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Abstract: Generic axiomatic-nonextensive statistics introduces two asymptotic properties, to each of which a scaling

function is assigned. The first and second scaling properties are characterized by the exponents c and d, respectively.

In the thermodynamic limit, a grand-canonical ensemble can be formulated. The thermodynamic properties of a

relativistic ideal gas of hadron resonances are studied, analytically. It is found that this generic statistics satisfies

the requirements of the equilibrium thermodynamics. Essential aspects of the thermodynamic self-consistency are

clarified. Analytical expressions are proposed for the statistical fits of various transverse momentum distributions

measured in most-central collisions at different collision energies and colliding systems. Estimations for the freezeout

temperature (Tch) and the baryon chemical potential (µb) and the exponents c and d are determined. The earlier are

found compatible with the parameters deduced from Boltzmann-Gibbs (BG) statistics (extensive), while the latter

refer to generic nonextensivities. The resulting equivalence class (c,d) is associated with stretched exponentials,

where Lambert function reaches its asymptotic stability. In some measurements, the resulting nonextensive entropy

is linearly composed on extensive entropies. Apart from power-scaling, the particle ratios and yields are excellent

quantities to highlighting whether the particle production takes place (non)extensively. Various particle ratios and

yields measured by the STAR experiment in central collisions at 200, 62.4 and 7.7 GeV are fitted with this novel

approach. We found that both c and d < 1, i.e. referring to neither BG- nor Tsallis-type statistics, but to (c,d)-

entropy, where Lambert functions exponentially rise. The freezeout temperature and baryon chemical potential are

found comparable with the ones deduced from BG statistics (extensive). We conclude that the particle production

at STAR energies is likely a nonextensive process but not necessarily BG or Tsallis type.
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1 Introduction

In theories of extensive (such as Boltzmann-Gibbs)
and nonextensive (such as Tsallis) statistics, thermody-
namic consistency gives a phenomenological description
for various phenomena in high-energy experiments [1, 2].
The earlier was used by Hagedorn [3] in the 1960s to
prove that fireballs or heavy resonances lead to a boot-
strap approach, i.e. further fireballs, which - in turn -
consist of smaller fireballs and so on. The implementa-
tion of the nonextensive Tsallis statistics was introduced
in Refs. [5–7]. Assuming that the distribution func-
tion can vary, due to possible symmetrical change, Taw-
fik applied nonextensive concepts to high-energy parti-
cle production [4]. Recently, various papers were quite
successful in explaining various aspects of high-energy
particle production using thermodynamically consistent

nonextensive statistics of Tsallis type [8–14]. These are
based on the conjecture that replacing the Boltzmann
factor by the q-exponential function of Tsallis statistics,
with q > 1, leads to a good agreement with the experi-
mental measurements at high energies. Recently, Taw-
fik explained that this method seems to fail to assure a
full incorporation of nonextensivity because fluctuations,
correlations, interactions among the produced particles
besides the possible modification in the phase space of
such an interacting system are not properly taken into
account [15]. Again, the Tsallis distribution was widely
applied to describe the hadron production [8–14]. At
high transverse momentum spectra (pT ), some authors
did not obtain a power-law, while at low pT , they ob-
tained an approximate exponential distribution.

In light of such a wide discrepancy, and especially
to find a unified statistical description for high-energy
collisions, we introduce generic axiomatic-nonextensive
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statistics, in which the phase space determines the degree
of (non)extensivity. The latter is not necessarily limited
to extensive and/or intensive thermodynamic quantities,
such as temperature and baryon chemical potential.

Regarding the success of Tsallis statistics in describ-
ing transverse momentum spectra, especially at high pT ,
we first recall that Bialas claimed that such a good fit
would be incomplete [16]. First, it is believed to ig-
nore the contradiction between the applicability of such
a statistical thermal approach at high energy and per-
turbative QCD. The crucial question which should be
answered is how the statistical thermal approach, which
describes lattice thermodynamics (non-perturbative) [1]
well, can be assumed to do such an excellent job at
ultra-relativistic energies. Second, such a statistical fit
seems to disbelieve the role of statistical cluster decay,
which can be scaled as power laws very similar to that
from Tsallis statistics. This simply means that the de-
cay of statistical clusters is conjectured to be capable
of explaining the excellent reproduction of the measured
transverse momenta rather than the Tsallis-type nonex-
tensivity [15].

Also, Bialas [16] presented within the statisti-
cal cluster-decay model a numerical analysis for the
hadronization processes. It was found that the result-
ing transverse-momentum distribution can be a Tsallis-
like one. Only in a very special case, where the fluctua-
tions of the Lorentz factor and the temperature are given
by Beta and Gamma distributions, respectively, can the
well-known Tsallis distribution be obtained. The origin
of these fluctuations was introduced in Ref. [17]. Bialas
explained the produced hadronic cluster decays purely
thermally, i.e. following Boltzmann-Gibbs (BG) statis-
tics [16]. Furthermore, it is also supposed that the pro-
duced hadronic clusters move with a fluctuating Lorentz
factor in the transverse direction, i.e. a power law. Thus,
the production and the decay of such clusters would be
be regarded as examples of superstatistics. The latter
can be understood as a kind of a superposition of two
different types of statistics corresponding to nonequilib-
rium systems [18, 19]. In other words, it was concluded
[17] that even superstatistics should be based on more
general distributions than the Gamma type before be-
ing applied to multiparticle productions in high energy
collisions. For the sake of completeness, we recall that
the various power-law distributions have been already
implemented in pp-collisions [20–24].

