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Exact results for Wilson loops in orbifold ABJM theory *
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Abstract: We investigate the exact results for circular 1/4 and 1/2 BPS Wilson loops in the d = 3 N = 4 super

Chern-Simons-matter theory that could be obtained by orbifolding Aharony-Bergman-Jafferis-Maldacena (ABJM)

theory. The partition function of the N = 4 orbifold ABJM theory has been computed previously in the literature.

In this paper, we re-derive it using a slightly different method. We calculate the vacuum expectation values of the

circular 1/4 BPS Wilson loops in fundamental representation and of circular 1/2 BPS Wilson loops in arbitrary

representations. We use both the saddle point approach and Fermi gas approach. The results for Wilson loops are

in accord with the available gravity results.

Keywords: AdS/CFT correspondence, Wilson loop, Chern-Simons theory, matrix model

PACS: 11.10.Kk, 11.25.Tq, 12.60.Jv DOI: 10.1088/1674-1137/40/8/083101

1 Introduction

In the AdS5/CFT4 correspondence [1–3], 1/2 BPS
Wilson loops in d = 4 N = 4 SU(N) super Yang-Mills
theory are dual to fundamental strings in type IIB string
theory in AdS5×S5 spacetime [4–7]. When string theory
is weakly coupled and the supergravity approximation
isa good one, the dual d = 4 N = 4 super Yang-Mills

theory is strongly coupled. To compare with the gravity
results, one has to know the vacuum expectation values
of the Wilson loops at strong coupling. To do this it was
proposed in Refs. [8, 9] that d = 4 N = 4 super Yang-
Mills theory is related to the Gaussian matrix model, and
this was proved in Ref. [10] using localization techniques.

There is a similar but more complicated story in the
AdS4/CFT3 correspondence. M-theory in AdS4×S7/Zk

spacetime, or type IIA string theory in AdS4×CP3 space-
time, is dual to the d = 3 N = 6 super Chern-Simons-
matter (SCSM) theory with gauge group U(N)×U(N)
and levels (k,−k), which is known as Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory [11]. In ABJM the-
ory there are 1/6 BPS [12–14] and 1/2 BPS [15] Wilson

loops. The 1/6 BPS Wilson loops are closely related to
the 1/2 BPS Wilson loops in N = 2 SCSM theory in [16].
Localization techniques have been applied to ABJM the-
ory and other SCSM theories with fewer supersymmeties
[17–19] and lead to matrix models that are more com-
plicated than the Gaussian matrix model. By using lo-
calization, one can calculate the partition function and
vacuum expectation values of Wilson loops at both weak
coupling and strong coupling[15, 17, 20–22]. The com-
putations in [22] are based on the saddle point solution
of the ABJM matrix model at large N limit with finite
k, and we will call such a method the saddle point ap-
proach. Furthermore, the ABJM matrix model could be
reformulated as an ideal Fermi gas with a complicated
potential [23], and one can calculate the vacuum expec-
tation values of BPS Wilson loops with fixed winding
number using the Fermi gas approach [24]. One can also
use the Fermi gas approach to calculate the vacuum ex-
pectation values of the 1/2 BPS Wilson loops in arbitrary
representations [25].

By Zr orbifolding the U(rN)×U(rN) ABJM theory,
one can obtain a d= 3 N = 4 SCSM theory with gauge
group U(N)2r and levels (k,−k, · · · ,k,−k). This the-
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ory is dual to M-theory in AdS4×S7/(Zr×Zrk) spacetime
[26–29]. The partition function of the orbifold ABJM
theory has been calculated using Fermi gas approach in
[30], and in this paper we will re-derive it using a slightly
different way. In the orbifold ABJM theory there are
1/4 and 1/2 BPS Wilson loops, and the 1/2 BPS Wil-
son loops in fundamental representation should be dual
to M2-branes with one dimension wrapping on the M-
theory circle [31, 32]. In this paper, we will calculate the
leading contributions of vacuum expectation values of
the Wilson loops using the saddle point approach in the
large N limit with k and r being finite. We will also cal-
culate the perturbative part1) of the vacuum expectation
values of the Wilson loops using the Fermi gas approach.
The results are in agreement with the available gravity
results.

In the N = 4 orbifold ABJM theory with gauge group
U(N)2r, there are 2r linearly independent 1/2 BPS Wil-
son loops that preserve the same supersymmetries, but
there are not so many 1/2 BPS branes in M-theory in
AdS4×S7/(Zr×Zrk) spacetime. It was conjectured that
these Wilson loops are 1/2 BPS classically, and only a
special linear combination of them is 1/2 BPS quantum
mechanically [32]. If all the 2r Wilson loops are 1/2 BPS
and each of them differs from 1/4 BPS Wilson loop by
a Q-exact term quantum mechanically, we can calculate
their vacuum expectation values in a matrix model as
shown in this paper. If only a special linear combination
of the 2r Wilson loops is 1/2 BPS quantum mechani-
cally and it differs from an 1/4 BPS Wilson loop by a
Q-exact term, we can calculate its vacuum expectation
value in the matrix model. If there is no 1/4 BPS Wilson
loop that differs from such an 1/2 BPS Wilson loop by a
Q-exact term, we cannot calculate the 1/2 BPS Wilson
loop’s vacuum expectation value using currently avail-
able localization techniques. In this case, a large part
of the calculations in the paper are just some results in
the matrix model and have nothing to do with vacuum
expectations values of Wilson loops.

