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Cloud of strings in f(R) gravity *
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Abstract: We derive the solution for a spherically symmetric string cloud configuration in a d-dimensional spacetime

in the framework of f(R) theories of gravity. We also analyze some thermodynamic properties of the joint black hole

- cloud of strings solution. For its Hawking temperature, we found that the dependence of the mass with the horizon
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1 Introduction

A promising theory for the unification of all known
forces of nature is based on the idea that all known fun-
damental particles are, in fact, vibration modes of one-
dimensional string objects [1]. Such strings could have
been stretched at the epoch known as inflation, where the
universe has experienced a period of a fast accelerated
expansion. This mechanism could give rise to a type of
cosmic string, a large-scale object that in principle could
pervade our observed universe [2].

Large-scale cosmic strings are also predicted by the
theory of quantized fields. Such objects would originate
from some phase transition in the early universe [3]. The
basic idea is that causally disconnected regions of the
spacetime can develop different vacuum expectation val-
ues, and the regions where they overlap must be the re-
gions of localized energy. Such localized energy can exist
for domain walls, cosmic strings, and monopoles, among
other possibilities.

In Ref. [4], Letelier proposed a model for a cloud of
strings, an aggregation of one-dimensional objects in a
defined geometrical pattern. A cloud of strings is anal-
ogous to a pressureless perfect fluid. However, due to
the one-dimensional character of the string, its energy-
momentum tensor presents a spacial component, thus
manifesting a non-null pressure. This behavior implies
that such an object should give rise to astrophysical and

cosmological implications. Since then, several papers
have been devoted to the study of string clouds in the
General Relativity context [5–9] and for alternative the-
ories of gravity [10–15].

Our goal in this paper is to further explore these
string clouds in the framework of f(R) theories of gravity.
In this theory, the scalar curvature in Einstein-Hilbert
action, R, is replaced by a generic function, f(R) [16–
18]. The freedom to choose, in principle, any functional
form for f(R) allows us to find exact solutions in what
would be a rather complicated set of coupled 4th-order
non-linear differential equations. This freedom can also
be seen as a drawback, since the obtained solutions can
impose constraints on the final form of f(R). A similar
analysis was performed in Ref.[19] for the case of a global
monopole in four dimensions (whose energy-momentum
tensor coincides with the string cloud one in 4D). How-
ever, the authors do not consider the f(R)-correction of
the black hole entropy. Therefore in this work, besides
generalizing the solutions and thermodynamic descrip-
tion for arbitrary spacetime dimensions, we consider such
a f(R)-contribution to the area law and its thermody-
namic implications.

In this paper we will focus on gravitational consider-
ations of the cloud of strings in f(R) gravity in a spher-
ically symmetric spacetime of arbitrary dimensions. In
Section 2 we will present the string cloud model as pro-
posed by Letelier, considering the strings within a spher-
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ical distribution. In Section 3 we will briefly present the
f(R) model of gravity in d-dimensions, along with the
most straightforward method to obtain exact solutions.
In Section 4 we will derive the metric solution for the
string cloud using the tetrad formalism. In Section 5 we
will perform the thermodynamic analysis of the solution.
Finally, in Section 6, we will present our conclusions.

2 The cloud of strings

In cosmology, we consider perfect fluids to model gas
and dust of particles. A cloud of strings is a kind of ana-
logue model, but with one-dimensional objects, which
are extended along some defined direction. Such distri-
butions of strings can exist in several geometrical shapes,
such as planar, axisymmetric, or spherical. In this paper
we will consider the last option.