The crucial questions that remains unanswered are
what the origin and degree of nonextensivity are, and
how the degree of nonextensivity can be determined in
a strongly correlated system, such as relativistic heavy-
ion collisions. In the present work, we analyse the ther-
modynamic self-consistency of the generic axiomatic-
nonextensive approach, which was introduced in [25, 26]

and formulated for further implications in high-energy
physics in Refs. [15, 27].

In thermal equilibrium, statistical mechanics is a
thermodynamically self-consistent theory. It fulfils the
requirements of equilibrium thermodynamics, because a
thermodynamic potential - in its thermodynamic limit
- can be expressed as a first-order homogeneous func-
tion of extensive variables [28]. The entropy is a funda-
mental check for thermodynamic self-consistency. For
a nonextensive quantum gas, the entropy should be
fully constructed from boson and fermion contributions:
Sq = SFD

q +SBE
q , where SFD

q and SBE
q are Fermi-Dirac and

Bose-Einstein nonextensive entropy, respectively [29]. In
microcanonical [30], canonical [31], and grand canoni-
cal [32] ensembles, the thermodynamic self-consistency
of Tsallis statistics has been proved. If its entropic vari-
able is extensive, it has been demonstrated that the ho-
mogeneity of the thermodynamic potential leads to the
zeroth law of thermodynamics, i.e. the additivity princi-
ple and Euler theorem. Also, the first and second laws of
thermodynamics should be fulfilled. An additional ingre-
dient of special importance in that particle production,
namely the fireball self-consistency principle, should be
guaranteed as well.

This paper is organized as follows. Generic
axiomatic-nonextensive statistics is reviewed in Section
2. Thermodynamic self-consistency is discussed in Sec-
tion 3. This is divided into nonextensive Boltzmann-
Gibbs statistics (Section 3.1) and generic axiomatic-
nonextensive quantum statistics (Section 3.2). Sections
4 and 4.2 are devoted to the fitting of the transverse mo-
mentum distributions and particle ratios with different
beam energies and different system sizes, respectively.
Section 5 gives the final conclusions.

2 Generic axiomatic-nonextensive statis-

tics

Based on Hanel-Thurner entropy [25–27], which is
fully expressed in Ref. [15],

Sc,d[p]=

Ω
∑

i=1

AΓ (d+1,1−c logpi)−Bpi, (1)

where pi is the probability of the i-th state and Γ (a,b) =
∫

∞

b

dt ta−1 exp(−t) is an incomplete gamma-function

with A and B being arbitrary parameters, the generic
axiomatic-nonextensive partition function for statistical
processes in high-energy physics was suggested [27]. For
a classical gas,

ln Zcl(T,µ)=V

NM|B
∑

i

gi

∫

∞

0

d3
p

(2π)3
εc,d,r(xi), (2)
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where V is the fireball volume and xi = β[µi −Ei(p)]
with Ei(p) = (p2+m2

i )
1/2 is the dispersion relation of the

i-th state (particle). Straightforwardly, the quantum gas
partition function reads

ln ZFB(T )=±V

NM|B
∑

i

gi

∫

∞

0

d3
p

(2π)3
ln [1±εc,d,r(xi)] , (3)

where ± represent fermions (subscript F) and bosons
(subscript B), respectively. The distribution function
εc,d,r(xi) is given as [25, 26]

εc,d,r(x) = exp

[

−d

1−c

(

Wk

[

B
(

1− x

r

) 1
d

]

−Wk[B]

)]

,

(4)
where Wk is the Lambert W-function which has real so-
lutions at k = 0 with d > 0 and at k = 1 with d < 0,

B =
(1−c)r

1−(1−c)r
exp

[

(1−c)r

1−(1−c)r

]

, (5)

with r = [1−c+cd]−1 and c,d being two constants to be
elaborated shortly. Equation (4) is valid for both classi-
cal and quantum gases.

The equivalent classes (c,d) stand for two expo-
nents giving estimations for two scaling functions with
two asymptotic properties [25, 26]. Statistical systems
in their large size limit violating the fourth Shannon-
Khinchin axiom are characterized by a unique pair of
scaling exponents (c,d). Such systems have two asymp-
totic properties of their associated generalized entropies.
Both properties are associated with one scaling function
each. Each scaling function is characterized by one expo-
nent; c for the first and d for the second property. These
exponents define equivalence relations of entropic forms,
i.e. two entropic forms are equivalent if their exponents
are the same.

The various thermodynamic observables such as pres-
sure (p), number (n = N/V ), energy (ε = E/V ) and en-
tropy density (s = S/V ) [33] can be derived from Eq. (2)
or Eq. (3).

p = T
∂ lnZ

∂V
, n =

∂p

∂µ
,

ε =
T 2

V

∂ lnZ

∂T
+

µT

V

∂ lnZ

∂µ
, s =

∂p

∂T
. (6)

3 Thermodynamic self-consistency

Here, we examine the thermodynamic self-
consistency of generic axiomatic-nonextensive statistics
in Boltzmann-Gibbs and quantum gases. The procedure
goes as follows. We start with the first and second laws
of thermodynamics which control the system of interest.

Then, we determine the thermodynamic properties of
that system and confirm that both laws of thermody-
namics are verified.

