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Abstract: The masses of the three generations of charged leptons are known to completely satisfy Koide’s mass

relation, but the question remains of whether such a relation exists for neutrinos. In this paper, by considering the

seesaw mechanism as the mechanism generating tiny neutrino masses, we show how neutrinos satisfy Koide’s mass

relation, on the basis of which we systematically give exact values of both left- and right-handed neutrino masses.
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1 Introduction

Despite being the most successful model of particle
physics, the Standard Model (SM) fails to answer many
questions, such as why the parameters of the SM are the
way they are, and whether there is any relation among
these parameters. Another such question is why Koide’s
relation for charged leptons is 2/3. Yoshio Koide [1, 2]
pointed out that a very simple relationship exists for the
pole masses (given in Table 1) of the three generations
of charged leptons,

(me +mµ +mτ) =
2

3
(
√

me +
√

mµ +
√

mτ)
2. (1)

which is surprisingly precise to a good degree of accu-
racy. This precision inspired Koide to propose models
[3–5] in an attempt to explain the underlying physics.
Various attempts have been made to extend this for-
mula to other particles. In Ref. [6] some speculations
related to the extension of Eq. (1) to quarks and lep-
tons are given, along with its relations to recent theoret-
ical developments. Different ideas following the imple-
mentation of this formula can also be found [7–10]. A
geometric interpretation for Koide’s relation was given
in Ref. [11], in which the square root of the mass of

leptons
√

m
l

is used to construct a vector
−→
V , such

that
−→
V =

(√
me,

√
mµ,

√
mτ

)

. (2)

Then, Koide’s formula can be considered equivalent to

the angle between the vector (1,1,1) and
−→
V , which is

π

4
. This will be considered in detail in Section 3. The

questions that follow from the above interpretation are:

why is the vector (1,1,1), and why is the angle
π

4
? The

aim of this paper is to give a meaning to the geometric
interpretation and to extend Koide’s formula to neutri-
nos such that the masses of left-handed and right-handed
neutrinos can be predicted.

Table 1. The masses of the leptons.

lepton mass/MeV

e 0.510998928±0.000000011

µ 105.6583715±0.0000035

τ 1776.82±0.16

The rest of this paper is structured as follows. In
Section 2 we find two analytical formulas to find the
masses of neutrinos using the data provided by exper-
iments. Section 3 gives a meaning to the geometrical
interpretation given by Foot[11]. In Section 4 we de-
vise a formula to find the value of right-handed neu-
trino mass terms. Considering a relation between left-
and right-handed neutrinos we can solve the analyti-
cal formulas for neutrino masses, details of which are
given in Section 5. The last section is the summary and
conclusion.
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2 Analytical formula for neutrino masses

The neutrino mass term has the form

L=
1

2

(

ν̄l ν̄c
R

)

M
(

νc
l

νR

)

+h.c. (3)

We suppose that the mass matrix Mmass can be di-
agonalized as follows:





















0 0 0 mD1
0 0

0 0 0 0 mD2
0

0 0 0 0 0 mD3

mD1
0 0 M1 0 0

0 mD2
0 0 M2 0

0 0 mD3
0 0 M3





















, (4)

where M1, M2 and M3 are the Majorana mass coeffi-
cients.

The eigenvalues of the matrix are:

1

2
M1±

1

2

√

M 2
1 +4m2

D1
,

1

2
M2±

1

2

√

M 2
2 +4m2

D2
,

1

2
M3±

1

2

√

M 2
3 +4m2

D3
. (5)

When Mi � mDi
(i = 1,2,3), the neutrino masses would

be
m2

D1

M1

,
m2

D2

M2

,
m2

D3

M3

, (6)

which is just the seesaw mechanism. The strict form of
Mmass is given by





















0 0 0 mD1
0 0

0 0 0 0 mD2
0

0 0 0 0 0 mD3

mD1
0 0 M1 m

1
m

2

0 mD2
0 m

1
M2 m

3

0 0 mD3
m

2
m

3
M3





















. (7)

mD1
,mD2

,mD3
are the Dirac masses. The constants

M1,M2,M3,m1
,m

2
,m

3
are unknown so the neutrino

masses cannot be calculated directly. The case in which
the mass matrix has the most general form involves so
many parameters and becomes so complicated that it
cannot be solved, so we take a simpler form.