The rest of the paper is arranged as follows. In Sec-
tion 2 we review the results in ABJM theory, including
the partition function and vacuum expectation values of
Wilson loops. In Section 3 we investigate the partition
function of the N = 4 orbifold ABJM theory. In Section 4
we review the circular 1/4 and 1/2 BPS half-BPS Wilson
loops in the N = 4 orbifold ABJM theory in Euclidean
space. In Section 5 we calculate vacuum expectation val-
ues of Wilson loops with fixed winding number using the
saddle point approach. In Section 6 we calculate vacuum
expectation values of Wilson loops in arbitrary represen-
tations using the Fermi gas approach. We end with con-
clusions and discussions in Section 7. In Appendix A we
investigate if there are more general 1/2 BPS half-BPS

Wilson loops in N = 4 orbifold ABJM theory other than
the ones found in [31, 32]. We find no new ones.

2 Results in ABJM theory

In this section we review some results in ABJM the-
ory. This includes the partition function and vacuum
expectation values of circular 1/6 and 1/2 BPS Wilson
loops. We focus on what will be used in the following
sections, so this is merely a brief review.

2.1 Partition function

The partition function of ABJM theory with gauge
group U(N)×U(N) and levels (k,−k) can be localized
to be the ABJM matrix model [17]

Z(N) =
1

N !2

∫ N
∏

i=1

dµi

2π

dνi

2π

∏

i<j

(

2sinh
µi−µj

2

)2(

2sinh
νi−νj

2

)2

∏

i,j

(

2cosh
µi−νj

2

)2

×exp

[

ik

4π

∑

i

(µ2
i −ν2

i )

]

. (1)

The partition function of the matrix model (1) can be
written as the canonical partition function Z(N) of N -
particle free Fermi gas with the one-particle density ma-
trix being [23]

ρ̂= e−Ĥ , (2)

whose explicit form will not be used in this paper. Note
that Ĥ is the one-particle Hamiltonian operator. To cal-
culate Z(N), one can firstly calculate the grand partition
function

Ξ(µ) =

+∞
∑

N=0

zNZ(N), (3)

with Z(0) = 1, z= eµ being the fugacity and µ being the
chemical potential. The grand potential is defined as

J(µ) = logΞ(µ). (4)

And then one gets

Z(N) =

∫

πi

−πi

dµ

2πi
eJ(µ)−µN . (5)

One can define j(µ) according to [33]

eJ(µ) =
∞
∑

l=−∞

ej(µ+2πil), (6)

1) By this we mean to include all of the 1/N corrections, putting aside the non-perturbative contributions.
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and then

Z(N) =

∫ i∞

−i∞

dµ

2πi
ej(µ)−µN . (7)

One adopts the phase space formulation of quantum me-
chanics, and defines

n(µ) =

∫

dqdp

2π~
θ(µ−Ĥ)W , (8)

with ~ = 2πk, θ(x) being the Heaviside step function,
and W being the Wigner transformation. The quantity
n(µ) counts the number of one-particle states whose en-
ergy is less than µ. Using the Sommerfeld expansion one
can get the expectation value of particle number N(µ)
in the grand canonical ensemble

N(µ) = π ∂µ csc(π ∂µ)n(µ). (9)

It is standard in the grand canonical ensemble that

N(µ) =
∂J(µ)

∂µ
, (10)

and so we get

J(µ) =

∫ µ

−∞
N(u)du. (11)

We find that when µ→−∞,

∂
l

µN(µ)→ 0, l= 0,1,2, · · · . (12)

This result is very useful for us. Note that the way from
n(µ) to N(µ) and then to J(µ) is a slightly different
method of getting J(µ) to the one in the original paper
[23].

In the large µ (i.e. large N) limit, one can split a
quantity into the perturbative part and non-perturbative
part. The perturbative part is denoted as pt. The non-
perturbative part is exponentially suppressed in the large
µ (i.e. large N) limit, and it is denoted as np. In this
paper we will mainly focus on the perturbative part. It
turns out that [23]

npt(µ) =Cµ2 +n0, (13)

with

C =
2

π
2k
, n0 =− 1

3k
+
k

24
. (14)

One then gets

Npt(µ) =Cµ2 +B, (15)

Jpt(µ) =
C

3
µ3 +Bµ+A,

where

B=n0 +
π

2C

3
=

1

3k
+
k

24
. (16)

Here A appears as an integral constant, and its exact
form depends on the full form of N(µ). One can find the
result for A in [34, 35]. One has

jpt(µ) = Jpt(µ), (17)

and then one gets the perturbative part of the partition
function [23, 36]

Zpt(N) =C−1/3eAAi[C−1/3(N−B)], (18)

with Ai(x) being the Airy function.

2.2 Wilson loops

The representations of group U(N) and supergroup
U(N |N) can be denoted by Young diagrams. We write
a general Young diagram as R, and it can be a represen-
tation of U(N) or U(N |N).

We consider the hook representation R = (a|b) with
a+1 boxes in the first row and one box in each of the
remaining b rows. For both the 1/6 BPS and 1/2 BPS
cases, a Wilson loop with winding number n is related
to Wilson loops in the hook representations by

W n =

n−1
∑

b=0

(−1)bW(n−1−b|b). (19)

When n = 1, it is just the fundamental representation.
In the matrix model (1), the circular 1/6 and 1/2 BPS
Wilson loops with winding number n can be written
as[15, 17]

〈W n
1/6〉=

〈

∑

i

enµi

〉

, 〈Ŵ n
1/6〉=

〈

∑

i

enνi

〉

,

〈W n
1/2〉=

〈

∑

i

[enµi −(−)nenνi ]
〉

, (20)

with n being the winding number of the loop and the
right hand sides being the expectation values in the ma-
trix model. For their expectation values one has the
relation

〈W n
1/2〉= 〈W n

1/6〉−(−)n〈Ŵ n
1/6〉

= 〈W n
1/6〉−(−)n〈W n

1/6〉∗, (21)

with ∗ being the complex conjugate.
In the large N limit with finite k, i.e. the M-theory

limit, the values µi and νi at the saddle point can be
denoted as a continuous distribution [22]