The first law of thermodynamics describes the change
in energy (dE) in terms of a change in volume (dV ) and
entropy (dS):

dE(V,S) =−P dV +T dS, (7)

where T and P are temperature and pressure coeffi-
cients, respectively. In the variation of the free energy,
F (V,T ) = E − T S, the dependence on the entropy as
given in Eq. (7) is to be replaced by a temperature-
dependence

dF (V,T ) = dE−T dS−S dT ≡−P dV −S dT. (8)

If the system of interest contains a conserved number
(N), it is necessary to introduce a chemical potential (µ).
Equations (7) and (8) should be extended as

dE(V,S,N)=−P dV +T dS +µdN, (9)

dF (V,T,µ)=−P dV −S dT −N dµ. (10)

The pressure is derived as

p =− ∂F

∂V

∣

∣

∣

∣

T,µ

. (11)

From Eqs. (2), (3) and (11), thermodynamics relations
can be deduced [33]. Their justification proves the ther-
modynamic self-consistency,

n=
∂p

∂µ

∣

∣

∣

∣

T

, T =
∂ε

∂s

∣

∣

∣

∣

n

, s=
∂p

∂T

∣

∣

∣

∣

µ

, µ =
∂ε

∂n

∣

∣

∣

∣

s

. (12)

To verify the second law of thermodynamics one has to
prove that ∂s > 0.

In the section that follows, all these thermody-
namic quantities shall be derived from the generic
axiomatic-nonextensive statistics for Boltzmann-Gibbs,
Bose-Einstein and Fermi-Dirac statistical ensembles [32].

3.1 Nonextensive Boltzmann-Gibbs statistics

As discussed in Ref. [34], the universality class (c,d)
is conjectured not only to characterize the entropy of
the system of interest entirely, but also to specify the
distribution functions of that system in the thermody-
namic limit. Thus, it is likely able to determine the
(non)extensivity of the system. For instance, if (c,d) =
(1,1), the system can be well described by BG statis-
tics, while if (c,d) = (q,0), the system has a Tsallis-
type nonextensivity. Furthermore, if (c,d) = (1,d),
stretched exponentials characterize that system. To our
knowledge, further details about the physical meaning
of (c,d) are being worked out by many colleagues and
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should be published in the near future. The last case,
for instance, requires that d > 0 and c → 1 so that
limc→1 εc,d,r(x) = exp(−dr[1− x/r]1/d − 1). In light of
this, for a single particle, the Boltzmann distribution in
a nonextensive system, Eq. (2), can be expressed as

f(x) =
1

εc,d,r(x)
, (13)

from which various thermodynamic quantities can de-
duced

p =
gT

2π
2

∫

∞

0

p
2 ln [εc,d,r(x)]dp, (14)

n =
g

2π
2

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(1−c) [r−x]

(

1+W0

[

B
(

1− x

r

) 1
d

])dp,

(15)

ε =
−g

2π
2

∫

∞

0

p
2(x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [r−x]

(

1+W0

[

B
(

1− x

r

) 1
d

])dp

+
g µ

2π
2

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(1−c) [r−x]

(

1+W0

[

B
(

1− x

r

) 1
d

])dp,

(16)

s =
g

2π
2

∫

∞

0

p
2 ln [εc,d,r(x)]dp

− g

2π
2T

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [r−x]

(

1+W0

[

B
(

1− x
r

) 1
d

])dp.

(17)

In an ideal gas approach, such as the hadron resonance
gas (HRG) model, the thermodynamic quantities get
contributions from each hadron resonance. Thus, a sum-
mation over the different hadron resonances of which the
statistical ensemble consists should be added in front of
the right-hand side.

To check and satisfy the thermodynamic self-
consistency, let us rewrite Eq. (17) as

s=
p

T
+

ε

T
− µn

T
, (18)

and take its derivative with respect to ε. We then get

∂s

∂ε

∣

∣

∣

∣

n

=
1

T
. (19)

Furthermore, we derive from Eq. (2) [33],

p=−ε+T s+µn. (20)

At constant T , the derivative of pressure with respect to
µ reads

∂p

∂µ

∣

∣

∣

∣

T

=− ∂ε

∂µ
+T

∂s

∂µ
+n+µ

∂n

∂µ
. (21)

The differentiations of Eqs. (15), (16), and (17) with
respect to µ lead to

∂n

∂µ
=

g

2π
2T

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

− g

2π
2T

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g

2π
2T

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (22)

∂ε

∂µ
=

g µ

2π
2T

∫

∞

0

p
2

(

W0

[

B
(

1− x

r

) 1
d

])2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp
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− g µ

2π
2T

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g µ

2π
2T

∫

∞

0

p
2 W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])dp

− g

2π
2T

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

+
g

2π
2T

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (23)

∂s

∂µ
=

−g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

+
g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp. (24)

Then, the substitution from Eqs. (15), (22), (23) and
(24) into Eq. (21) gives

∂p

∂µ

∣

∣

∣

∣

T

=n. (25)

Also, from Eq. (18) we can express the energy density
as

ε = T s−p+µn, (26)

Its differentiation with respect to n is

∂ε

∂n

∣

∣

∣

∣

s

=−∂p

∂n
+µ+n

∂µ

∂n
=− ∂p

∂µ

∂µ

∂n
+µ+n

∂µ

∂n
. (27)

By substituting from Eq. (25) into this previous equa-
tion, we get

∂ε

∂n

∣

∣

∣

∣

s

= µ, (28)

which is a proof of thermodynamic self-consistency.
To prove the fourth equation in Eq. (12), let us differ-

entiate Eq. (20) with respect to temperature at constant
µ

∂p

∂T

∣

∣

∣

∣

µ

= s+T
∂s

∂T
− ∂ε

∂T
+µ

∂n

∂T
, (29)
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The differentiations of Eqs. (15), (16) and (17) with respect to T read

