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Abstract: We study the sound perturbation of a rotating acoustic black hole in the presence of a disclination.

The radial part of the massless Klein-Gordon equation is written into a Heun form, and its analytical solution is

obtained. These solutions have an explicit dependence on the parameter of the disclination. We obtain the exact

Hawking-Unruh radiation spectrum.
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1 Introduction

Investigations concerning the behavior of scalar fields
around black holes may reveal some aspects of their in-
ternal structure as well as give us some relevant infor-
mations about the physics of these objects [1–4], among
which we can highlight the spontaneous emission of black
body radiation by black holes: the Hawking radiation [5].
The existence of an event horizon in the hydrodynamic
analogue suggests that this interesting phenomenon can
be produced, in principle, to experimentally verify the
analogue Hawking radiation emitted by acoustic black
holes [6–9].

There are many features in common between as-
trophysical black holes and the corresponding analogue
gravity models, although they have different dynamics.
For example, the dynamics of astrophysical black holes
are governed by Einstein’s equations, while the dynamics
of acoustic black holes are given by the equations of fluid
mechanics. In fact, these different types of black holes
possess some fundamental properties in common, which
has motivated a lot of investigation into the physics of
acoustic black holes [10–24].

A cosmic string can appear as part of a larger grav-
itational system, for instance, passing through a black
hole. In general, solutions of Einstein’s equations can be

constructed by including a cosmic string [25]. Accord-

ing to Gal’tsov and Masár [26], the conical structure of
spacetime gives rise to global effects which can be used,
in principle, to detect cosmic strings. In this way, some

of these effects can be revealed within the background

of the Kerr metric with the additional contribution of a
string lying along the polar axis.

The interest in the study of these structures, and
more specifically the role played by their topological

properties in quantum systems, is justified by the rich-

ness of the new ideas that they bring to the general rel-

ativity. Futhermore, there exist some interesting gravi-
tational effects associated with the non-trivial topology
of the spacelike section arround the cosmic string. For

example, a cosmic string can act as a gravitational lens,
it can induce a finite electrostatic self-force on an elec-

trically charged particle and an emission of radiation by

a freely moving particle. In this way, we can construct

an analogue model for the Kerr spacetime with a cos-
mic string in which the disclination [27] mimics the cos-
mic string. The disclination can amplify or reduce the
Hawking-Unruh radiation emitted in agreement with the
value of the deficit angle.

The organization of this paper is as follows. In Sec-
tion 2 we introduce the metric that corresponds to the
Kerr black hole with a cosmic string and we present the
solutions of the Klein-Gordon equation for a uncharged
massive scalar field. In Section 3 we introduce the metric

that corresponds to the draining bathtub fluid flow with

a disclination, using a geometric procedure to introduce
this topological defect. In Section 4 we write down the
covariant Klein-Gordon equation for a massless scalar
field in the background under consideration,and in Sec-
tion 5 we determine the Hawking radiation spectrum.
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Finally, we conclude in Section 6.

2 Kerr spacetime with a cosmic string

In a recent paper [28], we have analyzed the interac-
tion between scalar fields and the gravitational and elec-
tromagnetic field produced by a Kerr-Newman-Kasuya
black hole with a cosmic string along its axis of symme-
try, whose spacetime is described by the following metric

ds2 =−∆−a2 sin2 θ

ρ2
dt2 +

ρ2

∆
dr2 +ρ2 dθ2

+
(r2 +a2)2−∆a2 sin2 θ

ρ2
b2 sin2 θ dφ2

−2
(r2 +a2)−∆

ρ2
absin2 θ dt dφ , (1)

with

∆ = r2−2Mr+a2+Q2
e +Q2

m = (r−r+)(r−r−) , (2)

r± = M± [M 2−(a2 +Q2
e +Q2

m)]
1

2 , (3)

ρ2 = r2 +a2 cos2 θ , (4)

where a = J/M , Qe, Qm, and M are the angular mo-
mentum per mass, electric charge, magnetic charge, and
mass (energy), respectively. The parameter b codifies
the presence of the cosmic string, assuming values in the
interval 0 < b < 1. Indeed, for the special case when
Qe = 0 = Qm, Eq. (1) becomes the stationary spacetime
containing a cosmic string which lies along the symme-
try axis, i.e., the conical Kerr metric in Boyer-Lindquist
coordinates obtained by Gal’tsov and Masár.