There is no exact data available about the neutrino
masses, but the cosmological measurements [12] give a
boundary of active neutrino masses

∑

i

mi < 0.17eV. (8)

Also, the neutrino mass differences [13] are given by ex-
perimental measurements of solar, atmospheric, acceler-
ator and reactor neutrinos.

|∆m2
21|= (7.53±0.18) ·10−5 eV2,

|∆m2
32|= (2.44±0.06) ·10−3 eV2. (9)

If we denote neutrino masses as mν1
, mν2

, and mν3
, then

with the help of Eq.(9) we can write

|m2
ν1
−m2

ν2
|= |∆m2

21|,
|m2

ν3
−m2

ν2
|= |∆m2

32|. (10)

Putting the values of |∆m2
21| and |∆m2

32| in Eq. (10)
and considering Mikheyev Smirnov Wolfenstein [14, 15]
matter effects on solar neutrinos, we can get the following
two sets of analytical formulas,

m2
ν2

= m2
ν1

+7.53×10−5 eV2,

m2
ν3

= m2
ν2

+2.44×10−3 eV2, (11)

or

m2
ν2

= m2
ν1

+7.53×10−5 eV2,

m2
ν3

= m2
ν2
−2.44×10−3 eV2. (12)

Following Koide’s formula for leptons, we can write
a relation for neutrinos as

k2
νL

=
(mν1

+mν2
+mν3

)

(
√

mν1
+
√

mν2
+
√

mν3
)2

, (13)

Using Eq. (11), Eq. (13) can be rewritten as

k2
νL

=
(mν1

+
√

m2
ν1

+7.53×10−5eV2 +
√

m2
ν1

+251.53×10−5eV2)

(
√

mν1
+(m2

ν1
+7.53×10−5eV2)1/4 +(m2

ν1
+251.53×10−5eV2)1/4)2

(14)

and using Eq. (12), as

k2
νL

=
(mν1

+
√

m2
ν1

+7.53×10−5eV2 +
√

m2
ν1
−236.47×10−5eV2)

(
√

mν1
+(m2

ν1
+7.53×10−5eV2)1/4 +(m2

ν1
−236.47×10−5eV2)1/4)2

(15)
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The above equations can be solved to find the value
of mν1

if we can somehow constrain the value of k2
νL

.

3 Meaning of Foot’s geometrical inter-

pretation

In this section we present Foot’s geometrical inter-
pretation, explaining what the vector −→u = (1, 1, 1)
means.

The lepton masses have an equal status in Koide’s re-
lation, which indicates the presence of some underlying
symmetry. With the help of this symmetry we can give
a Koide-like relation for Dirac neutrino mass terms.

The neutrino mass matrix is given by Eq. (7). We
consider that there exists a symmetry such that the Dirac
mass term of the three flavored neutrinos gives an invari-
able result for the three generations of neutrinos, which
would mean that in the original neutrino mass matrix,

the three generation of flavored neutrinos have the same
mass coefficient, that is,

mD1
= mD2

= mD3
. (16)

We can write a vector

−→
U =

(√
mD1

,
√

mD2
,

√
mD3

)

, (17)

having characteristic

−→
U

|−→U |
=

(1, 1, 1)

|(1, 1, 1) | , (18)

which appears in Eq. (2) of Foot’s paper [11]. The lepton

masses can form a vector
−→
V =

(√
me,

√
mµ,

√
mτ

)

.

The angle between
−→
U and

−→
V is

cosθ =

(√
me,

√
mµ,

√
mτ

)(√
mD1

,
√

mD2
,

√
mD3

)

|
(√

me,
√

mµ,
√

mτ

)

||
(√

mD1
,

√
mD2

,
√

mD3

)

| (19)

=

(√
me,

√
mµ,

√
mτ

)

(1, 1, 1)

|
(√

me,
√

mµ,
√

mτ

)

||(1, 1, 1) |

=
1√
3

√
me +

√
mµ +

√
mτ√

me +mµ +mτ

. (20)

Using Eq. (1), Eq. (20) gives cosθ =

√
2

2
, making θ =

π

4
.

This relation can be expressed by vectors, as given by
Fig. 1.

Fig. 1. The vectors
→

U and
→

V form an angle π
4
.

For Dirac neutrino mass terms, using Eq. (20), we
can get

mD1
+mD2

+mD3
=

1

3
(
√

mD1
+
√

mD2
+
√

mD3
)2. (21)

Because we have

k2
l =

me +mµ +mτ

(
√

me +
√

mµ +
√

mτ)2
,

k2
ν
=

mD1
+mD2

+mD3

(
√

mD1
+
√

mD2
+
√

mD3
)2

, (22)

we can write a new symmetric relation

k2
l +k2

ν
= 1, (23)

which is similar to

sin2α+cos2α = 1. (24)

The possible range of the coefficient k2
l in Koide’s rela-

tion is (1/3, 1). When the three masses are identical
(democratic), we have k2

l = 1/3; if the three masses are
strongly hierarchical, then k2

l = 1. k2
l = 2/3 is just the

mean value of these two limits. Considering the degen-
eracy of the Dirac neutrino masses (k2

ν
= 1/3, Eq. (16))

will lead us to the above-mentioned symmetric relations.