A particle generates a world line in spacetime, and
a d-dimensional object generates a (d+1)-dimensional
worldsheet. In the case of a single string, we say it
generates a two-dimensional worldsheet Σ, that we can
parametrize by two parameters: λ0 and λ1. The action
for such a string is proportional to the determinant of
the worldsheet, which is also known as the Nambu-Goto
action, given by

SGN=m

∫

Σ

√−γdλ0dλ1, (1)

where m is positive and is related to the tension of the
string, and γ is the determinant of the induced metric

γab=gµν
∂xµ

∂λa
∂xν

∂λb
. (2)

We can also write the Nambu-Goto action using a
spacetime bi-vector Σµν , given by

Σµν=εab
∂xµ

∂λa
∂xν

∂λb
, (3)

in such a way that the Nambu-Goto action can be rewrit-
ten as

SGN=m

∫

Σ

√

−1

2
ΣµνΣµνdλ0dλ1. (4)

The energy-momentum tensor for one string can
be calculated from the action (4) in a straightforward
way from the relation Tµν = −2∂L/∂gµν . The energy-
momentum tensor is then given by

T µν=m
ΣµσΣν

σ√−γ , (5)

and we can move from a single string to a string cloud by
multiplying the energy-momentum tensor by a density,
such as T µνcloud =ρT

µν , where ρ is the number density of
the string cloud.

We will now consider a static, spherically symmetric
string configuration. In this case, the only non-null com-
ponent of the bi-vector is Σtr=−Σrt. Using Eq. (5), it

can be shown that the only non-null components of the
energy-momentum tensor of a string cloud are given by

T tt=T
r
r=mρΣ

trΣrt/(−γ)1/2. (6)

We can now use the conservation law ∇µT µν =0 to
calculate the radial dependence of the components of the
energy-momentum tensor. To do so, we must first define
our metric. A d-dimensional static spherically symmetric
metric is given by

ds2=−A(r)dt2+B(r)dr2+r2γijdx
idxj , (7)

where γij is a (d−2)-dimensional sphere, and the indices
(i,j,...) run from 2 to d. Following Ref. [4], in this metric
the conservation of energy-momentum tensor leads to a
“conservation” equation for Σµν as ∂µ[mρ(−g)1/2Σµν ]=
0, whose solution, together with the expression for

√−γ,
which can be read from the identity ΣµαΣαβΣ

βν=γΣνµ,
leads to the non-null components of energy-momentum
tensor with mixed indices

T tt=T
r
r=−

η2

rd−2
, (8)

where we used Eq. (6), and η2 is a constant related to
the total energy of the cloud of strings.

Because of its radial dependence, there is an “intra-
string”, but no “inter-string” pressure, thus preventing
the system from leaving the static configuration, which
will be an important property for the stability of the
black hole solution that we will find in the next section.
The behavior of a string gas in a static configuration in
a thermal context is discussed in Ref. [20].

3 f(R) gravity

In this section, we will briefly introduce the frame-
work of f(R) theories of gravity. For a broader review of
the subject, see Refs. [16–18]. The main idea of f(R)
gravity is to replace the Einstein-Hilbert action by a
more general action. In d-dimensions it reads

S=
1

2κ

∫

ddx
√−gf(R)+Sm , (9)

where Sm is the action for the matter fields, and f(R)
is an unknown function subject to the following con-
straints: df(R)/dR> 0 and d2f(R)/dR2> 0. The field
equations can be derived from the above action. Varying
it with respect to the metric, we obtain the field equa-
tions [21]

F (R)Rµν−
1

2
f(R)gµν−∇µ∇νF (R)+gµν¤F (R)=κ2Tµν ,

(10)
where F (R) = df(R)/dR and Tµν is the energy-
momentum tensor. We can clearly see that this set
of equations are of fourth order in the metric, since
the scalar curvature already contains two derivatives on
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the metric. The process of finding solutions for this
set of equations, even for a simple function such as
f(R)=R+αR2, is highly non-trivial and in general cannot
be done analytically for a non-constant scalar curvature.