∂n

∂T
=

−g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

+
g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (30)

∂ε

∂T
=

g

2π
2T 2

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

− g

2π
2T 2

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g

2π
2T 2

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp

− g µ

2π
2T 2

∫

∞

0

p
2 (x T )

(

W0

[

B
(

1− x

r

) 1
d

])2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

+
g µ

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g µ

2π
2T 2

∫

∞

0

p
2 (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (31)

∂s

∂T
=

g

2π
2T 3

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

− g

2π
2T 3

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp
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+
g

2π
2T 3

∫

∞

0

p
2 (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(1−c)r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp. (32)

Then, the substitution from Eqs. (17), (30), (31) and
(32) into Eq. (29) leads to

∂p

∂T

∣

∣

∣

∣

µ

= s. (33)

It is apparent that the given definitions of temperature,
number density, chemical potential and entropy density
are thermodynamically consistent.

The first law of thermodynamics describes the conse-
quences of heat transfer, Eq. (18), while the second law
sets constraints on it, i.e. δs > 0,

∂s' 1

T
[∂ε−µ∂n] , (34)

where ∂µ/∂T is conjectured to vanish. Therefore, the
second law of thermodynamics is fulfilled, if

∂ε > µ∂n. (35)

This inequality is fulfilled, when comparing Eq. (30)
with Eq. (31). Two cases can be classified. Firstly,
∂ε > µ∂n is obvious, at arbitrary µ. Secondly, ∂ε = µ∂n
is also obtained, at c = 1 or µ = ε or µ = ε+Tr.

3.2 Generic axiomatic-nonextensive quantum

statistics

For quantum statistics, the distribution function
reads

f(x) =
1

1±εc,d,r(x)
, (36)

Accordingly, the various thermodynamic quantities can
be deduced

p=
gT

2π
2

∫

∞

0

p
2 ln [1±εc,d,r(x)]dp, (37)

n=
±g

2π
2

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)] (r−x)

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (38)

ε=
∓g

2π
2

∫

∞

0

p
2εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)] (r−x)

(

1+W0

[

B
(

1− x

r

) 1
d

])dp

± gµ

2π
2

∫

∞

0

p
2εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)] (r−x)

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (39)

s=
g

2π
2

∫

∞

0

p
2 ln [1±εc,d,r(x)]dp± g

2π
2T

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)] (r−x)

(

1+W0

[

B
(

1− x

r

) 1
d

])dp. (40)

The differentiations of Eqs. (38), (39) and (40) with respect to µ give

∂n

∂µ
=

±g

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp
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∓ g

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T

∫

∞

0

p
2 ζc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]
2
r2 (1−x/r)

2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (41)

where

ζc,d,r(x) = exp

[

−2d

1−c

(

Wk

[

B
(

1− x

r

) 1
d

]

−Wk[B]

)]

. (42)

∂ε

∂µ
=

±g µ

2π
2T

∫

∞

0

p
2 εc,d,r(x)

(

W0

[

B
(

1− x

r

) 1
d

])2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

∓ g µ

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g µ

2π
2T

∫

∞

0

p
2 ζc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g µ

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)2
(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g µ

2π
2T

∫

∞

0

p
2 εc,d,r(x) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp

∓ g

2π
2T

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

053107-8



Chinese Physics C Vol. 41, No. 5 (2017) 053107

± g

2π
2T

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g

2π
2T

∫

∞

0

p
2 ζc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (43)

∂s

∂µ
=

∓g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

± g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g

2π
2T 2

∫

∞

0

p
2 ζc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]
2
r2 (1−x/r)

2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (44)

From the substitution from Eqs. (41), (43), (44) and
(55) into Eq. (21), we get

∂p

∂µ

∣

∣

∣

∣

T

=n. (45)

Also, from Eqs. (39) and (40), we get a direct relation
between entropy and energy density,

s=
p

T
+

ε

T
− µn

T
. (46)

Thus, at constant n and p the differentiation of entropy
density with respect to energy density leads to

∂s

∂ε
=

1

T
, (47)

which proves the thermodynamic consistency, Eq. (12).
Also, from Eq. (46) we can write another form of

energy density
ε = T s−p+µn. (48)

By differentiating the energy density with respect to n,
we get

∂ε

∂n

∣

∣

∣

∣

s

=−∂p

∂n
+µ+n

∂µ

∂n
=− ∂p

∂µ

∂µ

∂n
+µ+n

∂µ

∂n
. (49)
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Then, by substituting from Eq. (45) into the previous
equation,

∂ε

∂n

∣

∣

∣

∣

s

= µ, (50)

which is a proof of the thermodynamic self-consistency.
To prove the fourth equation in Eq. (12), the differ-

entiations of Eqs. (38), (39) and (40) with respect to T
read

∂n

∂T
=

−g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

± g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g

2π
2T 2

∫

∞

0

p
2 ζc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]
2
r2 (1−x/r)

2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (51)

∂ε

∂T
=

±g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

∓ g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T

∫

∞

0

p
2 ζc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp
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∓ g µ

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T )

(

W0

[

B
(

1− x

r

) 1
d

])2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

± g µ

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

+
g µ

2π
2T 2

∫

∞

0

p
2 ζc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g µ

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

∓ g µ

2π
2T 2

∫

∞

0

p
2 εc,d,r(x) (x T ) W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp, (52)

∂s

∂T
=

±g

2π
2T 3

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])3 dp

∓ g

2π
2T 3

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(d−d c) [1±εc,d,r(x)]r2 (1−x/r)2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

