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Abstract: The high-order cumulants of conserved charges are suggested to be sensitive observables to search for

the critical point of Quantum Chromodynamics (QCD). This has been calculated to the sixth order in experiments.

Corresponding theoretical studies on the sixth order cumulant are necessary. Based on the universality of the

critical behavior, we study the temperature dependence of the sixth order cumulant of the order parameter using

the parametric representation of the three-dimensional Ising model, which is expected to be in the same universality

class as QCD. The density plot of the sign of the sixth order cumulant is shown on the temperature and external

magnetic field plane. We found that at non-zero external magnetic field, when the critical point is approached from

the crossover side, the sixth order cumulant has a negative valley. The width of the negative valley narrows with

decreasing external field. Qualitatively, the trend is similar to the result of Monte Carlo simulation on a finite-size

system. Quantitatively, the temperature of the sign change is different. Through Monte Carlo simulation of the Ising

model, we calculated the sixth order cumulant of different sizes of systems. We discuss the finite-size effects on the

temperature at which the cumulant changes sign.

Keywords: critical point, the sixth order cumulant, Ising model

PACS: 25.75.Gz, 25.75.Nq DOI: 10.1088/1674-1137/40/9/093104

1 Introduction

Quantum Chromodynamics (QCD) is generally be-
lieved to be the theory of describing the strong interac-
tion in terms of quarks and gluons. It is expected that
the QCD system undergoes a first order phase transition
from hadronic matter to quark-gluon plasma (QGP) at
high baryon density and low temperature [1–6]. The first
order phase transition ends at a critical point, which
is a unique character of the QCD phase diagram on
the baryon chemical potential-temperature (µB-T ) plane.
Beyond the critical point, it is expected to be a rapid
crossover. This has been proved at vanishing baryon
chemical potential by lattice QCD [7]. One of the main
goals of heavy-ion collision experiments is to locate the
QCD critical point and determine the energy scale of
QCD phase transitions.

In the thermodynamic limit, the correlation length

(ξ) is infinite at the critical point. Susceptibility should
diverge as ξ2. But in a finite system, ξ does not diverge
and the susceptibility is rounded to a finite peak [8, 9].

As a system created in heavy-ion collisions, the mag-
nitude of the correlation length is also limited by the
system size but mainly limited by the finite-size effects
due to critical slowing down [10, 11]. A more sensitive
observable than the susceptibility is needed in order to
search for the critical point.

In recent years, the high-order cumulants (this is a

mathematical term, corresponding to generalized sus-
ceptibilities in physics) of conserved charges are sug-
gested to be sensitive observables to search for the QCD

critical point in relativistic heavy-ion collisions, e.g.,
the net baryon number, net electric charge, and net

strangeness [12–17]. They are particularly sensitive to
the correlation length (ξ). For example, the third order
cumulant diverges with ξ4.5, and the fourth order cumu-
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lant diverges with ξ7 [14].
There are already many works on the high-order cu-

mulants of conserved charges from both experiments and
theory [15–23]. The theoretical results show there ex-
ists non-monotonic or sign change behavior in the vicin-
ity of the critical point in the high-order cumulants. In
Ref. [24], the authors found that the behavior of the first
four orders of cumulants of net-proton number at the
Relative Heavy-Ion Collider (RHIC) calculated by the
STAR Collaboration [23] agrees well with the hadron res-
onance gas (HRG) model and lattice QCD calculations.
Based on the three-dimensional O(4) scaling function,
the sixth order cumulant of baryon number deviates con-
siderably from the HRG model. It remains negative at
the chiral transition temperature [17]. The preliminary
results of the sixth order cumulant in STAR at RHIC
have been shown in Ref. [25]. It is necessary to study
the behavior of the sixth order cumulant from theory.

If the QCD critical point exists, it belongs to the

same universality class as the three-dimensional Ising

model [26–29]. They have the same values for the criti-

cal exponents. The behavior of the corresponding ther-

modynamic quantities is similar. That is to say the

sixth order cumulant of the order parameter in the three-
dimensional Ising model can reflect the properties of the
sixth order cumulant of the net-baryon.

In Ref. [30], through the Monte Carlo simulation of

the Ising model, we have studied the temperature depen-
dence of the sixth order cumulant of the order parameter
at three fixed external magnetic fields in a finite system.
We found that when approaching the critical point from
the crossover side, the sixth order cumulant is negative.