One method to solve Eq. (10) is to apply what is
known as the reconstructive approach. This idea origi-
nates from cosmological studies, where the aim was to re-
construct the f(R) functional form based on the desired
results for the scale factor of a FLRW metric. Within
this approach, the f(R) is treated as an independent
field, and its functional form will be constrained a pos-

teriori.
Taking the trace of Eq. (10), we obtain

F (R)R−d
2
f(R)+(d−1)¤F (R)=κ2T , (11)

(where T = gµνTµν) and, substituting this expression in
Eq. (10), we derive

F (R)Rµν−∇µ∇νF (R)−κ2Tµν

=
1

d
gµν [F (R)R−¤F (R)−κ2T ]. (12)

From the above equation, we can note that the com-
bination below,

Cµ=
F (R)Rµµ−∇µ∇µF (R)−κ2Tµµ

gµµ
, (13)

with fixed indices, is independent of the corresponding
index, and the following relation,

Cµ−Cν=0 (14)

gives us a new set of equations for any pair of (µ,ν)-
indices. In the following section, we will use this formula
to find an exact solution for the string cloud for an arbi-
trary spacetime dimension.

4 Exact solution

As mentioned in Section 2, a static spherically sym-
metric metric in d-dimensions is given by

ds2=−A(r)dt2+B(r)dr2+r2γijdx
idxj , (15)

where γij is a (d−2)-dimensional sphere, and the latin
indices (i,j,...) run from 2 to d. The approach we will
use to deal with a submanifold of an arbitrary (d−2) di-
mension is to define a set of orthonormal vielbeins, given
by

e(t)=
√

A(r)dt, e(r)=
√

B(r)dr

and e(a)=e(a)idx
i=re0

(a)
idx

i, (16)

where e0
(a) stands for the set of orthonormal vielbeins

of the (d−2)-dimensional sphere. We can use the first
Cartan structural equation, de(A) = −ω(A)

(B)∧e(B), to

calculate the spin connection ω(a)
(b). We obtain

ω(t)
(r)=

1

2

A′

A
√
B
e(t), ω(a)

(r)=
e(a)0√
B

and ω(a)

(t) =0,

(17)
where ′ means the derivative with respect to r, along with
the fact that the vielbein e(a)

0 satisfies its own structural
equation, given by de(a)0 =−ω(a)

(b)∧e(b).
The curvature 2-form is defined as ρ(A)

(B)=dω
(A)

(C)+dω
(C)

(B),
and is given by

ρ(t)
(r)=

(

A′′

2
√
AB
− A′2B

4(AB)3/2
−A

′B′

4AB

)

dr∧dt, (18)

ρ(t)
(a)=−

A′

2B
√
A
e0(a)idt∧dxi , (19)

ρ(r)
(a)=

1

2

B′

B3/2
e0(a)idr∧dxi , (20)

ρ(a)
(b)=

(

ρ0
(a)

(b)ij−
e0

(a)
i e0(b)j
B

)

dxi∧dxj , (21)

where ρ0
(a)

(b)ij is the curvature 2-form of the (d− 2)-
dimensional sphere. Finally, we can calculate the Rie-
mann tensor from the curvature using the vielbein, and
contract its first and third indices to obtain the Ricci
tensor, given by

Rtt=−
1

4

−A′B′Ar+2A′′ABr−A′2Br+2(d−2)A′BA
A2B2r

,

(22)

Rrr=−
1

4

−A′2Br+2A′′BAr−A′B′Ar−2(d−2)B′A2

A2B2r
,

(23)

Rii=
1

2

−A′Br+B′Ar+2(d−3)B2A−2(d−3)BA
AB2r

. (24)

We can now use Eq. (14) to obtain our field equations
for the functions A(r) and B(r). The Ct−Cr and Cµ−Ct
give us the following set of equations,