− g

2π
2T 3

∫

∞

0

p
2 ζc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]
2
r2 (1−x/r)

2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T 3

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]2

(1−c)2 [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])2 dp

± g

2π
2T 3

∫

∞

0

p
2 εc,d,r(x) (x T )2 W0

[

B
(

1− x

r

) 1
d

]

(1−c) [1±εc,d,r(x)]r2 (1−x/r)
2

(

1+W0

[

B
(

1− x

r

) 1
d

])dp. (53)

Then, the substitution from Eqs. (40), (51), (52) and
(53) into Eq. (29) gives

∂p

∂T

∣

∣

∣

∣

µ

= s. (54)

So far, we have proved that the definitions of temper-
ature, number density, chemical potential and entropy
density within our formalism for nonextensive quantum
statistics lead to expressions which satisfy the first law
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of thermodynamics.

4 Confronting our calculations with var-

ious experimental results

The statistical-thermal models have been successful
in reproducing particle ratios and yields at different ener-
gies [1, 8–10, 35–37]. In these models, the hadronic phase
can be modelled at chemical and thermal equilibrium.
Accordingly, fitting parameters can then be identified.
They construct a set of various thermal parameters. The
most significant ones are the chemical freeze-out temper-
ature and baryon chemical potential [1].

The deconfined phase is dominated by quarks and
gluons degrees-of-freedom. Most of their information
cannot be recognized due to the nature of such partonic
QCD matter. While the integrated particle-yields are
successfully constructed in the final state, the transverse
momentum distribution should be described by a com-
bination of transverse flow and statistical distributions
(particle ratios and yields). In other words, the latter
contains contributions from earlier stages of the colli-
sion, while the particle ratios and yields are conjectured
to be fixed during the chemical and thermal equilibrium
stages. Thus, we plan to confront this new generic ap-
proach with both types of experimental results, namely,
transverse momentum spectra, and particle ratios and
yields. This shall be introduced in the sections that fol-
low. We intend to prove whether the proposed approach
is indeed able to reflect the statistical nature of the sys-
tem of interest.

4.1 Transverse momentum distributions

The particle distributions at large transverse mo-
menta are indeed very interesting phenomena in high-
energy particle production, but as discussed by Bialas
[16], the applicability of the statistical-thermal models
in this regime of the transverse momenta is debatable.
These models, either extensive or nonextensive, are ex-
cellent approaches at low pT . The scope of this paper is
the examination of the thermodynamic self-consistency
and then implementing the proposed approach in char-
acterizing both transverse momentum distributions and
particle ratios and yields.

As discussed in the introduction, the hadronic clus-
ters are assumed to undergo thermal decays, but simulta-
neously move in the transverse direction with a fluctua-
tion Lotentz factor [16]. Recently, this statistical cluster-
decay model was implemented in high-energy physics [17]
and it was concluded that the well-known Tsallis distri-
bution can be obtained in a very special case, namely,
the fluctuations of the Lorentz factor and the relativis-
tic temperature are given by Beta and Gamma distribu-
tions, respectively. The role of the statistical cluster-
decay and its possible connections with the approach
proposed in the present work shall be subjects of future
works.

We first implement the generic nonextensive statis-
tical approach [27] in order to reproduce various trans-
verse momentum distributions measured in different ex-
periments [23, 38–42]. For quantum statistics, the total
number of particles can be determined from Eq. (55)

N =± V

8π
3

∑

i

gi

∫

∞

0

p
2 εc,d,r(xi) W0

[

B
(

1− xi

r

) 1
d

]

(1−c) [1±εc,d,r(xi)] (r−xi)

(

1+W0

[

B
(

1− xi

r

) 1
d

])d3
p, (55)

where xi = (µ−Ei)/T , i ∈ [π+,K+,p], and r = [1− c+ cd]−1. Their degeneracy factors read g
π
+ = gK+ = gp = 1. For

antiparticles, µ is replaced by −µ.
The corresponding momentum distribution for particles (or antiparticles) is given as

1

2π

Ed3N

d3p
=± V

8π
3

∑

i

giEiT

εc,d,r (xi) W0

[
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(

1− xi

r

) 1
d

]

(1−c) [1±εc,d,r (xi)] (rT −µ+Ei)

(

1+W0

[

B
(

1− xi

r

) 1
d

]) , (56)

where εc,d,r (xi) is defined in Eq. (4). In terms of rapidity (y) and transverse mass (mT i =
√

p2
T +m2

i ), the transverse
momentum distribution can be given as

1

2π

d2N

dymT dmT

=± V

8π
3

∑

i

giTmT i coshy (57)

×
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) 1
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) 1
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]) .
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At mid-rapidity, i.e. y = 0, and µ = 0,

1
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8π
3
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(
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) 1
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]) . (58)

The transverse momentum distribution reads
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At mid-rapidity, i.e. y = 0, but µ 6= 0
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We can now fit various transverse momentum distri-
butions measured in different experiments, i.e. different
types of collisions and different collision energies, rapid-
ity, centrality, etc. by using Eq. (59) and Eq. (60) at
mid-rapidity. Expression (60) takes into consideration
vanishing and finite baryon chemical potentials [1, 43].