In this paper, using the parametric representation, we

further study the distribution of the sign of the sixth or-

der cumulant of the order parameter in the temperature-

external magnetic field (t-H) plane, and its temperature

dependence at a fixed external field in the thermody-
namic limit. The qualitative behavior is compared to
the results from the Monte Carlo simulations.

As the magnitude of ξ is limited in the system cre-
ated in heavy ion collisions, the finite-size effects can-
not be neglected. In a system of finite-size, we can just
get the pseudo-critical point. Within the linear sigma

model with constituent quarks and a two-flavor quark-
meson model, the authors found that the pseudo-critical
point decreases in the T -µ plane as the system size de-
creases [31–34]. In this paper, we study the finite-size
effects on the temperature at which the sixth order cu-
mulant changes sign on different sizes of lattice by Monte
Carlo simulations.

The paper is organized as follows. In Section 2, the

Ising model and its parametric representation are intro-
duced. The parametric expression of the sixth order cu-

mulant is derived. In Section 3, the distribution of the

sign of the sixth order cumulant is presented. Its tem-
perature dependence at a fixed external magnetic field is
compared with the simulation results of the Monte Carlo
method from the three-dimensional Ising model. In Sec-
tion 4, the finite-size effects on the sixth order cumulant
are discussed. The results of the sixth order cumulant
are compared with the fourth order one. Finally, the
conclusions and summary are given in Section 5.

2 The Ising model and parametric ex-

pression of the sixth order cumulant

The three-dimensional Ising model is defined as fol-
lows,

H=−J
∑

〈i,j〉

sisj −H
∑

i

si, (1)

where H is the Hamiltonian, and si is the spin at site i
on a cubic lattice which can take only two values ±1. J
is the interaction energy between nearest-neighbor spins
〈i, j〉, and H is the external magnetic field. The magne-
tization M (the order parameter) is

M =
1

V

〈

∑

i

si

〉

=
s

V
, (2)

where s =
∑

i
si and V = Ld denote the total spin and

volume of the lattice, respectively, where d = 3 is the di-
mension of the lattice. The magnetization is a function
of the external magnetic field H and the reduced tem-
perature t = (T−Tc)/Tc, where Tc is the critical temper-
ature. The reduced temperature describes the distance
away from the critical point. At t > 0, it is the crossover
side. At t < 0, it is the first order phase transition side.

The high-order cumulants of the order parameter can
be obtained from the derivatives of magnetization with
respect to the external magnetic field H at fixed t,

κn(t,H) =

(

∂
n−1

M

∂Hn−1

)
∣

∣

∣

∣

∣

t

. (3)

In particular, the sixth order cumulant is as follows,

κ6(t,H) =

(

∂
5
M

∂H5

)∣

∣

∣

∣

∣

t

=
1

V
(〈δs6〉−10〈δs3〉2 +30〈δs2〉3−15〈δs4〉〈δs2〉), (4)

where δs = s−〈s〉.
To study the behavior of the high-order cumulants,

one way is to simulate the Ising model by the Monte
Carlo method. Another way is to use a parametric rep-
resentation of the Ising model. In this representation,
the magnetization M and reduced temperature t can be
parameterized by two variables R and θ [35, 36],
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M = Rβθ, t = R(1−θ2). (5)

The equation of state of the three-dimensional Ising
model can be given by the parametric representation in
terms of R and θ as

H = Rβδh(θ), (6)

where β and δ are critical exponents of the
three-dimensional Ising universality class with values
0.3267(10) and 4.786(14), respectively [37].

If M , t and h are analytic functions of θ, the analytic
properties of the equation of state are satisfied [38]. The
analytic expression of the high-order cumulants can be
derived in the parametric representation.

In fact, the function h(θ) is analytic and an odd func-
tion of θ because the magnetization is an odd function of
the magnetic field M(−H) =−M(H). h(θ) = 0 at θ = 0
corresponds to the crossover line H = 0, T > Tc. It van-
ishes for another θ = θ0 corresponds to the coexistence
curve H = 0, T < Tc (the first order phase transition
line).