−2rF ′′+rF ′β+(d−2)Fβ=0 (25)

and

(12−4d)AB−(12−4d)A+4
F ′

F
rA−2F

′

F
A′r2−2A′′r2

+ r2A′β+(6−2d)rA′−2rAB
′

B
+

4κη2AB

Frd−4
=0, (26)

where β≡(A′/A+B′/B).
To find exact solutions of the above equations, we

must make some considerations. Following Ref. [22], we
will consider the weak-field limit of the theory, i.e., that
the metric functions are given by A(r) = (1+a(r)) and
B(r) = (1+b(r)), with both a(r)¿ 1 and b(r)¿ 1. We
will also consider that our theory represents only a small
deviation from General Relativity, F (R(r))=(1+ψ(r)),
with ψ(r)¿1. With these considerations, Eqs. (25) and
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(26) are given by

−2rψ′′+(d−2)(a′+b′)=0 (27)

and

(12−4d)b+4rψ′−2a′′r2+(6−2d)ra′

− 2rb′+4κη2(1+a+b−ψ)r4−d=0. (28)

With b(r)=−a(r), Eq. (28) can be exactly solved for
ψ=ψ0r, and has as solution

a(r) =
D1

rd−3
+D2r

2− 2ψ0r

(d−2)

+κη2

(

ψ0

(d−3)rd−5
− 2

(d−2)rd−4

)

. (29)

For d = 4, we recover the solutions obtained in
Ref. [22] for the global monopole source. However, con-
trary to the global monopole case, the string cloud can
exist and be defined for any spacetime dimension. In
the absence of the strings, and taking ψ→0, we recover
the Tangherlini-Schwarzschild metric with a cosmologi-
cal constant. It is interesting to note that the correction
due only to the f(R) gravity is linear in the coordinate r
for any dimension, and its contribution decreases as the
dimension increases due to the ψ0/(d−2) factor. This
will be analyzed in the next section.

Let us stress that we did not rely on the functional
form of the f(R) function. To reconstruct it, we should
calculate the scalar curvature as a function of the radial
coordinate r, and invert it to find r(R). Then, we inte-
grate F (R) on the variable R to obtain f(R). As men-
tioned earlier, in the reconstructive approach the f(R)
is obtained as a constraint of our previous choices.

As mentioned before, the radial profile of the string
cloud pressure is responsible the stability and staticity of
our solution. Inside the horizon the picture changes and,
due to the gravitational pull of the black hole towards
the singularity, the staticity condition is violated, there-
fore the conditions inside the horizon should be treated
carefully. However, since black hole thermodynamics is
the subject of the next section, and since it does not rely
on the inner structure of the solution, we leave a detailed
treatment of this region for future investigations.

5 Thermodynamics

In this section we will study the thermodynamic
properties of the black hole (BH) solution found from
this configuration1). Using the solution (29), in the ap-
proximation κη2 ψ0

rd−5¿1, we have

A(r)=1+
D1

rd−3
+D2r

2− 2ψ0r

(d−2)−
2κη2

(d−2)rd−4
. (30)

For simplicity, we will discard the cosmological constant
term by choosing D2=0, and consider

D1=−
16πGM

(d−2)Ωd−2

, (31)

in order to recover the Schwarzschild-Tangherlini metric
[25] in the appropriate limit, where

Ωd−2=
2π(d−1)/2

Γ ((d−1)/2) (32)

is the area of the unit (d−2)-sphere [26].
Since the horizon consists in the solution of A(rH)=0,

we find that the mass parameter of the BH as a function
rH is

M=
(d−2)Ωd−2

16πG

[

rd−3
H − 2ψ0

d−2r
d−2
H −2κη2

d−2 rH
]

. (33)

In Fig. 1, we show the behavior of the BH’s mass pa-
rameter as a function of the horizon rH. The shapes of
the curves are considerably different, but there are some
interesting common features, e.g., for General Relativity
(GR), the energy is an ever growing function of the hori-
zon, while for the f(R) case, at some point the energy
decreases with the growth of the horizon.

Fig. 1. (color online) The 4-dimensional case for
f(R) (blue, solid line, where ψ0 = 0.06) and
General Relativity (dashed line); and the 5-
dimensional case for f(R) (blue, dash-dotted line,
where ψ0 = 0.2) and General Relativity (dotted
line). We consider κη2=10−5.

