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Higher order corrections to asymptotic-de Sitter inflation
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Abstract: Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we

investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter

(dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power

spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type

of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation.

As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-

time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly

coincide with the conventional results for dS and flat space-time.
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1 Introduction

Recently, it has been realized that much can be
learned about high energies and small scales by studying
the very early universe [1–3]. Nevertheless, the physics
of the very early universe is described by inflationary
scenarios [4–7]. Inflation is postulated to have caused
small quantum fluctuations in the inflaton field to be
magnified, consequently creating CMB anisotropies and
large structures in the universe [8, 9]. The interesting
scales in the recent universe correspond to the very short
perturbations which fell under the Planck length at the
start of inflation. However, in most inflationary models,
the adiabatic vacuum [1, 10] is chosen as the quantum
state of the inflation and the Bunch-Davies initial mode
is imposed at the moment which the scales of most per-
turbations are smaller than the Planck length [2, 11].
General relativity and the theory of linear perturbations
which are the backbone of the inflationary models, how-
ever, are collapsed at trans-Planckian scales. Indeed,
trans-Planckian scales may be explained by incomplete
theories such as quantum gravity, non-commutative ge-
ometry of space-time and string theory [12–14]. So, one
may ask, “how reliable are the predictions of the or-
dinary inflationary models?” Danielsson answered this
question by re-investigating the vacuum definition to in-
clude the trans-Planckian corrections [1]. Indeed, in the
Danielsson approach, the initial condition is imposed at

the moment at which the majority of perturbations are
inside the horizon but their scales are greater than the
Planck length [1]. It is clear that the new vacuum, the
so-called α-vacuum, results in an oscillatory power spec-
trum which is no longer scale-invariant anymore [1]. In
the definition of the α-vacuum, it is supposed that the
geometry of the background space-time is described by
a pure de Sitter (dS) metric. It is important to note
that the deviation of the initial condition for primordial
perturbations from the Bunch-Davies vacuum were of-
ten due to some dynamical reason. In particular, the
universe may have experienced other stages prior to the
inflationary phase, namely, a fast-roll pre-inflationary
phase [15]; a phase transition from fundamental theory
[16, 17]; a modulation of the sound speed parameters
[18]; or a nonsingular bouncing phase [19, 20]. Also, some
alternative non-trivial initial states have been studied by
many authors [21–33].

According to the slow-roll model, the geometry of
the inflationary universe is described by quasi-dS space-
time, which when considering only the first order reduces
to pure dS space-time, so the α-vacuum should be mod-
ified for use in real inflationary models [34]. However,
due to the high energy level of the inflationary universe,
higher order perturbations seem perfectly plausible, so
we proposed a second order vacuum which may explain
the origin of non-Gaussianity and scale dependency of
the primordial perturbations [35, 36]. This initial mode
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so-called excited-dS vacuum is the generalization of the
Bunch-Davies vacuum to the quasi-dS inflation. The
scalar power spectrum deduced from this initial mode
is not scale-invariant [35–39]. Meanwhile, against the
α-vacuum case, the calculated spectra included higher
order terms of corrections. Something like this spectrum
has been derived previously in Refs. [1, 2]. Furthermore,
similar corrections have been obtained in Refs. [40, 41]
with an effective field theory approach.

Since the excited mode that we introduced in Ref. [39]
is an approximate solution of the Mukhanov-Sasaki equa-
tion, in this work we plan to use the general initial modes
with higher order term of 1

kτ
to drive trans-Planckian

corrections in the spectra. These forms of initial modes,
as the general solution of the Mukhanov-Sasaki equation
in quasi-dS inflation, are obtained from asymptotic ex-
pansion of the Hankel function [37, 42]. The layout of
the paper is as follows. In Section 2, we briefly recall the
definition of the standard power spectrum and review
the Danielsson approach as well as the vacuum concept.
Section 3 is the main part of this article, containing the
calculation of the power spectrum with an asymptotic
higher order initial mode. The conclusion is given in the
final section.