Figure 1 depicts the transverse momentum distribu-
tions for the charged particles K+,π+ and p and their
antiparticles measured in different types of collisions at
various collision energies; p+p collisions at 0.54 [38], 0.9,
2.36 and 7 TeV [23], p+Pb collisions at 5.02 TeV [41],
Pb+Pb collisions at 2.76 TeV [42], d+Au collisions and
Au+Au collisions at 0.2 TeV [39, 40]. This set of mea-
sured particles combines the momentum spectra of six
charged particles. Here, we zoom out the smallest pT re-
gion. The entire pT spectra are illustrated in Fig. 2. All
these distributions are fitted to the generic nonextensive
statistical approach, Eq. (59). The resulting fit param-
eters are given in Table 1. For a better comparison, the
p+p, p+A and A+A results are separately depicted in
Fig. 1(a), (b), and (c), respectively.

The entire pT-range is presented in Fig. 2. It is worth
highlighting that the statistical fit was performed over
the complete range of pT. Figure 1 is there to zoom out

a smaller pT-window. In the panel (a), we can compare
between the pp transverse momentum distributions at
different collision energies. There are obvious trends with
increasing collision energy d2N/dydpT. Furthermore, at
a given collision energy, d2N/dydpT exponentially de-
creases rapidly with increasing pT.

All measurements are performed at mid-rapidity and
we assume a vanishing chemical potential. The qual-
ity of the statistical fit looks excellent, see Table 1. In
p+p collisions at 0.546 TeV, we find that c ' 1, while
d ' 1.35. Similar values are also obtained in p+A and
A+A collisions, panels (b) and (c). These two values of
the equivalence class (c,d) = (1,d) are associated with
asymptotically stable systems. At the resulting d, which
is positive, asymptotically stable systems - in turn - are
associated with stretched exponential distributions [45],

lim
c→1

εd,r(x)=exp
{

−dr
[

(1−x/r)
1/d−1

]}

. (61)

The entropy becomes a stretched exponential [44] leads
to the special case

εd,r(x) =r1−d d−d exp(dr)Γ (1+d,dr− lnx)−rx. (62)
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Fig. 1. (color online) Transverse momentum distributions for the charged particles K+,π+ and p and their antipar-
ticles measured in the experiments UA1 [38], PHENIX [39], STAR [40], ATLAS [23] and ALICE [41, 42] (symbols)
are compared with calculations from the generic nonextensive statistical approach (curves). The resulting fit pa-
rameters are listed in Table 1. The pp, pA and AA results are separately depicted in panels (a), (b) and (c),
respectively.
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Fig. 2. (color online) The same as in Fig. 1 includ-
ing the largest pT-region.

It has been proved that the numerical analysis becomes
impossible without the general case of the Gamma-

function, Γ (a,b) =

∫

∞

b

dt ta−1 exp(−t).

Furthermore, we observe that the ATLAS measure-
ments are associated with positive c (close to unity),
while d can be approximated as d ' 1. Such an equiv-

alence class defines a nonextensive entropy which is lin-
early dependent on or - in other words - composed of
extensive entropies, such as Renyi [46]. Its optimized
entropy is given by probability distribution (pi), which
includes the Lambert function,

Sβ =
∑

i

pβ
i ln

(

1

pi

)

, (63)

where β ≡ c and pβ
i is the probability that the entire

phase-space is occupied. Although this type of entropy
looks analogous to the Tsallis one, −

∑

i
(1−pq

i )/(1−q), it
is apparently different, at least, as the latter reaches sin-
gularity, at q = 1, the so-called Shannon limit. Further
differences have been elaborated in Ref. [46].

It is worth highlighting that the resulting freezeout
temperatures (Tch) rise with increasing collision energy
(
√

sNN). Possible explanations of this observation are
postponed for a future work. We focus on the discussion
of their phenomenologies. The Tsallis nonextensive ap-
proach was also used in conducting the same study [47].
Accordingly, there is a remarkable difference between Tch

obtained from our approach and the one deduced from
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the Tsallis-type approach [47]. The latter are relatively
smaller than the earlier results (compare Table 1 of the
present work with Table 1 of Ref. [47]).

Figure 1(b) shows the transverse momentum distri-
butions of the three charged particles K+,π+ and p
and their antiparticles measured in d+Au collisions at
0.2 TeV and in p+Pb collisions at 5.02 TeV. The equiv-
alence class can be constricted from c ' 1, and d.
The latter is found to be almost energy-independent;
1.291± 0.006 at 0.2 TeV to 1.331± 0.004 at 5.02 TeV.
The freezeout parameters are very interesting. The
resulting freezeout temperature slightly increases from
170± 13.038 MeV at 0.2 TeV to 175± 13.228 MeV at
5.02 TeV, while the corresponding baryon chemical po-

tential drops from 29 MeV at 0.2 TeV to 0 MeV at
5.02 TeV.

Figure 1(c) presents a comparison between A+A col-
lisions at different collision energies; Au+Au collisions
at 0.2 TeV and Pb+Pb collisions at 2.76 TeV for the
momentum spectra of the three charged particles K+,π+

and p and their antiparticles. Despite the system size
difference, we also find that c ' 1, while d slightly in-
creases from 1.221±0.055 at 0.2 TeV to 1.357±0.023 at
2.76 TeV. The freezeout temperature shows an energy-
independent behavior; 155±12.450 MeV at 0.2 TeV to
165±12.845 MeV at 2.76 TeV. The baryon chemical po-
tential behaves similarly to in p+A collisions, shown in
Fig. 1(b).