Interestingly, the higher-dimensional case presents a
region of negative mass parameter, as can be seen in
Fig. 2. This is due to the term κη2rH in Eq. (33), which,
for d>4, becomes the dominant one for small values of
rH (which is not the case for astrophysical observations),

1) For a thermodynamic analysis of BHs in the brane world scenario, see Refs. [23, 24].
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although some care should be taken since, for d>5, the
limit that we are considering, κη2ψ0/r

d−5¿1, may be vi-
olated for small values of rH. For d=4, it has been shown
that the analogue solution is not physical for ψ0' 0.13
[27]. It is possible that a similar behavior occurs for its
higher dimensional counterparts. To see the behavior of
the mass due to the change of dimensions, we plot the 7-
and 11-dimensional cases in Figs. 3 and 4, respectively.

Fig. 2. The 5-dimensional case, ψ0=0.2 and κη
2=

10−5. There is no significant difference between
f(R) and GR in this regime.

Fig. 3. The 7-dimensional case for f(R) (solid line,
where ψ0=0.06) and General Relativity (dashed
line), with κη2=10−5.

According to Ref. [28], the laws of black hole thermo-
dynamics are valid in any number of dimensions. How-
ever, in f(R), the entropy is proportional to the area of
the event horizon corrected by a f ′(R)=F (R) factor (see
Ref. [29] and references therein):

S=
kB

4G~
Σ(rH)F (R)

∣

∣

∣

r=rH

, (34)

where kB is the Boltzmann constant, with dimensions of
entropy.

Fig. 4. The 11-dimensional case for f(R) (solid
line, where ψ0 = 0.06) and General Relativity
(dashed line), with κη2=10−5.

The area of the BH is

Σ(rH)=Ωd−2r
d−2
H =

2π(d−1)/2

Γ ((d−1)/2)r
d−2
H . (35)

It is worth stressing that our analysis is dimensionally
coherent, since in d-dimensions [~G] =Ld−2, i.e., it has
dimensions of length to the power of d−2.

The Hawking temperature is a geometrical quantity
given by

TH(rH)=
~

kBΩd−2

[

gttgrr
∂gtt
∂r

]

r=rH

. (36)

Using the mass parameter as a function of the horizon
(33), we find

TH(rH)=
~

kBΩd−2

[

(d−3)r−1
H −

2κη2

d−2 r
3−d
H −2ψ0

]

.

For ψ0=0, η2=0 and d=4, we reproduce the temper-
ature of the Schwarzschild BH (rH=2GM)

TSC=
~

8πGMkB

=
1

8π

EP

M
TP , (37)

where the Planck energy is EP=
√

~/G and the Planck
temperature is TP=EP/kB.

From these expressions it is possible to derive the
dynamical mass which is the internal energy of this ther-
modynamic system. From the first law of BH thermody-
namics, we have dE=THdS. Since we are expressing our
quantities as functions of the horizon rH, we can express
this equation as

∂E

∂rH
=TH

∂S

∂rH
, (38)
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which furnishes, after an integration,

E(rH)=
1

4G

[

(d−2)rd−3
H −2κη2rH+

(d2−6d+7)

d−2 ψ0r
d−2
H

]

.

(39)

5.1 Local Thermodynamics

For a black hole in a thermal bath, we can calculate
the local temperature Tloc. In fact, generalizing the pre-
scription of Refs. [30, 31] for d-dimensions, we consider
the presence of a perfect fluid that does not backreact
on the BH solution

Tµν=(ρ+p)vµvν+pgµν , (40)

where ρ is the energy density, p is the pressure and vµ

is a unit, time-like vector, which is the d-velocity of a
Killing observer. We should stress that such an energy-
momentum tensor is independent of our string cloud one
(5). From the conservation law gλν∇λTµν=0, we have

∂µp=−(ρ+p)∂µ ln(α), (41)

where α=
√
−ξ2, is the norm of a time-like Killing vector.