4 Analytical formula for right-handed

neutrino masses

We know the matrix given in Eq. (4) has 6 eigenval-
ues. When Mi � mDi

(i = 1,2,3), three would be given
by Eqs. (5–6) and the rest of them would be equal to
Mi(i = 1,2,3). There is another way to find this second
set of eigenvalues i.e. by using Eq. (6). Approximately
similar relations can be found in Ref. [16] and others.

The Dirac neutrino masses satisfy Eq. (21) and also,
as discussed in Section (3), Eq.(16), the Dirac mass term
gives an invariable result for the three generations of
neutrinos. We can have Dirac neutrino masses propor-
tional to the electroweak scale i.e. λEW ≈ 246 GeV. The
Dirac masses are forbidden by electroweak gauge sym-
metry and can appear only after spontaneous symmetry
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breaking through the Higgs mechanism, as in the case
of charged leptons, which implies that Dirac masses are
naturally of the order of the vacuum expectation value
of the Higgs field in the SM, which is v = 246 GeV, so
v/

√
2 ≈ 174 GeV. If we consider Dirac neutrino parti-

cle masses to be of the order of the electroweak scale,
knowing the masses of neutrinos, we can get the masses
for Majorana neutrinos, which is to say that using the
expression in Eq. (6), right-handed neutrino masses can
be written as

M1 =
m2

D1

mν1

, M2 =
m2

D2

mν2

, M3 =
m2

D3

mν3

. (25)

which also implies that no left-handed neutrino should
have a zero mass.

5 Relation between left- and right-

handed neutrino masses

Equation (23) gives a relation between leptons and
Dirac neutrinos masses. We assume a similar kind of re-
lation must exist for the right- and left-handed neutrino
masses, since left- and right-handed neutrinos take part
in the seesaw mechanism and follow Eq.(25). So,

k2
νR

+k2
νL

= 1, (26)

where k2
νR

is

k2
νR

=
(M1 +M2 +M3)

(
√

M1 +
√

M2 +
√

M3)2
, (27)

and k2
νL

is given by Eq. (13). Using Eq. (25), Eq. (27)
can be re-written as

k2
νR

=

(

m2
D1

mν1

+
m2

D2

mν2

+
m2

D3

mν3

)

(
√

m2
D1

mν1

+

√

m2
D2

mν2

+

√

m2
D3

mν3

)2 . (28)

For neutrinos there are two possible mass schemes, the
normal mass scheme, in which m3 > m2 > m1 and the
inverted mass scheme, in which m2 > m1 > m3. Both
schemes should be considered to obtain the possible neu-
trino masses.

5.1 Normal hierarchy

When the masses follow the normal mass hierarchy
i.e. mν1

< mν2
< mν3

,

k2
νR

=





m2
D1

mν1

+
m2

D2
√

m2
ν1

+7.53×10−5 eV2
+

m2
D3

√

m2
ν1

+251.53×10−5 eV2











√

m2
D1

mν1

+

√

√

√

√

m2
D2

√

m2
ν1

+7.53×10−5 eV2
+

√

√

√

√

m2
D3

√

m2
ν1

+251.53×10−5 eV2







2 , (29)

where we used Eq. (11) to make Eq. (28) dependent
only on one unknown parameter, mν1

. Now we have
k2

νL
from Eq. (14) and k2

νR
from Eq. (29) both depen-

dent on only one parameter, mν1
. Substituting these

equations in Eq. (26) and running an analysis on the
value of mν1

, such that Eq. (26) is completely satisfied,
gives the value of mν1

. Using the obtained value of mν1
,

we can extract the mass values of the remaining left-
handed neutrino masses, i.e. mν2

and mν3
, by using

Eq. (11).
It is interesting to note that when we assume the

above relation, in Eq. (26), we can deduce the below-
mentioned important relations. The only value which
satisfies Eq. (26) up to three decimal points gives left-
handed neutrino masses to be:

mν1
= 1.07×10−3 eV,

mν2
= 8.74×10−3 eV,

mν3
= 5.02×10−2 eV. (30)

The above values of ν2 and ν3 neutrino masses are not

only in accordance with the previous predictions [9, 17]
up to three decimal points, but are also more precise.
These masses follow the normal mass hierarchy.