2 Review of Danielsson approach for α-

vacuum

Suppose that the geometry of the inflationary uni-
verse is described by the following dS metric:

ds2=dt2−e2Ht ~dx
2
. (1)

Here t and H are respectively time and the Hubble pa-
rameter during inflation. The matter field of the universe
in the inflationary epoch may be explained by a massless
single scalar field φ(t,x) with Lagrangian density

`=−
√−g

2
gαβ∂αφ∂βφ. (2)

Here we suppose φ is minimally coupled to gravity, so

φ′′+2
a′

a
φ′−∇2φ=0, (3)

where the prime symbol stands for the derivative with
respect to the conformal time τ =− 1

aH
. Equation (3) in

terms of the rescaled scalar field µ=aφ reduces to

µ′′−∇2µ−a′′

a
µ=0, (4)

or in Fourier space

µ′′
k+(k2−a′′

a
)µk=0. (5)

It is easy to show that Πk=µ′
k−a′

a
µk is the conjugate mo-

mentum of µk, so we can quantize similar to the simple

harmonic oscillator[1],

µ̂k(τ)=
1√
2k

[âk(τ)+â†
−k(τ)], (6)

Π̂k(τ)=−i

√

k

2
[âk(τ)+â†

−k(τ)], (7)

where âk(τ) and â†
−k(τ) are the annihilation and cre-

ation operators. Furthermore, according to the Bogoli-
ubov transformations we have

âk(τ)=uk(τ)âk(τ0)+vk(τ)â†
−k(τ0), (8)

â†
−k(τ)=u∗

k(τ)â†
−k(τ0)+v∗

k(τ)âk(τ0). (9)

Here τ is conformal time and τ0 is an arbitrary fixed
time. So, we can find

µ̂k(τ)=fk(τ)âk(τ0)+f∗
k (τ)â†

−k(τ0), (10)

Π̂k(τ)=−i[gk(τ)âk(τ0)−g∗
k(τ)â†

−k(τ0)], (11)

where

fk(τ)=
1√
2k

[uk(τ)+v∗
k(τ)], (12)

gk(τ)=

√

k

2
[uk(τ)−v∗

k(τ)]. (13)

Notice that fk(τ0) is a solution of Equation (5). Further-
more, from (8) and (9) one can find

vk(τ0)=v∗
k(τ0)=0,

and

|uk(τ)|2−|vk(τ)|2=1,

or equivalently,
gk(τ0)=kfk(τ0), (14)

2Re(fkg
∗
k)=1. (15)

Now let us define the initial mode as

âk(τ0)|0,τ0〉=0. (16)

This definition leads to a class of vacuums for the dS
space-time which depend on initial fixed time τ0. The
initial mode defined in (16) is known as the minimum
uncertainty vacuum, since it can be shown that it mini-
mizes the uncertainty at τ0 [1].

For pure dS space-time, we have the following equa-
tion of motion

µ′′
k
+

(

k2− 2

τ 2

)

µk=0, (17)

and the most general solution of (17) is [1]

fk=
Ak√
2k

e−ikτ

(

1− i

kτ

)

+
Bk√
2k

eikτ

(

1+
i

kτ

)

, (18)

gk=Ak

√

k

2
e−ikτ−Bk

√

k

2
eikτ . (19)
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Using normalization equation (15) as well as initial con-
dition (14), one can find

|Ak|2=
1

1−|αk|2
, αk=

i

2kτ0+i
, (20)

Bk=Akαke
−2ikτ0 . (21)

If one sets τ0=−∞, this results in Ak=1 and Bk=0, and
the Bunch-Davies vacuum is derived again. However,
instead of τ0 =−∞, Danielsson supposed that τ0 =− Λ

kH

where Λ is the energy scale of new physics e.g. the Planck
scale or the string scale. Every τ0 defines a new initial
mode and − Λ

kH
defines the α-vacuum [1]. Next we can

calculate the spectrum of φ,

Pφ=
1

a2
Pµ=aφ=

k3

2π
2a2

|fk|2. (22)