For the analysis of the thermal bath, we consider the
equation of state for radiation in a d-dimensional space-
time [32, 33]:

p=
ρ

d−1 , (42)

which implies that integrating Eq. (41), we have

ρ=ρ0/α
d. (43)

Furthermore, according to the Stefan-Boltzmann law,
the energy density of the thermal radiation in d-
dimensions is given by [32, 33]

ρ∝T dloc . (44)

Hence, we must have Tloc=T∞/α, for α=
√
−ξ2=

√−g00.
Here, T∞ is the temperature measured at infinity: it is
given by the Hawking temperature (37), T∞=TH. The
equation

Tloc(r)=
TH

√

−g00(r)
(45)

determines Tolman’s temperature Tloc. From this deriva-
tion we conclude that the expression of Tolman’s temper-
ature is valid for any number of dimensions.

In our case, g00=−A(r), thus

Tloc(r) =
~

kBΩd−2

[

(d−3)r−1
H −

2κη2

d−2 r
3−d
H −2ψ0

]

[

r
(

rd−4−2κη2/(d−2)
)

−rH
(

rd−4
H −2κη2/(d−2)

)

+2ψ0r
d−2
H /(d−2)−2ψ0r

d−2/(d−2)
]

−1/2

×r(d−3)/2 . (46)

The local temperature Tloc as a function of the hori-
zon rH in four dimensions is shown in Fig. 5. There are

minima in theses graphs, meaning that for a fixed dis-
tance from a BH, the minimum temperature allowed in
f(R) is smaller than that of GR. In Figs. 6, 7, and 8,
we consider the 5-, 7-, and 11-dimensional cases respec-
tively, and we verify that the graphs are similar to the
previous case. In each case there is a minimum tempera-
ture, and the f(R) black hole with a cloud of strings has
a smaller minimum temperature than in GR.

Fig. 5. The 4-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.04, κη

2=10−5 and r=10.

Fig. 6. The 5-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.2, κη

2=10−5 and r=1.
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Fig. 7. The 7-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.7, κη

2=10−5 and r=1.

Fig. 8. The 11-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.8, κη

2=10−5 and r=1.

From the first law of BH thermodynamics, we have

dEloc=TlocdS, (47)

where the entropy of the BH is given by Eq. (34).
Therefore, from ∂Eloc/∂rH=Tloc∂S/∂rH, we derive

∂Eloc

∂rH

∣

∣

∣

r
=

1

4G

[

(d−2)(d−3)rd−4
H −2κη2−2ψ0r

d−3
H (d2−6d+7)

][

r
(

rd−4−2κη2/(d−2)
)

−rH
(

rd−4
H −2κη2/(d−2)

)

+2ψ0r
d−2
H /(d−2)−2ψ0r

d−2/(d−2)
]

−1/2×r(d−3)/2 . (48)

The heat capacity Cloc can also be calculated as

Cloc=
∂Eloc

∂rH

∣

∣

∣

r

(

∂Tloc

∂rH

∣

∣

∣

r

)

−1

=
H(rH,r,η,d)

W (rH,r,η,d)
, (49)

where

H(r,rH,η,d) = −2(drHψ0−rHψ0+d−2)kB

[

−1/4(d−2)
(

−2rd+1ψ0+(d−2)rd−2r4η2κ
)

(d−3)rH2d+1

−1/2(d−2)
(

2rd+1ψ0
2−ψ0 (d−2)rd+r3η2κ(2rψ0+d−2)

)

rH
2d+2+1/4r3(d−3)(d−2)2rH3d−2

−(d−5/2)(d−2)r3ψ0rH
3d−1+r3η2κψ0 (d−1)rH2d+3−rH5+drd+1η2κψ0

+1/2
(

(d−2)rd−2r4η2κ
)