µ(x) =
√
Nx+i

kx∗

4π

x, ν(x) =
√
Nx− i

kx∗

4π

x, (22)

with the uniform density

ρ(x) =
1

2x∗
, x∈ [−x∗,x∗], x∗ = π

√

2

k
. (23)

083101-3



Chinese Physics C Vol. 40, No. 8 (2016) 083101

In the saddle point approach the Wilson loop vacuum
expectation values can be calculated as

〈W n
1/6〉≈N

∫ x∗

−x∗

enµ(x)ρ(x)dx≈ ink

2nπ

√

λ

2
enπ

√
2λ,

〈W n
1/2〉≈N

∫ x∗

−x∗

[

enµ(x)−(−)nenν(x)
]

ρ(x)dx

≈ in−1k

4nπ

enπ

√
2λ. (24)

The exponentially suppressed terms are omitted here.
Note that one can only get the correct leading contribu-
tion of large N in the saddle point approach.

The vacuum expectation values of circular Wilson
loops can also be calculated in the Fermi gas approach
[24]. One firstly calculates

m(µ) =

∫

dqdp

2π~
θ(µ−Ĥ)W e

n(q+p)
k , (25)

and then using Sommerfeld expansion one gets the 1/6
BPS Wilson loop expectation value in the grand canon-
ical ensemble

M(µ) = π ∂µ csc(π ∂µ)m(µ). (26)

Then the 1/6 BPS Wilson loop expectation value with
winding n in the canonical ensemble is

〈W n
1/6〉=

1

Z(N)

∫

πi

−πi

dµ

2πi
eJ(µ)−µNM(µ). (27)

Similar to the partition function, one has

〈W n
1/6〉pt =

1

Zpt(N)

∫ i∞

−i∞

dµ

2πi
eJpt(µ)−µNMpt(µ), (28)

with non-perturbative contributions being neglected. It
turns out that

mpt(µ) = (Dµ+E)e
2nµ

k ,

Mpt(µ) =
2πn

k
csc

2πn

k
e

2nµ
k (29)

×
[(

µ+
k

2n
−πcot

2πn

k

)

D+E

]

,

with

D=
in

2π
2n
, E=− in+1k

4π
2n

(

π

2
− iHn

)

. (30)

Here Hn is the harmonic number,

Hn =
n
∑

d=1

1

d
, (31)

with H0 being 1. Then the 1/6 BPS Wilson loop vacuum
expectation value is

〈W n
1/6〉pt =−

(

2

π
2k

)−1/3

(32)

×F
Ai′

[

(

2

π
2k

)−1/3(

N− k

24
− 6n+1

3k

)

]

Ai

[

(

2

π
2k

)−1/3(

N− k

24
− 1

3k

)

]

+G

Ai

[

(

2

π
2k

)−1/3(

N− k

24
− 6n+1

3k

)

]

Ai

[

(

2

π
2k

)−1/3(

N− k

24
− 1

3k

)

] ,

where

F =
2πn

k
csc

2πn

k
D, (33)

G=
2πn

k
csc

2πn

k

[(

k

2n
−πcot

2πn

k

)

D+E

]

.

The 1/2 BPS Wilson loop vacuum expectation value is

〈W n
1/2〉pt =

in−1

2
csc

2πn

k
(34)

×
Ai

[

(

2

π
2k

)−1/3(

N− k

24
− 6n+1

3k

)

]

Ai

[

(

2

π
2k

)−1/3(

N− k

24
− 1

3k

)

] .

Now we turn to Wilson loops in hook representations
based on Ref. [25]. There the density matrix for Fermi
gas dual to ABJM theory was obtained as

ρ̂=
√

QP
√

Q, with P =
1

2cosh
p

2

, Q=
1

2cosh
q

2

.

(35)
Though it is the same as the matrix in [23] but different
from the one in [24], it gives the same partition functions
and vacuum expectation values of BPS Wilson loops.
One of the key steps in Ref. [25] is the following result

Ξ(z)
〈

∏

i

f(eµi)

f(eνi)

〉GC

= Det(1+zρ̂f), (36)

where

ρ̂f =
√

Q
1

f(−W )
Pf(W )

√

Q, with W = e
q+p

k . (37)

The density matrix ρ̂f with f(W ) = (1+ tW )/(1− sW )
can be written as [25]

ρ̂f = ρ̂+(s+ t)

∞
∑

a,b=0

satb|b〉〈a|, (38)
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where |a〉 and 〈b| are defined in the coordinate q repre-
sentation as

〈q|a〉=
e(a+ 1

2
) q

k
− πi

k
a(a+1)

√

2cosh q

2

,

〈b|q〉= 〈q|b〉∗ =
e(b+ 1

2
) q

k
+ πi

k
b(b+1)

√

2cosh
q

2

. (39)

For the half BPS Wilson loop in a hook representa-
tion (a|b), the generating function is given by [37]1)

1+(s+ t)

∞
∑

a,b=0

satbW(a|b) (40)

= Sdet
( 1+ tU

1−sU
)

=

N
∏

j=1

(1+ teµj )(1+seνj )

(1−seµj )(1− teνj )
,

with U = diag(Uµ,−Uν), Uµ = diag(eµi), Uν = diag(eνi).
Therefore, the grand canonical ensemble expectation
value of 1/2 BPS Wilson loop generating function in
ABJM theory becomes

〈

1+(s+ t)

∞
∑

a,b=0

satbW(a|b)

〉GC

=
det(1+zρ̂f)

det(1+zρ̂)

= det
(

1+(s+ t)

∞
∑

a,b=0

satb
z

1+zρ̂
|b〉〈a|

)

(41)

= 1+(s+ t)
∞
∑

a,b=0

satb〈a| z

1+zρ̂
|b〉.