By considering those terms which are leading at late
times when τ0→0, we have

Pφ=

(

H

2π

)2
1

1−|αk|2
[1+|αk|2−e2ikτ0α∗

k−e−2ikτ0αk]. (23)

It is easy to see that by selecting αk = 0 the spectrum
reduces to

Pφ=

(

H

2π

)2

, (24)

which coincides with the standard scale-invariant spec-
trum. If we assume −kτ0= Λ

H0

= 1
σ0

�1, as considered in

Refs. [1, 2], we get

y1=

(

2π

H

)2

Pφ=

[

1−σ0sin

(

2

σ0

)]

, (25)

which is the Danielsson spectrum [1]. The value of

σ0 =
H0

Λ
is dimensionless, where H0 is the initial Hub-

ble expansion rate during inflation, and Λ is the new
physics energy scale. Spectrum (25) is vividly oscilla-
tory due to the trans-Planckian corrections considered

(notice that k=− Λ

H0τ0

), so the wavelength of perturba-

tions is proportional to σ0τ0, which is greater than the
Planck length.

3 Asymptotic-dS vacuum for quasi-dS

inflation

Inflation predicts that the CMB temperature fluctu-
ations should be: (i) statistically isotropic, (ii) Gaussian,
and (iii) almost scale invariant [43], and that this scale
dependency can be describe theoretically by slow roll or
quasi-dS inflation. If we suppose that cosmic inflation is
described by dS space-time, there exists a concrete set
of vacuum states invariant under the dS group. How-
ever, as we know, an inflationary universe is described by
quasi-dS space-time, that may be exact dS in the first ap-
proximation [37]. Recently, as an approximate solution

for quasi-dS space-time, we have added a perturbative

second order term
1

2
(±i

kτ
)2 to the dS mode function (18)

in [38] and have derived non-linear trans-Planckian cor-
rections in the spectra.

Let us consider the general form of the Mukhanov-
Sasaki equation for quasi-dS inflation [29] as the follow-
ing form,

υ′′
k+

(

k2−2c

τ 2

)

υk=0, (26)

where c in terms of the Henkel function index (ν) can be
written as follows [10],

c=
4ν2−1

8
. (27)

The general solutions of the mode equation (26) can be
written as [34]:

υk=

√
πτ

2

(

AkH
(1)
ν (|kτ |)+BkH(2)

ν (|kτ |)
)

, (28)

where H (1,2)
ν are the Hankel functions of the first and sec-

ond kind, respectively. Let us consider the general form
of the mode function by expanding the Hankel functions
up to the higher order of 1/|kτ |,

υgen
k (τ,ν) = Ak

e−ikτ

√
2k

(

1−i
c

kτ
− d

k2τ 2
−···

)

+Bk

eikτ

√
2k

(

1+i
c

kτ
− d

k2τ 2
+···

)

. (29)

Note that d= c(c−1)/2. If we consider the special case
of the pure dS space-time (ν=3/2 or c=1), the general
form of the mode functions (29) leads to the exact dS
mode or α-vacuum:

υdS
k (τ,ν)=Ak

e−ikτ

√
2k

(

1−i
1

kτ

)

+Bk

eikτ

√
2k

(

1+i
1

kτ

)

. (30)

Note that the general modes υgen
k , are unable to recover

the excited mode υk that was proposed in our previous
work [38]. The positive frequency solutions of the dS
mode lead to the Bunch-Davies mode:

υBD
k =

1√
2k

(

1− i

kτ

)

e−ikτ . (31)