Therefore, in this case, the general exact solutions
for both angular and radial parts of the Klein-Gordon
equation for an uncharged massless scalar field in Kerr
spacetime with a cosmic string is obtained from Ref. [28],
putting Qe = Qm = 0 and e = 0 in their Eqs. (68)–(73)
and Eqs. (82)–(87), respectively. They can be written as

W (z)=e
1

2
αzz

1

2
β(z−1)

1

2
γ

×{C1 HeunC(α,β,γ,δ,η;z)

+C2 z−β HeunC(α,−β,γ,δ,η;z)} , (5)

where C1 and C2 are constants, HeunC(α,β,γ,δ,η;z) are
the confluent Heun functions [29, 30], and the parame-
ters α, β, γ, δ, and η are shown in Table 1.

Table 1. Parameters of the confluent Heun functions for an uncharged massless scalar field (Qe = Qm = e = µ0 = 0)
in the conical Kerr metric, where m(b) =m/b.

parameter angular function S(z) radial function R(z)

α 4aω 2iω(r+−r−)

β m(b) 2i
ω(r2

+ +a2)−am(b)

r+−r−

γ m(b) 2i
ω(r2

−
+a2)−am(b)

r+−r−

δ 0 2ω2(r++r−)(r−−r+)

η −

4aωm(b) −m2
(b)

+2λ

2
−

2a2 [aω−m(b)]
2 +4a2ω2r+r−+(r+−r−)2λ+4aωm(b)r+r−+2r3

+ω2(r+−2r−)

(r+−r−)2

In what follows we will study the acoustic black hole
analogue of the conical Kerr metric. Since Unruh [31, 32]
showed that the behavior of quantum systems in a clas-
sical gravitational field can be modeled by the motion of
sound waves in a convergent fluid flow, the acoustic ana-
logue of a black hole has been studied in the literature
as a concrete laboratory model to test several aspects of
the quantum field theory in curved spacetime [33–35].

3 Analogue gravity: draining bathtub

fluid flow with a disclination

In this draining bathtub flow model, the velocity po-
tential is given by [36]

Φ(r,φ) = A logr+Bφ , (6)

where A and B are real constants. This leads to the
following velocity of the fluid flow

~v =
A

r
r̂+

B

r
φ̂ . (7)

Thus, the acoustic metric appropriate to a draining bath-
tub model (or rotating acoustic black hole), which is
the analogue black hole metric (2+1)-dimensional with
Lorentzian signature, has the line element given by

ds2 =− 1

r2

(

∆− B2

c2

)

dt2 +
r2

∆
dr2 +r2 dφ2−2

B

c
dφ dt ,

(8)
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with

∆ = r2− A2

c2
= (r−r+)(r−r−) , (9)

r± =±rh , (10)

rh =
|A|
c

, (11)

where c and rh are the speed of sound (constant through-
out the fluid flow) and the acoustic event horizon (or
Cauchy horizon of the rotating acoustic black hole), re-
spectively. For A < 0 we are dealing with a future acous-
tic horizon, that is, an acoustic black hole.

We can introduce a disclination (topological defect)
in the draining bathtub fluid flow (effective acoustic ge-
ometry). To do this, let us use a geometric approach
and simply redefine the azimuthal angle φ in such a way
that φ→ bφ. Then, we get the following line element in
cylindrical coordinates [27]

ds2 =− 1

r2

(

∆− B2

c2

)

dt2+
r2

∆
dr2+r2b2 dφ2−2

B

c
b dφ dt .

(12)
This metric has a deficit angle, which corresponds to re-
moving 0 < b 6 1 or inserting 2π > b > 1, a wedge of
material of dihedral angle λ = 2π(b−1) by the Volterra
process of disclination creation [37].