η2κrH
5+d+r3

(

ψ0
2(d−2)rH3d+rH

d+6η4κ2
)]

Ωd−2 (50)

and

W (r,rH,η,d) = ~G
[

−4r3ψ (d−1)(d−2)(d−3)r2d+1
H +4r3ψ2(d−2)2r2d+2

H

+4
(

(d−2)rd+3
H −2r7

Hη
2κ
)

ψ (d−3)rd+1−2(d−2)
(

(d−2)rd−2r4η2κ
)

(d−3)rd+3
H

+16(d−5/2)r3η2κψr5+d
H +r3(d−1)(d−3)(d−2)2r2d

H −12
(

r3(d−2)(d−3)r4+d
H

−1/3
(

(d2−5d+6)rd+2r3η2κ((rH−r)d−5/2rH+3r)
)

r7
H

)

η2κ
]

(51)

For the case d=4,ψ=0,η2=0, this reduces to the standard heat capacity for the Schwarzschild solution of GR

Cloc|Sch=4π
kB

~G

r2
H(r−rH)
3rH−2r

. (52)
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We show the heat capacity for the 4-, 5-, 7- and 11-
dimensional cases in Figs. 9-12, respectively. In all the
cases, stability is only possible for larger black holes due
to negative heat capacities for small values of the horizon
rH. Their qualitative behavior is similar, independently
of the number of dimensions. However, from Figs. 10-
12, it can be seen that, as expected from the shape of
the metric (30), the differences between f(R) and GR re-
duce when the spacetime dimensions increase (for a fixed
value of ψ0).

Fig. 9. The 4-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.04, κη

2=10−5 and r=10.

Fig. 10. The 5-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.5, κη

2=10−5 and r=1.

Fig. 11. The 7-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.5, κη

2=10−5 and r=1.

Fig. 12. The 11-dimensional case, for General Rel-
ativity (dotted line) and f(R) (solid line), with
ψ0=0.5, κη

2=10−5 and r=1.

6 Concluding remarks

In this paper we studied a string cloud configuration
in the framework of f(R) theories of gravity. Using the
standard procedure of the reconstructive approach, we
derived an exact solution for the d-dimensional spacetime
metric generated by a symmetric configuration of such
string cloud. For d=4, we recover the case of a global
monopole, and in the limit with vanishing matter and
where f(R)→R, we recover the well-known Tangherlini-
Schwarzschild metric. It is interesting to note that the
metric correction due only to the f(R) correction is lin-
ear in the radial coordinate, and decreases as we increase
the spacetime dimensions.
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We also studied the thermodynamic properties of this
solution, generalizing some previous results that were ob-
tained in four dimensions and for a similar matter source
[19]. We calculated the horizon-dependence of the BH
mass, demonstrating major differences between the GR
and f(R) cases; although within the same theory and
independently of the number of dimensions, they share a
similar qualitative behavior, for instance the unbounded
mass-growth with the horizon rH for GR.

We also considered the BH in a thermal bath, where
we calculated the local temperature and the heat ca-
pacity. No significant qualitative difference between the
theories was found (independently of the spacetime di-
mensions), except for a smaller temperature allowed in
the f(R) case (read from the local temperature analysis)
and a shift in the heat capacity graphs for f(R) in com-

parison to the GR case, which means that the minimum
horizon radio (for a stable BH solution) is larger in f(R)
gravity than in GR.

Our ansatz for the metric and the matter distribution
of the string cloud obeys staticity and spherical symme-
try, therefore we are imposing a time-independent con-
figuration outside the horizon “by hand”. A non-static
model with an accreting matter distribution, along with
a dynamic string cloud atmosphere, would be a step to-
wards a more realistic picture that might be used for
observations. However, the existence of a solution of the
field equations (following a similar path to those found
in Refs. [4] and [34]), even in this restrictive model of a
static configuration, instigates us to deepen this analy-
sis. An interesting method would be the one followed by
Ref. [7].
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