For this case, one has a(t) = eHt, or a(τ) =− 1

Hτ
, with

H=constant for the very early universe. In our previous
works [35, 37], an asymptotically dS solution in terms of
index of the Hankel function ν ( with ν 6=3/2) was con-
sidered as the fundamental mode during inflation. The
best values of ν which are compatible with the scalar
spectral index from the latest observational data [43] are
1.5136ν61.519 [44] or by best fitting with Planck data
(c ' 1.05) [45]. These values of c motivated us to the
departure from dS mode (30) to excited-dS modes (29).
Therefore, we use the asymptotic-dS modes as the funda-
mental initial modes for calculations in the next sections.
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4 Calculation with asymptotic-dS vac-

uum

Because we do not know anything about the physics
before inflation in the very early universe, any primary
excited vacuum mode can be considered as a good and
acceptable mode for the initial state. Since the recent
Planck results [43], as observational evidence, motivated
us to use a non-Bunch-Davies vacuum for quasi-dS slow
roll inflation, let us as the logical choice consider an
asymptotic-dS mode as the fundamental mode during
quasi-dS inflation. The logic behind the choice of exited-
dS mode is that the mode at early times (τ→−∞) corre-
sponds to an adiabatic mode, what one would naturally
think of as the vacuum. For later times (when τ → 0),
the second and higher order terms of υk become impor-
tant. We expect these additional terms to lead to particle
creation, thereby providing the correction terms in the
spectra.

According to (18), the general solution of the equa-

tion of motion in this quasi-dS space-time (ν ≈ 3

2
), in-

cluding positive and negative frequency, can be given by
(29), and we call it the excited-α-vacuum[38]. Note that
the mode function (30) is the exact solution of Eq. (4) for
pure dS inflation, and similarly we consider mode (29) as
the general asymptotic solution of Eq. (4) for quasi-dS

inflation. Since this vacuum is of order

(

1

kτ

)2

, for gk

we again consider two different choices [39, 46] of orders

1 and 0, i.e.

(

1

kτ

)1

and ( 1
kτ

)0.

4.1 Corrections to the dS Background

If we consider quasi-dS space-time as the fundamen-
tal space-time during inflation with pure dS background,
for the first choice of gk, we can consider the g(dS)

k corre-
sponding to the first derivative or conjugate momentum
of υk. We will have

g(dS)
k =

√

k

2
Ak

(

1− i

kτ

)

e−ikτ−
√

k

2
Bk

(

1+
i

kτ

)

eikτ . (32)

We follow Section (2.3) in Ref. [1] and obtain for (29)
and (32),

Bk=−γkAke
−2ikτ0 , |Ak|2=

1

1−|γk|2
, (33)

where

γk=
i(1−c)kτ0+d

2(kτ0)2+i(c+1)kτ0−d
. (34)

If we ignore the terms higher than second order, we ob-
tain the corrected power spectrum as a function of pa-

rameter σ0,

P (dS)
φ (k) =

(

H

π(1−
√

8c+1)

)2[
1

1−((c−1)σ0)2

]

×
(

1−(c−1)σ0sin(
2

σ0

)+

(

(c−1)σ0

2

)2
)

.

(35)

Since the background is selected as dS space-time, it
is expected that correction terms for the pure dS case
(c = 1) in (35) disappear and we have a scale-invariant
spectrum, but we expect to have scale-dependent spectra
with non-zero correction terms for the any quasi-dS case
with c 6=1.

4.2 Corrections to the flat background

On the other hand, if we consider quasi-dS space-time
as the fundamental space-time during inflation with a flat
background, the vacuum is chosen by requiring that the
mode functions υk reduce to the Minkowski ones in the
limit τ→−∞. So, as the second choice, we consider g(Fl)

k

in flat space-time as follows,

g(Fl)
k =

√

k

2
Ake

−ikτ−
√

k

2
Bke

ikτ , (36)

and for (29) and (36) we again obtain Bk and Ak similar
to (33), but for γk we have

γk=
ickτ0+d

2k2τ 2
0 +ickτ0−d

, (37)

and we obtain

|fk|2∼
1

1−(cσ0)2

(

1−cσ0sin(
2

σ0

)+
(cσ0

2

)2
)

. (38)

If we use the following Taylor expansion for x=σ2
0<1,

∑

xn=
1

1−x
, (39)

the higher order trans-Planckian corrections for P (Fl) are
obtained as

y=

(

2π

H

)2

P (Fl)
φ =

(

2

1−
√

8c+1

)2

×
(

1−cσ0sin(
2

σ0

)+
5

4
(cσ0)

2−(cσ0)
3 sin(

2

σ0

)+...
)