One gets the relation

〈W(a|b)〉GC = 〈a| z

1+zρ̂
|b〉= Tr

( z

1+zρ̂
|b〉〈a|

)

= Tr
( 1

eĤ−µ +1
eĤ |b〉〈a|

)

. (42)

As discussed in Ref. [25], the perturbative part of the
half BPS hook Wilson loop in ABJM theory is deter-
mined by the topological vertex of C3 in Ref. [38]

〈W(a|b)〉GC
pt =

q
1
4

a(a+1)− 1
4

b(b+1)

[a+b+1][a]![b]!
ia+b+1e

2(a+b+1)µ
k , (43)

with q= e
4πi
k and [n] = q

n
2 −q− n

2 .
Let us consider the circular half BPS Wilson loops

in non-hook representations. One can decompose the
Young diagram for a non-hook representation into
hooks from the upper left to the lower right to get
(a1|b1), · · · ,(as|bs). This general representation will be
denoted as R= (a1 · · ·as|b1 · · ·bs). The Giambelli formula
states that

W(a1a2···as|b1b2···bs)(e
µi ,eνj ) = det

p,q
W(ap|bq)(e

µi ,eνj ). (44)

The authors of Ref. [25] considered the following gener-
ating function

W (N) = 〈det
p,q

[δpq + tW(ap|bq)(e
µi ,eνj )]〉. (45)

The computations in Ref. [25] give

W (N) =
1

N !

∫

∏

i

[dνi]Detρf (νi,νj), (46)

where

[dµi] =
dµi

2π

exp
( ikµ2

i

4π

)

, [dνi] =
dνi

2π

exp
(

− ikν2
i

4π

)

,

ρf (νi,νj) =

∫

[dµ]
1

2cosh
µ−νj

2

(

1

2cosh
νi−µ

2

(47)

+ t

s
∑

p=1

e(bp+1/2)νie(ap+1/2)µ

)

.

Then one has

∞
∑

N=0

zNW (N) =Det(1+zρf ). (48)

The multiplication between boldface variables is under-
stood as matrix multiplication with indices µ,ν and
summation being replaced by integration with measures
[dµ], [dν]. Then by introducing

Q(µ,ν) =
1

2cosh
µ−ν

2

, P(ν,µ) =
1

2cosh
ν−µ

2

,

ρ =
√

QP
√

Q ,
(

〈a | 1√
Q

)

(µ) = e(a+1/2)µ,

( 1√
Q

|b〉
)

(ν) = e(b+1/2)ν , (49)

one can get

Det

[

1+z
(

P + t

s
∑

p=1

1√
Q

|bp〉〈ap |
1√
Q

)

Q

]

(50)

=Det(1+zρ)det
p,q

[

δpq +zt〈ap |(1+zρ)−1|bq〉
]

.

Taking t= 0 in the above results, one gets

Ξ(z) =Det(1+zρ), (51)

and then one has

〈det
p,q

(δpq + tW(ap|bq))〉GC = det
p,q

[δpq +zt〈ap |(1+zρ)−1|bq〉].
(52)

1) In the remainder of this section, we will only discuss the half BPS Wilson loop and omit 1/2 in the subscript.
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The coefficient of ts in both sides of the above equation
gives

〈W(a1a2···as|b1b2···bs)〉GC = det
p,q

[

z〈ap |(1+zρ)−1|bq〉
]

. (53)

Restricted to hook representation cases, one has

〈W(a|b)〉GC = z〈a |(1+zρ)−1|b〉. (54)

So finally one gets

〈W(a1a2···as|b1b2···bs)〉GC = det
p,q

〈W(ap|bq)〉GC. (55)

This shows that, for the non-hook representation cases,
the expectation values of half BPS Wilson loops in the
grand canonical ensemble can be written as the deter-
minant of the expectation values of Wilson loops in the
hook representations. In other words, they are Giambelli
compatible.

3 Partition function

The computation of the partition function of the
N = 4 orbifold ABJM theory can be localized to the
matrix model [17]1)

Zr(N) =
1

N !2r

∫ r−1
∏

`=0

N
∏

i=1

dµ`,i

2π

dν`,i

2π

×
∏

`

∏

i<j

(

2sinh
µ`,i−µ`,j

2

)2(

2sinh
ν`,i−ν`,j

2

)2

∏

i,j

(

2cosh
µ`,i−ν`,j

2

)(

2cosh
ν`+1,i−µ`,j

2

)

×exp

[

ik

4π

∑

`,i

(

µ2
`,i−ν2

`,i

)

]

. (56)

When r= 1 it is reduced to the ABJM matrix model (1).
It can be written as canonical ensemble partition func-
tion of an N -particle Fermi gas with one-particle density
matrix [23]

ρ̂r = e−rĤ, (57)

with Ĥ being the same as that of ABJM theory in (2).
We calculate the partition function in the Fermi gas

approach. We firstly have

nr(µ) =

∫

dqdp

2π~
θ(µ−rĤ)W (58)

=

∫

dqdp

2π~
θ
(µ

r
−Ĥ

)

W
=n

(µ

r

)

,

with n(µ) being the same function as (8). Then

Nr(µ) = π ∂µ csc(π ∂µ)nr(µ) =
sin(rπ ∂µ)

r sin(π ∂µ)
N
(µ

r

)

. (59)

Then using (12) we can get

Jr(µ) =

∫ µ

−∞
Nr(u)du=

sin(rπ ∂µ)

sin(π ∂µ)
J
(µ

r

)

. (60)

Note that we have the following expansion

sin(rπ ∂µ)

r sin(π ∂µ)
=1− π

2(r2−1)

6
∂

2

µ

+
π

4(3r4−10r2 +7)

360
∂

4

µ +O( ∂
6

µ). (61)

Formula (60) is a convenient way to get the grand poten-
tial Jr(µ) with Hamiltonian rĤ from the grand potential
J(µ) with Hamiltonian Ĥ, including both the perturba-
tive and non-perturbative parts.