One simple function of h(θ) obeying all the demands
is as follows,

h(θ) = θ(3−2θ2). (7)

This is an exact representation of the equation of state
of the Ising model to order ε2, where ε is a parameter re-
lated to the number of dimensions of space. ε-expansion
is one of the techniques to explore the critical phenom-
ena. It is enough for our purpose, although the para-
metric representation can be exact up to order ε3 [36].
On the other hand, there is an excellent agreement of
the scaling magnetization data from Monte Carlo simu-
lations and the equation of state in parametric represen-
tations [39].

Using Eq. (4) to Eq. (7), the sixth order cumulant
can be expressed in the parametric representation. For
our purposes, it would be enough to take the approxi-
mate values 1/3 and 5 for the critical exponents β and
δ, respectively. Then the sixth order cumulant can be
expressed as follows,

κ6(t,H) = 240

n=9
∑

n=0

a2nθ2n

R8(θ2−3)7(2θ2 +3)9
, (8)

where a2n are the expansion coefficients. Their values
are listed in Table 1.

Table 1. Values for the expansion coefficient a2n.

a0 a2 a4 a6 a8

−98415 3306744 −11234619 7120872 −2736261

a10 a12 a14 a16 a18

501120 −53001 1560 −8 8

The main difference in the two ways is that the re-
sults of the high-order cumulants are from finite systems
by the Monte Carlo simulation, while in the parametric
representation, the results are under the condition of the
thermodynamic limit.

3 Behavior of the sixth order cumulant

in the parametric representation

In Eq. (8), the sixth order cumulant has two zero val-
ues at θ = 0.5723 and θ = 0.183, respectively. Combining
Eqs. (5), (6) and Eq. (7), the reduced temperature t can
be expressed as a function of θ and the external magnetic
field H ,

t =
1−θ2

(θ(3−2θ2))1/(βδ)
H1/(βδ). (9)

Then we can get the sign distribution of κ6 on the t-H
plane. We show it as a density plot in Fig. 1(a).

Fig. 1. (color online) (a) Sign distribution of the
values of κ6 given by Eq. (9) on the t-H plane.
(b) The temperature dependence of κ6 along the
green dashed line in sub-figure (a).

In Fig. 1(a), the yellow point at H = 0 and t = 0
indicates the critical point of the three-dimensional Ising
model. On the black curves, the values of the sixth or-
der cumulant are zeros. The middle two black curves
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correspond to θ = 0.183. The other two correspond to
θ = 0.5723. In the red regions, the sixth order cumulant
takes negative values. It is positive in the purple region.
Specially, the red region is separated into two parts by
the purple region, which is different from the sign distri-
bution of the fourth order cumulant given in Ref. [16].
Although the values of the sixth order cumulant are pos-
itive in the smaller purple region between the two red
regions, it approximately equals to zero.

Along the green dashed line in Fig. 1(a), we study
the temperature dependence of the sixth order cumulant
at fixed external magnetic field, as shown in Fig. 1(b).
The blue line shows where the sixth order cumulant is
positive and the red line shows where it is negative. It
is clear that the sixth order cumulant is positive but ap-
proximately zero at the higher temperature side, which
corresponds to the green dashed line above the red re-
gion in Fig. 1(a). Then as the temperature decreases and
approaches the critical point, the sixth order cumulant
has a negative valley.

At fixed external magnetic field, the qualitative tem-
perature dependence of the sixth order cumulant is sim-
ilar to the parametric representation and Monte Carlo
simulations [30]. Quantitatively, in different sizes of sys-
tems, due to the finite-size effects, the temperature of the
sign change of the sixth order cumulant will be different.

4 Finite-size effects on the sixth order

cumulant

Using Monte Carlo simulations, we study the finite-
size effects on the temperature of the sign change of the
sixth order cumulant. The simulations are performed on
three different sizes of lattices with L = 12,14,16 at 11
different external magnetic fields between H = 0.005 and
H = 0.04 by the Wolff cluster algorithm [40]. The helical
boundary conditions are used. Because of the symmetry
of the spin inversion, with negative external magnetic
fields the values of the temperatures of the sign change
are just the same as those of the corresponding positive
ones.