. (40)

As an important result of this method, the ampli-
tude of the power spectrum is dependent on the choice
of c, i.e. the type of space-time in the period of inflation.
Also, the corrections in the final result (40) includes first
and higher order trans-Planckian corrections σ0. We see
that from (40), the corrections of spectra not only in-
clude higher order terms associated with the value of c
(type of geometry), but also include the harmonic terms
(∼ sin( 2

σ0

)), that may originate from the fluctuations of
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space-time (or gravitational waves) during inflation. Al-
though these corrections are too tiny in the far past time
limit, they may have very important effects on the CMB
anisotropy and structure formation at the large scale.
Also, our results in (40) are theoretically valid for any
asymptotic dS space-time and particularly confirm the
conventional results for pure dS space-time [1] in first or-
der. In Fig. 1, we see consistency of the power spectrum
of our model with the power spectrum of Danielsson’s
model [1]. In this figure, we plot the amplitude of the
gravitational wave (GW) spectra of result y1, and our
result y for particular values of c; y2 for the dS case with
c = 1 and y3 for the quasi-dS case with c = 1.05. The
latter value of c is consistent with the data from Planck
2015 [43]. Also, in Figs. 2 and 3, we compare the shift
of the amplitude of the GW power spectrum originating
from initial dS and quasi-dS modes for very small values
of σ0 that are theoretically important; for example, if Λ

Fig. 1. (color online) Comparison between am-
plitudes of GW spectra, results of Danielsson’s
model (y1) and our model (y2 and y3).

Fig. 2. (color online) Difference of GW amplitude
with σ0<0.05.

Fig. 3. (color online) Difference of GW amplitude
with σ0<0.02.

is the Planck scale, σ0 is at most 10−4 and if Λ is the
string scale, σ0 could possibly be 10−2 [1]. As follows
from these figures, for the trans-Planckian limit, the am-
plitude of the spectra is different from the Danielsson
spectra and the shift of amplitude of the GW spectrum
due to the initial quasi-dS mode (c 6=1) is more noticeable
for σ0�1.

In Ref. [41], the corrections are argued to be of size
σ2

0 , while in Refs. [47, 48], one is dealing with substan-
tially larger corrections of order σ0. Also, it was argued
in Ref. [41], using a low energy effective field theory, that
local physics imply that the effects cannot be larger than
σ2

0 . This was criticized in Ref. [49], where it was pointed
out that the trans-Planckian physics can effectively pro-
vide the low energy theory with an excited vacuum, of
course circumventing the arguments of Ref. [41]. Finally,
Martin and Brandenberger obtained the corrections of all
orders of σ0 [50], such as we obtain in (40).

5 Conclusions

As we saw, taking a non-trivial initial mode instead
of the Bunch-Davies mode results in an oscillatory spec-
trum. Furthermore, if the initial mode is of higher or-
der too, it will also lead to higher order trans-Planckian
corrections. This alternative initial mode is essentially
obtained by expanding the Hankel function for the quan-
tum mode in quasi-dS spacetime up to higher order of 1

kτ
,

which corresponds to quantization of finite wavelength
rather than the ultraviolet limit. This higher order initial
mode is reasonable, since it is an asymptotic expansion
of the general solution of the Mukhanov-Sasaki equation
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for a quasi-dS background at very early time. For this
excited initial mode, the slight deviation of the exact so-
lution leads to the corrections and scale dependency of
the power spectrum. The magnitude of the corrections
can be expressed by the dimensionless value σ0.

The corrections and their amplitude depend on the
type of geometry (i.e. different values of c), on the value
and order of σ0, and are also sensitive to the harmonic
terms (∼sin( 2

σ0

)) during inflation. Because some of the
correction terms have oscillatory forms, it is likely that
they are caused by the fluctuations of space-time known

as gravitational waves. Finally, in the early universe
with quasi-dS space-time, the probability of inflation
with non-minimal coupling with gravity is possible, and
we plan to investigate this issue and reconstruction of
the initial excited dS mode by the Planck constraint in
future works.
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