From the results of ABJM theory we have

npt
r (µ) =Crµ

2 +nr
0, Npt

r (µ) =Crµ
2 +Br,

Jpt
r (µ) =

Cr

3
µ3 +Brµ+Ar, (62)

with

Cr =
C

r2
=

2

π
2r2k

, nr
0 =n0 =− 1

3k
+
k

24
. (63)

Br =B− π
2C(r2 −1)

3r2
=−r

2−2

3r2k
+
k

24
, Ar = rA.

Then we have the perturbative part of the partition func-
tion

Zpt
r (N) =

(

C

r2

)−1/3

erA (64)

×Ai

[

(

C

r2

)−1/3(

N−B+
π

2C(r2−1)

3r2

)

]

.

This is in accordance with the result in Ref. [30], and
here we re-derive it in a different way.

The non-perturbative part of the grand potential for
ABJM theory Jnp(µ) is a summation of terms of the form
[23]

(aµ2 +bµ+c)e−dµ, (65)

with a,b,c,d being constants and d> 0. Correspondingly
in the grand potential of the N = 4 SCSM theory Jnp

r (µ)
there is the term

sin(rπ ∂µ)

sin(π ∂µ)

(

a

r2
µ2 +

b

r
µ+c

)

e−
d
r

µ = (arµ
2 +brµ+cr)e

− d
r

µ,

(66)

1) Supersymmetric localization in d= 3 N = 2 SCSM theories was first studied in Refs. [18, 19].
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with

ar =
a

r2
fr

(

d

r

)

, br =
b

r
fr

(

d

r

)

− 2a

r2
f ′

r

(

d

r

)

,

cr = cfr

(

d

r

)

− b

r
f ′

r

(

d

r

)

+
a

r2
f ′′

r

(

d

r

)

. (67)

Here we have defined the function

fr(x) =
sin(rπx)

sin(πx)
. (68)

Note that when x= l is an integer we have

fr(l) = r(−)(r−1)l, f ′
r(l) = 0,

f ′′
r (l) =−rπ

2

3
(−)(r−1)l (r2−1) . (69)

4 Circular BPS Wilson loops

In this section we review the circular 1/4 and 1/2 BPS
Wilson loops for the N = 4 orbifold ABJM theory in Eu-
clidean space [31, 32]. This theory is an SCSM theory
with gauge groups U(N)2r and levels (k,−k, · · · ,k,−k).1)
In d= 3 Euclidean space we use the convention of spinors
in Ref. [39], and especially we have the coordinates
xµ = (x1,x2,x3) and the gamma matrices

γµ β
α = (−σ2,σ1,σ3), (70)

with σ1,2,3 being the Pauli matrices. The circle is param-
eterized as xµ = (cosτ,sinτ,0).

Using every gauge field A(2`+1)
µ with `= 0,1, · · · , r−1

and matter that couples to it, one can define the 1/4
BPS Wilson loop

W (2`+1)

1/4 = TrP exp

(

−i

∮

dτA(2`+1)(τ)

)

,

A(2`+1) =A(2`+1)
µ ẋµ +

2π

k

(

M i
jφ

(2`+1)
i φ̄j

(2`+1)

+M ı̂
̂φ

(2`)
ı̂ φ̄̂

(2`)

)

|ẋ|,
M i

j =M ı̂
̂ = diag(i,−i). (71)

The conserved supersymmetries can be denoted as

ϑ11̂ = iγ3θ
11̂, ϑ22̂ =−iγ3θ

22̂,

θ12̂ = θ21̂ =ϑ12̂ =ϑ21̂ = 0, (72)

where the spinors θiı̂ and ϑiı̂ with i = 1,2 and ı̂ = 1̂, 2̂
denote the parameters of Poincaré and conformal super-
symmetries, respectively.

Also using every gauge field Â(2`)
µ with `= 0,1, · · · , r−1

and matter that couples to it, one can define the 1/4 BPS

Wilson loop

Ŵ (2`)

1/4 = TrP exp

(

−i

∮

dτÂ(2`)(τ)

)

,

Â(2`) = Â(2`)
µ ẋµ +

2π

k

(

N j
i φ̄

i
(2`−1)φ

(2`−1)
j (73)

+N ̂
ı̂ φ̄

ı̂
(2`)φ

(2`)
̂

)

|ẋ|,
N j

i =N ̂
ı̂ = diag(i,−i).

This kind of 1/4 BPS Wilson loop preserves the same
supersymmetries as the previous one (72). The 1/4 BPS
Wilson loops (71) and (73) can be combined to give a
1/4 BPS Wilson loop

W (`)

1/4 = TrP exp

(

−i

∮

dτL(`)

1/4(τ)

)

,

L(`)

1/4 =

(

A(2`+1)

Â(2`)

)

. (74)

Using two adjacent gauge groups Â(2`)
µ , A(2`+1)

µ in the
quiver diagram and matter that couples to them, one can
define the 1/2 BPS Wilson loop

W
(`)

1/2 = TrP exp

(

−i

∮

dτL
(`)

1/2(τ)

)

,

L(`)

1/2 =

(

A(2`+1) f̄ (2`)
1

f (2`)
2 Â(2`)

)

,

A(2`+1) =A(2`+1)
µ ẋµ +

2π

k

(

M i
jφ

(2`+1)
i φ̄j

(2`+1)

+M ı̂
̂φ

(2`)
ı̂ φ̄̂

(2`)

)

|ẋ|,

Â(2`) = Â(2`)
µ ẋµ +

2π

k

(

N j
i φ̄

i
(2`−1)φ

(2`−1)
j (75)

+N ̂
ı̂ φ̄

ı̂
(2`)φ

(2`)
̂

)

|ẋ|,

f̄ (2`)
1 =

√

2π

k
η̄(2`)ψ1

(2`)|ẋ|, f (2`)
2 =

√

2π

k
ψ̄(2`)

1 η(2`)|ẋ|,

M i
j =N j

i = diag(i,−i), M ı̂
̂ =N ̂

ı̂ = diag(−i,−i),

η̄(2`)α = β̄(eiτ/2,e−iτ/2), η(2`)α = (e−iτ/2,eiτ/2)β, β̄β= i.