4 Massless scalar field equation

The equation of motion for the velocity potential de-
scribing a sound wave is identical to the general pertur-
bation equation for the massless scalar field in curved
spacetime [38], that is, to the covariant Klein-Gordon
equation, which has the form

1√−g
∂σ

(

gστ
√−g∂τ

)

Ψ = 0 . (13)

Thus, the Klein-Gordon equation can be written in
the spacetime (12) as

[

−r3

∆

∂2

∂t2
+

∂

∂r

(

∆

r

∂

∂r

)

+
1

b2r

(

1− B2

c2∆

)

∂2

∂φ2

− 2Br

bc∆

∂2

∂φ ∂t

]

Ψ(r, t) = 0 . (14)

We take the solution of Eq. (14) as follows

Ψ(r, t) =

+∞
∑

m=−∞

Rmω(r)eimφe−iωt , (15)

with ω being the frequency (or energy in natural units)
of the particles where we assume that 0 < ω 6∞, and m
is a real constant that is not restricted to assume only a
discrete set of values, because we are working with only
two space dimensions. Substituting Eq. (15) into (14),

we find that the function Rmω,b(r) satisfies the following
equation

{

d

dr

(

∆

r

d

dr

)

+

[

ω2r3

∆
−

m2
(b)

r

(

1− B2

c2∆

)

−2Bm(b)ωr

c∆

]}

Rmω,b(r) = 0 , (16)

where m(b) ≡m/b.

4.1 The radial equation

In order to obtain the analytical solution of the ra-
dial Klein-Gordon equation, let us perform a change of
variable such that

x =
r2

2
. (17)

Using this new coordinate, Eq. (9) can be rewritten as

∆ = 2x− A2

c2
= 2(x−xh) , (18)

where

xh =
1

2
r2

h (19)

is the root of ∆ and corresponds to the new acoustic
event (and Cauchy) horizon of the background under
consideration.

With this transformation, Eq. (16) can be written as

d2Rmω,b(x)

dx2
+

(

1

x−xh

)

dRmω,b(x)

dx
+

[

m2
(b)(B

2 +2c2xh)

8c2x2
h

· 1
x

+
−B2m2

(b)−2c2m2
(b)xh +4c2x2

hω2

8c2x2
h

1

x−xh

+
B2m2

(b)−4Bcm(b)xhω+4c2x2
hω2

8c2xh

· 1

(x−xh)2

]

Rmω,b(x) = 0 . (20)

Since this equation has singularities at x = (xh,0,∞),
by the homographic substitution

z =
x−xh

0−xh

, (21)

we bring Eq. (20) into Heun form as follows

d2Rmω,b(z)

dz2
+

1

z

dRmω,b(z)

dz

+

{

B2m2
(b) +2c2m2

(b)xh−4c2x2
hω2

8c2xh

1

z

+
−m2

(b)(B
2 +2c2xh)

8c2xh

1

z−1

−
[

i

(

2cxhω−m(b)B

2c
√

2xh

)]2
1

z2

}

Rmω,b(z) = 0 . (22)
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Having thus moved the singularities to the points
z = 0,1, now we make the F -homotopic transformation
of the dependent variable Rmω,b(z) 7→Umω,b(z), namely

Rmω,b(z) = zA1Umω,b(z) , (23)

where the coefficient A1 is given by

A1 = i

(

2cxhω−m(b)B

2c
√

2xh

)

. (24)

Explicity, the result of applying (23) to a radial equa-
tion in the form of (22) is

d2Umω,b(z)

dz2
+

(

2A1 +1

z

)

dUmω,b(z)

dz

+

[

B2m2
(b) +2c2m2

(b)xh−4c2x2
hω2

8c2xh

1

z

−
m2

(b)(B
2 +2c2xh)

8c2xh

1

z−1

]

Umω,b(z) = 0 . (25)

Thus, the linearly independent general exact solution
of the radial Klein-Gordon equation for a massless scalar
field in the rotating acoustic black hole with a disclina-
tion, over the entire range 0 6 z < ∞, can be written
as

Rmω,b(z)=z
1

2
β{C1mω,b

HeunC(α,β,γ,δ,η;z)

+C2mω,b
z−β HeunC(α,−β,γ,δ,η;z)} , (26)

where C1mω,b
and C2mω,b

are constants to be determined,
and the parameters α, β, γ, δ, and η are given by

α = 0 , (27)

β = i

(

2cxhω−m(b)B

c
√

2xh

)

, (28)

γ =−1 , (29)

δ =−xhω2

2
, (30)

η =
1

8

[

m2
(b)

(

− B2

c2xh

−2

)

+4xhω2 +4

]

. (31)

Note the dependence of the radial solution on the pa-
rameter b, associated with the presence of a disclination.