On the t-H plane, we show the positions of the first
sign changes at lower temperatures of the sixth order
cumulant (e.g., the first zero at lower temperature in
Fig. 1(b)) by the points, as shown in Fig. 2. The posi-
tions of the first sign changes are closer to the critical
point and easier to be distinguished in the Monte Carlo
simulations. The black points, blue squares and red stars
present the results on lattices of size L = 12,14,16, re-
spectively. Specially, pink triangles present the results
from the parametric expression of the sixth order cumu-
lant in the parametric representation.

In Fig. 2, for each size, below the points, the values of
the sixth order cumulant are positive; above the points,

the values are negative. It is clear that, at a fixed ex-
ternal magnetic field, the temperature of sign change in-
creases as the size increases. The amplitude of increase
decreases with increasing H . The bigger the external
magnetic field, the smaller of the size of the system to
get saturation. That is to say, the features of the ther-
modynamical quantities do not depend on the system
size when it is bigger than some value. In fact, when
it deviates from the critical point, the correlation length
decreases. The system size needed to get saturation de-
creases, too.

Fig. 2. (color online) The finite-size effects on the
temperature of the first sign change of κ6 on the
t-H plane in the three-dimensional Ising model.
Para. means pink triangles are results from the
parametrization representation.

According to the results from the parametric expres-
sion of the sixth order cumulant, i.e. the pink triangles
in Fig. 2, as the external field decreases to zero, the tem-
perature of the sign change reduces to the critical tem-
perature. At the critical point, the sixth order cumulant
is divergent. In a finite system of size L= 12, as the ex-
ternal field decreases, the temperature of the sign change
decreases. According to the trend, it can be inferred that
the temperature of the sign change is smaller than the
critical temperature at vanishing external field. As the
system size increases from L = 12 to L = 16, the pseudo-
critical temperature (here we mean the temperature of
the sign change at H = 0 in a finite system) increases.
When reaching the thermodynamical limit, the pseudo-
critical temperature will approach the real critical tem-
perature. The qualitative result is consistent with the
linear sigma model with constituent quarks and the two
flavor quark-meson model [31–34], which inferred that
the QCD pseudo-critical point should shift to the higher
temperature side as the size of the system increases.

Comparing the behavior of the sixth order cumulant
with the fourth order one, e.g., Fig. 1(b) in this paper
and Fig. 1(b) in Ref. [16], qualitatively, at a fixed H ,
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their trends varying with temperature are similar. When
the temperature is approached from the higher tempera-
ture side, the sixth and fourth order cumulants are both
negative. Quantitatively, the negative valley is more ob-
vious in the sixth order cumulant than the fourth order
one. For a constant H , the ratio of the maximum to the
minimum of the sixth order cumulant is a constant. Ac-
cording to Eq. (8), it approximates −6. For the fourth
order cumulant, the ratio is approximately −28. From
this result, the benefit of using the sixth order cumulant
to search for the critical point is obvious.

On the other hand, a high price is needed to calculate
the sixth order cumulant. First, the higher the order of
the cumulant, the more statistics are needed. Second, in
the vicinity of the critical point, the n-th order cumu-
lant depends on the system size by Ln(d−β/ν) [41]. The
higher the order of the cumulant, the more serious the
finite-size effects.

5 Summary

Taking advantage of the parametric representation of
the three-dimensional Ising model, we have studied the
sign distribution of the sixth order cumulant of the order

parameter in the t-H plane. At a fixed external magnetic
field, we calculated the temperature dependence of the
sixth order cumulant. We found that at nonzero exter-
nal magnetic field, when the critical point is approached
from the higher temperature side, the sixth order cumu-
lant has a negative valley. The width of the negative
valley narrows with decreasing external field.

Through Monte Carlo simulations, the finite-size ef-
fects on the temperature of the sign change of the sixth
order cumulant have been studied. At the same external
magnetic field, the temperature of the sign change of the
sixth order cumulant increases with the increasing size of
the system in the Ising universality class. This indicates
that the pseudo-critical point should shift towards higher
temperatures with increasing size. The trend is consis-
tent with that of the linear sigma model with constituent
quarks and the two flavor quark-meson model.

Results of the sixth order cumulant are compared
with the fourth order one. At fixed external magnetic
field, qualitatively, their temperature dependence is sim-
ilar. Quantitatively, the negative valley in the sixth order
cumulant is more obvious. At the same time, the finite-
size effects are also more serious in the higher order of
cumulant.
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