Note that β̄ and β are Grassmann even constants. The
conserved supersymmetries are

ϑ1ı̂ = iγ3θ
1ı̂, ϑ2ı̂ =−iγ3θ

2ı̂, ı̂= 1̂, 2̂. (76)

In the terminology of [32], the above 1/2 BPS Wilson
loop is called the ψ1-loop, since it is coupled to fields
ψ1

(2`) and ψ̄(2`)
1 .

Similarly there is a 1/2 BPS ψ2-loop that is coupled
to fields ψ2

(2`) and ψ̄
(2`)
2 [32]. In the conventions of [31]

1) Without loss of generality, we assume k to be positive.
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such a 1/2 BPS Wilson loop can be constructed as

W̃ (`)

1/2 = TrP exp

(

−i

∮

dτL̃(`)

1/2(τ)

)

,

L̃(`)

1/2 =

(

A(2`+1) f̄ (2`)
1

f (2`)
2 Â(2`)

)

,

A(2`+1) =A(2`+1)
µ ẋµ +

2π

k

(

M i
jφ

(2`+1)
i φ̄j

(2`+1)

+M ı̂
̂φ

(2`)
ı̂ φ̄̂

(2`)

)

|ẋ|,

Â(2`) = Â(2`)
µ ẋµ +

2π

k

(

N j
i φ̄

i
(2`−1)φ

(2`−1)
j (77)

+N ̂
ı̂ φ̄

ı̂
(2`)φ

(2`)
̂

)

|ẋ|,

f̄ (2`)
1 =

√

2π

k
η̄(2`)ψ2

(2`)|ẋ|, f (2`)
2 =

√

2π

k
ψ̄(2`)

2 η(2`)|ẋ|,

M i
j =N j

i = diag(i,−i), M ı̂
̂ =N ̂

ı̂ = diag(i, i),

η̄(2`)α = β̄(eiτ/2,−e−iτ/2), η(2`)α = (e−iτ/2,−eiτ/2)β,

β̄β= i.

The ψ2-loop preserves the same supersymmetries as the
ψ1-loop (76).

It has been checked that the difference of 1/4 and 1/2
BPS Wilson loops is Q-exact with Q being some super-
charge preserved by both the 1/4 and 1/2 BPS Wilson
loops [31, 32]. This applies to both the ψ1-loop (75) and
ψ2-loop (77), and explicitly one has

W (`)

1/2−W (`)

1/4 =QV (`), W̃ (`)

1/2−W (`)

1/4 =QṼ (`), (78)

with V (`) and Ṽ (`) being some operators. It was con-
jectured that the 2r Wilson loops W (`)

1/2 and W̃ (`)

1/2 with
` = 0,1, · · · , r − 1 are 1/2 BPS classically, and only a
special linear combination of them is 1/2 BPS quantum
mechanically [32]. If it is the case, we may denote such
a true 1/2 BPS Wilson loop as

W qm
1/2 =

r−1
∑

`=0

(

c`W
(`)

1/2 + c̃`W̃
(`)

1/2

)

, (79)

with c` and c̃` being some to-be-determined constants.
Here superscript qm means that the Wilson loop is 1/2
BPS quantum mechanically. We do not know if Wilson
loops (71), (73) and (74) are still BPS quantum mechan-
ically, but we expect that at least there is the 1/4 BPS
Wilson loop

W qm
1/4 =

r−1
∑

`=0

(c` + c̃`)W
(`)

1/4. (80)

In this case, equations (78) would also be spoiled. We
expect that

W qm
1/2−W qm

1/4 =QV, with V =
r−1
∑

`=0

(

c`V
(`) + c̃`V

(`)
)

.

(81)

Now we have three possibilities. The first is that Wilson
loops (75) and (77) are 1/2 BPS quantum mechanically,
and equations (78) also hold quantum mechanically. In
this case the Wilson loops (75) and (77) have the same
vacuum expectation values. The second possibility is
that only Wilson loop (79) is 1/2 BPS quantum mechan-
ically, and (81) holds quantum mechanically. The third
possibility is that Wilson loop (79) is 1/2 BPS quantum
mechanically, but (81) does not hold.

5 Wilson loops in saddle point approach

In this section, we compute the vacuum expectation
values of Wilson loops with fixed winding number based
on the saddle point approach.

