,
can be significantly improved once the dynamical spin
effects are taken into account by introducing a helicity-
dependent wavefunction.

2) Our fitted results in SI for the mass-scale param-
eters, κq̄2q1 , as summarized in Table 2, are generally in
agreement with those obtained by fitting to the Regge
trajectories [9, 17]. With the determined holographic
parameters as inputs, our results for the decay constants
agree well with the data, but with some tensions for fρ

and fDs .
3) Most of our theoretical results are also in agree-

ment with those obtained in the LQCD and QCDSR
approaches. The only observed tension between these
methods and ours lies in the ratios fB∗(s)

/fB(s)
, which are

predicted to be smaller than one in LQCD, but a little
bit larger than one in this work and can reach to one
only in the heavy quark limit.

References
1 J. M. Maldacena, Int. J. Theor. Phys., 38: 1113 (1999); Adv.

Theor. Math. Phys., 2: 231 (1998)
2 S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.

B, 428: 105 (1998)
3 E. Witten, Adv. Theor. Math. Phys., 2: 253 (1998)
4 J. Polchinski and M. J. Strassler, Phys. Rev. Lett., 88: 031601

(2002)
5 A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.

Rev. D, 74: 015005 (2006)
6 G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 102:

081601 (2009)
7 S. J. Brodsky and G. F. de Teramond, Subnucl. Ser., 45: 139-

183 (2009)
8 G. F. de Teramond and S. J. Brodsky, AIP Conf. Proc., 1296:

128-139 (2010)
9 S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Phys.

Rept., 584: 1-105 (2015)
10 G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett., 94:

201601 (2005)
11 S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett., 96:

201601 (2006)
12 G. F. de Teramond and S. J. Brodsky, Nucl. Phys. Proc.

Suppl., 199: 89-96 (2010)
13 G. F. de Teramond, H. G. Dosch, and S. J. Brodsky, Phys.

Rev. D, 91: 045040 (2015)
14 H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys.

Rev. D, 91: 085016 (2015)
15 S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Phys.

Lett. B, 759: 171-177 (2016)
16 S. J. Brodsky, G. F. de Teramond, H. G. Dosch et al, Int. J.

Mod. Phys. A, 31 (19): 1630029 (2016)
17 H. G. Dosch, G. F. de Teramond, and S. J. Brodsky, Phys.

Rev. D, 95: 034016 (2017)
18 T. Branz, T. Gutsche, V. E. Lyubovitskij et al, Phys. Rev. D,

82: 074022 (2010)
19 S. J. Brodsky and G. F. de Teramond, Phys. Rev. D, 77:

056007 (2008)
20 S. J. Brodsky, F. G. Cao, and G. F. de Teramond, Phys. Rev.

D, 84: 033001 (2011)
21 S. J. Brodsky and G. F. de Teramond, Phys. Rev. D, 78:

025032 (2008)

073102-11



Chinese Physics C Vol. 42, No. 7 (2018) 073102

22 S. J. Brodsky, G. F. de Teramond, and A. Deur, Phys. Rev.
D, 81: 096010 (2010)

23 A. Deur, S. J. Brodsky, and G. F. de Teramond, Phys. Lett.
B, 757: 275-281 (2016)

24 A. Deur, S. J. Brodsky, and G. F. de Teramond, Prog. Part.
Nucl. Phys., 90: 1-74 (2016)

25 C. W. Hwang, Phys. Rev. D, 86: 014005 (2012)
26 N. R. F. Braga, M. A. Martin Contreras, and S. Diles, Phys.

Lett. B, 763: 203-207 (2016)
27 A. Vega, I. Schmidt, T. Branz et al, Phys. Rev. D, 80: 055014

(2009)
28 R. Swarnkar and D. Chakrabarti, Phys. Rev. D, 92: 074023

(2015)
29 M. Ahmady, F. Chishtie, and R. Sandapen, Phys. Rev. D, 95:

074008 (2017)
30 Q. Chang, S. J. Brodsky, and X. Q. Li, Phys. Rev. D, 95:

094025 (2017)
31 M. Ahmady, R. Sandapen, and N. Sharma, Phys. Rev. D, 94:

074018 (2016)
32 G. P. Lepage and S. J. Brodsky, Phys. Rev. D, 22: 2157 (1980)
33 A. V. Efremov and A. V. Radyushkin, Phys. Lett. B, 94:

245-250 (1980)
34 V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept., 112: 173-

318 (1984)
35 S. Descotes-Genon and P. Koppenburg, Ann. Rev. Nucl. Part.

Sci., 67: 97 (2017)
36 M. Artuso, G. Borissov, and A. Lenz, Rev. Mod. Phys., 88:

045002 (2016)
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