Table 1. Various parameters deduced for the statistical fit of the transverse momentum calculations based on the
generic nonextensive statistical approach (present work) to various measurements, shown in Fig. 1.

experiment
√

sNN/TeV centrality Tch/MeV µb/MeV d c χ2

UA1 (p+p) 0.546 0% 110±10.488 0.0 1.35±0.135 0.999±0.100 0.384

ATLAS (p+p) 0.9 0% 140±11.832 0.0 1.03±0.103 0.945±0.095 0.766

ATLAS (p+p) 2.36 0% 160±12.649 0.0 1.06±0.106 0.945±0.095 1.651

ATLAS (p+p) 7.0 0% 150±12.247 0.0 1.05±0.105 0.930±0.093 1.115

PHENIX/STAR (d+Au) 0.2 0%−20% 170±13.038 29 1.291±0.006 0.999±0.001 1.884

ALICE (p+Pb) 5.02 0%−5% 175±13.228 0.0 1.333±0.004 0.999±0.001 0.902

PHENIX/STAR (Au+Au) 0.2 0%−10% 155±12.450 25 1.221±0.055 0.999±0.001 1.584

ALICE (Pb+Pb) 2.76 0%−5% 165±12.845 0.0 1.357±0.023 0.999±0.001 0.164

From the fit parameters listed in Table 1, we can
summarize that except for the ATLAS measurements,
c ' 1, while d > 1. These values are obtained for
different system sizes and at various collision energies.
They refer to nonextensivity but not of Tsallis type. We
note again that the BG extensivity is guaranteed only
at c = d = 1. It has been pointed out [16] that the
Tsallis algebra, which is mainly implemented through
replacing the exponential and logarithmic functions by
their counterpart expressions in the Tsallis nonexten-
sive approach, can be scaled as power laws. Such a
scaling can also be obtained in the so-called statisti-
cal cluster-decay. Thus, the good fitting of the trans-
verse momentum distributions by the Tsallis nonexten-
sivity would be misleading [16], as the role of the sta-
tistical cluster-decay is apparently ignored. In a forth-
coming work, we shall estimate the contribution of the
statistical cluster-decay to the possible power-laws in the
nonextensive fit, with a special emphasis on Tsallis-type
nonextensivity.

In the section that follows, we confront our approach
with different particle ratios and yields, which likely
cannot be scaled as power laws, as such. The result-
ing (non)extensivity parameters are conjectured to shed
light on the statistical nature of the particle produc-
tion and whether it is an extensive or a nonextensive

process, and if the latter, whether this follows Tsallis
approach.

4.2 Particle ratios and yields

The particle ratios π
−/π

+, K−/K+, p̄/p, Λ̄/Λ, Ω̄/Ω,
Ξ̄/Ξ, K−/π

−, K+/π
+, p̄/π

−, p/π
+, Λ/π

−, Ω/π
−, and

Ξ̄/π
+ measured in Au+Au collisions in the STAR ex-

periment at energies 200 GeV, 62.4 GeV, and 7.7 GeV
are statistically fitted by means of the HRG model, in
which the generic nonextensive statistical approach is im-
plemented. The number density can be derived from the
partition function and accordingly the particle ratios can
be determined.

We take into account all possible decays into the par-
ticle of interest and their branching ratios. µ, T , c, and
d are taken as free parameters. The strangeness chem-
ical potential is calculated at each value assigned to µ,
T , c, and d so that an overall strangeness conservation
is guaranteed. The results depicted in Fig. 3 represent
the best agreement between measurements and calcu-
lations, i.e. at the smallest χ2 value. The results at
200 GeV [panel (a)], 62.4 GeV [panel (b)] and 7.7 GeV
[panel (c)] are depicted in Fig. 3. We observe that the
quality of the fits weakens with the collision energies;
χ2/dof = 1.105, χ2/dof = 2.771 and χ2/dof = 8.146 at
200 GeV, 62.4 GeV and 7.7 GeV, respectively.

053107-15



Chinese Physics C Vol. 41, No. 5 (2017) 053107

Fig. 3. Panel (a): different particle ratios deduced from the generic axiomatic-nonextensive statistical approach
(dashed lines) are compared with the experimental results at 200 GeV (symbols). Panels (b) and (c) show the
same but at 62.4 and 7.7 GeV, respectively. The exponents c, d and χ2 are given in the top right corner.

As mentioned, our fits for the transverse momentum
distributions and the debatable interpretation of whether
the resulting parameters are due to power laws stem-
ming from Tsallis-algebra should be a subject of a fu-
ture work. Here, we have analysed another thermody-
namic quantity, the particle ratios, which are conjectured
to highlight the (non)extensivity, as they are not to be
scaled as power laws. In light of this assumption, we
can discuss the resulting parameters and their physical
meanings.

The resulting freezeout temperature (Tch) and baryon
chemical potential (µb) can be summarized as follows.

• at 200 GeV, Tch = 148.05 ± 12.168 MeV and
µb = 23.94±4.89 MeV,

• at 62.4 GeV, Tch = 179.13 ± 13.384 MeV and
µb = 57.33±7.57 MeV, and

• at 7.7 GeV, Tch = 145.32 ± 12.055 MeV and
µb = 384.3±19.6 MeV,

which are obviously very compatible with those de-
duced from BG statistics [43]. The equivalence class
reads

• At 200 GeV, c = 0.971±0.097 and d = 0.949±0.09,
• at 62.4 GeV, c = 0.975±0.098 and d = 0.923±0.091

and
• at 7.7 GeV, c = 0.995±0.1 and d = 0.972±0.097.
These can be approximated as both c and d lie below

unity, referring neither to BG extensivity nor to Tsallis
nonextensivity. This conclusion still needs further anal-
ysis at other collision energies. We shall devote a future
work to examine such a relation.