If equation (78) holds quantum mechanically, we have
the relations between vacuum expectation values of Wil-
son loops and expectation values in the matrix model
(56)

〈W (2`+1),n

1/4 〉=
〈

∑

i

enµ`,i

〉

, 〈Ŵ (2`),n

1/4 〉=
〈

∑

i

enν`,i

〉

,

〈W (`),n

1/2 〉= 〈W̃ (`),n

1/2 〉=
〈

∑

i

[enµ`,i −(−)nenν`,i ]
〉

, (82)

with n being the winding number. From Zr symmetry
of the matrix model (56), we have

〈W (2`+1),n

1/4 〉=
〈

∑

i

enµ0,i

〉

, 〈Ŵ (2`),n

1/4 〉=
〈

∑

i

enν0,i

〉

,

〈W (`),n

1/2 〉= 〈W̃ (`),n

1/2 〉=
〈

∑

i

[enµ0,i −(−)nenν0,i ]
〉

. (83)

If quantum mechanically we have (81), we get

〈W qm,n
1/2 〉= c

〈

∑

i

[enµ0,i −(−)nenν0,i ]
〉

, (84)

with

c=

r−1
∑

`=0

(c` + c̃`) . (85)

It is possible that (81) is not true quantum mechanically.
But it is still an interesting problem in its own right to
calculate the expectation values in the matrix model

〈

∑

i

enµ0,i

〉

,
〈

∑

i

[enµ0,i −(−)nenν0,i ]
〉

. (86)

We calculate the Wilson loop expectation values in
the saddle point approach. For the matrix model (56),
at the saddle point we have [22]

µ`(x) =µ(x), ν`(x) = ν(x), (87)
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with µ(x) and ν(x) being the same as (22). Then for the
1/4 and 1/2 BPS Wilson loops there are leading contri-
butions of the vacuum expectation values which are the
same as in the ABJM case

〈W (2`+1),n

1/4 〉≈ ink

2nπ

√

λ

2
enπ

√
2λ, (88)

〈W (`),n

1/2 〉= 〈W̃ (`),n

1/2 〉≈ in−1k

4nπ

enπ

√
2λ.

Note that there is no ` or r dependence in this result. If
the Wilson loops (75) and (77) are not 1/2 BPS quantum
mechanically, we cannot use the matrix model to calcu-
late their vacuum expectation values [32]. If (81) holds
quantum mechanically we can repeat the above process
for the true 1/2 BPS Wilson loops (79), and we have

〈W qm,n
1/2 〉≈ in−1ck

4nπ

enπ

√
2λ, (89)

with constant c being (85). The Wilson loops in the fun-
damental representation are those with winding number
n = 1. In Refs. [31, 32] it was shown that a suitably
positioned M2-brane in M-theory in AdS4×S7/(Zr×Zrk)
spacetime can be 1/2 BPS, and for the regularized on-
shell action of the M2-brane in Euclidean space one has

e−SM2 ∼ eπ

√
2λ. (90)

We find matches of the matrix model and gravity results.
If both (78) and (81) are spoiled by quantum cor-

rections, the matrix model calculations here would have
nothing to do with vacuum expectations values of Wilson
loops.

6 Wilson loops in Fermi gas approach

In this section we use the Fermi gas approach, and
study vacuum expectation values of Wilson loops with
fixed winding number and of 1/2 BPS Wilson loops in
both hook and non-hook representations.

6.1 Wilson loops with fixed winding number

We calculate the Wilson loops expectation values in
Fermi gas approach. We firstly calculate

mr(µ)=

∫

dqdp

2π~
θ(µ−rĤ)W e

n(q+p)
k

=

∫

dqdp

2π~
θ
(µ

r
−Ĥ

)

W
e

n(q+p)
k =m

(µ

r

)

. (91)

And then we can get

mpt
r (µ)=

(

D

r
µ+E

)

e
2nµ
rk ,

Mpt
r (µ)=

2πn

rk
csc

2πn

rk

·
[(

µ+
rk

2n
−πcot

2πn

rk

)

D

r
+E

]

e
2nµ
rk , (92)

with D and E being the same as (30). Then the 1/4 BPS
Wilson loop expectation value is

〈W (2`+1),n

1/4 〉pt

=−
(

2

π
2r2k

)−1/3

·Fr

Ai′

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−6nr−2

3r2k

)

]

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−2

3r2k

)

]

+Gr

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−6nr−2

3r2k

)

]

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−2

3r2k

)

] ,

(93)

where

Fr =
2πn

rk
csc

2πn

rk

D

r
,

Gr =
2πn

rk
csc

2πn

rk

[(

rk

2n
−πcot

2πn

rk

)

D

r
+E

]

. (94)

The 1/2 BPS Wilson loops expectation values are

〈W (`),n

1/2 〉pt

= 〈W̃ (`),n

1/2 〉pt =
in−1

2r
csc

2πn

rk

·
Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−6nr−2

3r2k

)

]

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−2

3r2k

)

] . (95)

If the Wilson loops (75) and (77) are not 1/2 BPS but
(81) holds, we can still get vacuum expectation value of
the true 1/2 BPS Wilson loop (79) as

〈W qm,n
1/2 〉pt

=
in−1c

2r
csc

2πn

rk

×
Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−6nr−2

3r2k

)

]

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−2

3r2k

)

] , (96)

with c being (85). If (81) is not true, we only have some
matrix model results.
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We expand the above results in the limit N � k� 1
with r being fixed, and now for the ’t Hooft coupling
λ=N/k there is

λ� 1. (97)

We make expansion of large λ and large k. For the 1/4
BPS Wilson loop we have

〈W (2`+1),n

1/4 〉pt

=
ink

2nπ

√

λ

2
enπ

√
2λ

[

(

1+
2n2

π
2

3r2k2
+O

(

1

k4

))

−
(

12πi+nπ
2+24Hn

2π

+
nπ(12nπi+24+n2

π
2−12r2 +36rn−48r+24nHn)

3r2k2

+O

(

1

k4

))

1

12
√

2λ
+O

(

1

λ

)

]

. (98)

For the 1/2 BPS Wilson loops we have

〈W (`),n

1/2 〉pt = 〈W̃ (`),n

1/2 〉pt

=
in−1k

4nπ

enπ

√
2λ

[

(

1+
2n2

π
2

3r2k2
+O

(

1

k4

))

−
(

1

2
+
n2

π
2 +36rn−12r2 +24

3r2k2
+O

(

1

k4

))

· nπ

12
√

2λ
+O

(

1

λ

)

]

. (99)

These are in accord with the results in saddle point ap-
proach (88). Note that for the leading contribution of
large k, i.e. the genus zero part, there is no r depen-
dence.