5 Hawking-Unruh radiation

The radial solution given by Eq. (26) has the follow-
ing asymptotic behaviour at the exterior acoustic event
horizon rh:

R(r)∼C1 (r−rh)
1

2
β +C2 (r−rh)−

1

2
β , (32)

where all constants involved are included in C1 and C2.
From Eq. (28), the parameter β can be written as

β =
i

κh

(ω−ωh,b) , (33)

with ωh,b = mΩh,b, where the gravitational acceleration
on the background acoustic horizon surface, κh, and the
angular velocity of the exterior acoustic black hole in the
presence of a disclination, Ωh,b, are given by

κh ≡
1

2

1

r2
h

d∆

dr

∣

∣

∣

∣

r=rh

=
1

rh

=
c

|A| , (34)

Ωh,b =
Bc

bA2
. (35)

Therefore, considering the time factor, on the acous-
tic black hole exterior horizon surface the ingoing and
outgoing wave solutions are

Ψin = e−iωt(r−rh)
−

i

2κh
(ω−ωh,b)

, (36)

Ψout(r > rh) = e−iωt(r−rh)
i

2κh
(ω−ωh,b)

. (37)

These solutions depend on the parameter b, in such a
way that the total energy of the radiated particles (the
phonons) is decreased due to presence of a disclination.

Following the same procedure developed in our re-
cent paper [39], the relative scattering probability of the
scalar wave at the acoustic event horizon surface, Γh, and
the Hawking-Unruh radiation spectrum of scalar parti-
cles, |Nω|2, respectively, are given by

Γh =

∣

∣

∣

∣

Ψout(r > rh)

Ψout(r < rh)

∣

∣

∣

∣

2

= e
−

2π

κh
(ω−ωh,b)

, (38)

|Nω|2 =
1

e
2π

κh
(ω−ωh,b)−1

=
1

e
~

kB Th
(ω−ωh,b)−1

, (39)

where kBTh = ~κh/2π is the Hawking-Unruh radiation
temperature, kB being the Boltzmann constant.

Therefore, we can see that the resulting Hawking-
Unruh radiation spectrum of massless scalar particles
has a thermal character, analogous to the black body
spectrum. It is worth noticing that the total energy of
radiated scalar particles is decreased due to the presence
of a disclination. More precisely, the angular velocity of
the exterior acoustic horizon, Ωh,b, is amplified in com-
parison with the scenario without a disclination [40].

6 Conclusions

In this paper, we have obtained the exact and general
solution for the radial part of the massless Klein-Gordon
equation in the draining bathtub fluid flow with a discli-
nation, which corresponds to a rotating acoustic black
hole in the presence of a topological defect. This model
is an analogous gravity for the Kerr spacetime with a
cosmic string.

This solution is analytic for all spacetime, which
means the region between the ergosphere and infinity.
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It is given in terms of the confluent Heun functions, and
is valid over the range 0 6 z <∞.

From the analytic solution corresponding to the ra-
dial part, we obtained the ingoing and outgoing scalar
waves near the exterior acoustic horizon, and used these
results to discuss the Hawking-Unruh radiation effect.
As the angular velocity of the exterior acoustic black
hole, Ωh,b, depends on the parameter b, this quantity
codifies the influence of the disclination, and in fact, is
amplified by the presence of this topological defect.

The wave function depends on the parameter b that

codifies the presence of a disclination, and as a conse-
quence all other physical quantities are also influenced.
Therefore, using this analogy, it is possible, in principle,
to experimentally verify the Hawking-Unruh radiation
emitted by acoustic black holes, and assuming that the
physics which leads to Hawking radiation should be the
same as its analogue, we can get some informations
about the topological defect.

The author would like to thank Prof. V. B. Bezerra

for fruitful discussions.
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