In Fig. 4, we present fits for various particle yields,
π

−, π
+, K−, K+, p̄, p, Λ̄, Λ, Ω̄, Ω, Ξ̄, and Ξ, measured in

Au+Au collisions in the STAR experiment (symbols) at
200 GeV, 62.4 GeV, and 7.7 GeV, respectively, fitted to
calculations from the HRG model with generic nonexten-
sive statistical approach (dashed lines). The equivalence
class is given in the top-right corners of each graph. To-
gether with the resulting freezeout parameters, they are
listed in Table 2.

In summary, we have found that
• for pT spectra except ATLAS, c' 1 and d > 1. The

nonextensive entropy is associated with stretched expo-
nentials, where the Lambert function reaches its asymp-
totic stability.

• for ATLAS pT spectra, c < 1, while d ' 1. The
nonextensive entropy is linearly composed of extensive
entropies. The reasons why the ATLAS measurements
look different from the others shall be discussed in a fu-
ture work.

• for particle ratios and yields, c < 1 and d < 1. This
is known as (c,d)-entropy, where d > 0 and Lambert
functions W0 rise exponentially.
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Fig. 4. (color online) The same as in Fig. 3 but for the particle yields.

Table 2. The freezeout parameters and equivalence class deduced for the statistical fit of the generic nonextensive
statistical approach (present work) compared with the experimental results on particle yields, Fig. 4.

√
sNN/GeV centrality Tch/MeV µb/MeV d c R/fm χ2

200 0% 160.54±12.67 25.20±5.02 0.965±0.097 0.975±0.098 2.044±1.126 5.395

62.4 0% 170.00±13.04 57.83±7.60 0.962±0.096 0.965±0.097 1.796±1.056 2.816

7.7 0% 147.31±12.14 388.08±19.7 0.972±0.097 0.995±0.101 1.848±1.071 2.701

5 Conclusions and outlook

We have presented a systematic study of the ther-
modynamic self-consistency of the generic axiomatic-
nonextensive statistical approach, which is characterized
by two asymptotic properties. To each of these, a scaling
function was assigned. These scaling functions are esti-
mated by exponents c and d for the first and second prop-
erty, respectively, in the thermodynamic limit of grand-
canonical ensembles of classical (Boltzmann) and quan-
tum gas (Fermi-Dirac and Bose-Einstein) statistics of a
gas composed of various hadron resonances. We started
with the first and second laws of thermodynamics, which
characterize the statistical system of interest. The ther-
modynamic properties of that system were determined
and it was confirmed that both laws of thermodynamic
are fully verified. We have proved that the definitions of
temperature, number density, chemical potential and en-
tropy density within the generic axiomatic-nonextensive
classical and quantum statistical approach lead to ex-

pressions which satisfy the laws of thermodynamics.
The second part of this paper introduced implemen-

tations of the generic axiomatic-nonextensive statistical
approach to high-energy physics. We started with the
transverse momentum distributions measured in central
collisions, in different system sizes and at various collision
energies. We found that c' 1 and d > 1, which describe
nonextensive entropy associated with stretched exponen-
tials, in which the Lambert function behaves asymptot-
ically. For the ATLAS pT spectra, c < 1, while d ' 1.
This is nonextensive entropy, which linearly involves ex-
tensive entropies, such as Renyi. All these values differ
from the equivalence class characterizing BG and Tsallis
statistics. The role of statistical cluster decays was also
highlighted. Their contributions to the possible power-
laws should be first evaluated, so that those stemming
from Tsallis-type nonextensivity can be determined.

We also calculated different particle ratios and yields,
which likely are not to be scaled as power laws. From
the resulting exponents c and d, we can judge whether
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the particle production is a (non)extensive process. We
found that c < 1 and d < 1 referring to (c,d)-entropy,
where the Lambert functions rise exponentially. This
finding points to neither BG extensivity nor Tsallis
nonextensivity.

From the statistical fit of both sets of experimental
results [transverse momentum distribution (pT) and par-
ticle ratios and yields], the resulting freezeout parame-
ters, Tch and µb, are fairly compatible with those deduced
from BG statistics. We believe that the statistical prop-
erties, whether extensive or nonextensive, should not be
related to intensive or extensive thermodynamic quanti-
ties, such as temperature and baryon chemical potential.
These are strongly associated with the proposed equiva-
lence class (c,d). The latter characterizes BG, or Tsallis
or even generic statistics, where (1,1), or (c,0) or (c,d),
respectively. The thermodynamic quantities are conjec-
tured to partly manifest the physical properties of the
system of interest, while the nature of (non)extensivity
characterizes the statistical properties.

Finally, we conclude that the proposed generic nonex-
tensive statistical approach is thermodynamically self-
consistent and able to reveal the statistical nature of
various processes taking place in high-energy collisions,
such as transverse momentum spectra and particle ratios
and yields.

Many authors endorse the assumption that Tsallis-
type nonextensivity originates in fluctuations, correla-
tions and inter-particle interactions. We briefly discussed
all these in the introduction. Wilk et al. [48] proposed
that the nonextensive parameter (q) is related to fluc-
tuations in the inverse temperature. It is believed that
the temperature reflects the impact of the nonextensiv-
ity. Since this interesting topic lies out of the scope of
this paper, we plan in a future work to examine the pos-
sibilities that the equivalence class (c,d), instead of the
temperature, might affect some or all of the physical pro-
cesses, fluctuations, correlations and inter-particle inter-
actions.
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