Once we have obtained the left-handed neutrino
masses, we can use them in Eq. (25) to obtain the right-
handed neutrino masses to be

M1 = 2.83×1016 GeV,

M2 = 3.46×1015 GeV,

M3 = 6.04×1014 GeV, (31)

which are approximately of order 1016 GeV. In the case of
the normal mass hierarchy, the plot of Eq. (14), Eq. (29)
and Eq. (26) dependent on mν1

is given in Fig. (2).

5.2 Inverted hierarchy

For the case of the inverted hierarchy of left-handed
neutrino masses, i.e. mν3

< mν1
< mν2

, we use Eq. (12)
to make Eq. (28) dependent on only one unknown pa-
rameter mν1

,
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k2
νR

=





m2
D1

mν1

+
m2

D2
√

m2
ν1

+7.53×10−5eV2
+

m2
D3

√

m2
ν1
−236.47×10−5eV2











√

m2
D1

mν1

+

√

√

√

√

m2
D2

√

m2
ν1

+7.53×10−5eV2
+

√

√

√

√

m2
D3

√

m2
ν1
−236.47×10−5eV2







2 , (32)

Fig. 2. Relationship with normal hierarchy.

Fig. 3. Relationship with inverted hierarchy.

while k2
νL

is given by Eq. (15). Following similar steps
and carefully looking for a solution in a very small range
with mν1

> 0.04863, Eq. (26) is satisfied with

mν1
= 4.87×10−2 eV,

mν2
= 4.94×10−2 eV,

mν3
= 1.63×10−3 eV. (33)

and in turn the masses of right-handed neutrinos become

M1 = 6.22×1014 GeV,

M2 = 6.13×1014 GeV,

M3 = 1.86×1016 GeV. (34)

Figure 3 shows the plot of Eq. (15), Eq. (32) and Eq. (26)
dependent on mν1

in the case of the inverted mass hier-
archy.

6 Conclusion and summary

In this paper we have shown how neutrino masses
can satisfy Koide’s relation. We discussed Koide’s mass
relation and gave the Dirac mass terms a similar sym-
metry. We consider the Dirac mass terms as invariable
and used this to give a meaning to the geometrical inter-
pretation of Koide’s formula given in Ref. [11], which in
turn leads to a new Koide-like relation for Dirac neutrino
mass terms, given by Eq.(21). Koide’s relation and this
new Koide-like relation for Dirac mass terms, if added
together equals one which leads us to Eq. (24). We as-
sume a similar kind of plane must exist for the left- and
right-handed neutrinos, because according to the seesaw
mechanism the extreme masses of neutrinos are because
of the interaction between them, i.e. Eq. (26). This rela-
tion can solve the analytical formula for the left-handed
neutrinos in Eq.(14), giving masses of the three genera-
tions of neutrinos which are precise up to three decimal
points with the previously proposed values. Also, we
can find the masses of neutrinos following the inverted
mass hierarchy. Neutrino oscillations indicates neutrinos
are not massless and require all three neutrinos to have
different masses.

In our paper we define the Yukawa coupling to be 1
to take mD to be 174 GeV, but we noticed that it does
not affect the mass values given in Eq. (30) for the left-
handed neutrino masses, even if changed over a wide
range. The masses obtained are dependent on the preci-
sion of the experimental data so improved accuracy will
give more precise masses. Our model also proposes that
the seesaw mechanism is used. Since the masses of the
left-handed neutrinos are dependent on the mass of the
Dirac neutrino and the right-handed neutrino masses,
the Koide-like relation for the neutrino would be
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kL

′2 =
kν

2

kνR

2 , (35)

where

k2
νR

≈ 1

2
, (36)

so we can have,

kL

′2 ≈ 2

3
. (37)

The above relation indicates that the seesaw mech-
anism may be the underlying mechanism and thus ex-
plains why neutrinos have such extreme masses. This
relation explains why neutrinos do not satisfy Koide’s
relation giving 2/3 as we have for leptons. The reason is
that the neutrino masses are the ratio of Dirac and Ma-
jorana neutrinos so the ratio of Koide’s formula for these

would give the same 2/3 as for leptons. This formula
is to justify the 2/3 value and not to be used as Koide’s
formula for neutrinos, which gives a value approximately
equal to 1/2, which can be calculated by using the mass
values given in Eq. (30).

So far there is not much experimental evidence to
explain the mechanism by which neutrinos gain mass.
With the present experimental energy range it is not
possible to test the speculation about the existence of
Majorana neutrinos, but as mentioned above, the values
of neutrinos obtained in this paper are in accordance
with the masses of neutrinos predicted by several other
studies.
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