6.2 1/2 BPS Wilson loops in hook representa-
tions

Now we turn to half BPS Wilson loops1) in hook rep-
resentations based on Ref. [25], where the density matrix
for Fermi gas dual to ABJM theory was obtained as (35).
For the N = 4 orbifold ABJM theory, we have

ρ̂r = ρ̂r. (100)

Similar to the calculation in Ref. [25], we obtain the
following result in N = 4 orbifold ABJM theory,

Ξr(z)
〈

∏

i

f(eµi)

f(−eνi)

〉GC

= Det(1+zρ̂f,r)〉, (101)

where

ρ̂f,r = ρ̂f ρ̂
r−1, (102)

with ρ̂f being the same as (37).
The generating function for the half BPS Wilson loop

in hook representations (a|b) was given in Ref. [37]

1+(s+ t)

∞
∑

a,b=0

satbWr,(a|b) (103)

= Sdet
( 1+ tU

1−sU
)

=

N
∏

j=1

(1+ teµj )(1+seνj )

(1−seµj )(1− teνj )
.

Therefore, the grand canonical ensemble expectation
value of a circular 1/2 BPS Wilson loop Wr,(a|b) in the
N = 4 orbifold ABJM theory in Euclidean space becomes

〈

1+(s+ t)
∞
∑

a,b=0

satbWr,(a|b)

〉GC

=
det(1+zρ̂f ρ̂

r−1)

det(1+zρ̂r)

= det

(

1+(s+ t)
∞
∑

a,b=0

satb
zρ̂r−1

1+zρ̂r
|b〉〈a|

)

(104)

= 1+(s+ t)

∞
∑

a,b=0

satb〈a| zρ̂
r−1

1+zρ̂r
|b〉,

with the states |a〉 and 〈b| being defined the same as (39).
We get the relation

〈Wr,(a|b)〉GC = 〈a| zρ̂
r−1

1+zρ̂r
|b〉 (105)

= Tr
( zρ̂r−1

1+zρ̂r
|b〉〈a|

)

= Tr
( 1

erĤ−µ +1
eĤ |b〉〈a|

)

.

Using Sommerfeld expansion we get

〈Wr,(a|b)〉GC = π ∂µ csc(π ∂µ)mr(µ), (106)

where

mr(µ) = Tr
(

θ(µ−rĤ)eĤ |b〉〈a|
)

(107)

= Tr
(

θ(µ/r−Ĥ)eĤ |b〉〈a|
)

=m(µ/r).

Note that for a circular half BPS Wilson loop in ABJM
theory W(a|b) there is

〈W(a|b)〉GC = π ∂µ csc(π ∂µ)m(µ), (108)

1) We have the ψ1-loops W
(`)
1/2

(75) and ψ2-loops W̃
(`)
1/2

(77) with `= 0,1, · · · , r−1. If all of them are half BPS quantum mechanically,

we can calculate their vacuum expectation values in the matrix model as shown in this subsection. Due to the Zr symmetry of the theory,
the results are independent of `. From now on we can omit the index ` and subscript 1/2. We add subscript r to some quantities of the
N = 4 orbifold ABJM theory to distinguish them from their counterparts in ABJM theory. Also the results are the same for the ψ1-loops
and ψ2-loops, and so we will not write the same results twice. If only a special combination of the ψ1-loops and ψ2-loops (79) is half
BPS quantum mechanically and (81) holds, the following calculations still apply provided that a constant c (85) is added to the result.
In the worst condition (81) does not hold quantum mechanically, and the calculations here are just matrix model results.
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and then we have

〈Wr,(a|b)〉GC(µ) =
sin(rπ ∂µ)

r sin(π ∂µ)
〈W(a|b)〉GC(µ/r). (109)

Then we can use (43) and get

〈Wr,(a|b)〉GC
pt =

q
1
4

a(a+1)− 1
4

b(b+1)

[a]![b]!

in−1

2r
csc

2πn

rk
e

2nµ
rk , (110)

where n = a+ b+ 1 is the number of boxes of Young
diagram (a|b). The 1/2 BPS Wilson loops expectation
values in the canonical ensemble are

〈Wr,(a|b)〉pt =
q

1
4

a(a+1)− 1
4

b(b+1)

[a]![b]!

in−1

2r
csc

2πn

rk
(111)

×
Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−6nr−2

3r2k

)

]

Ai

[

(

2

π
2r2k

)−1/3(

N− k

24
+
r2−2

3r2k

)

] .

In the large N limit, the expectation values scale as

〈Wr,(a|b)〉pt ∼ enπ

√
2λ. (112)

6.3 1/2 BPS Wilson loops in non-hook repre-
sentations

Let us consider the half BPS Wilson loops in general
representations R = (a1 · · ·as|b1 · · ·bs). The Giambelli
formula states that

Wr,(a1a2···as|b1b2···bs)(e
µi ,eνj ) = det

p,q
Wr,(ap|bq)(e

µi ,eνj ).

(113)
As in Ref. [25], we consider the following generating
function

Wr(N) = 〈det
p,q

(δpq + tWr,(ap|bq)(e
µi ,eνj ))〉. (114)

Similar to computations in Ref. [25], with the definitions
(47) and (49) we can get

Zr(N) =
1

N !

∫

∏

i

[dνi]det
ij

ρ
r(νi,νj), (115)

Wr(N) =
1

N !

∫

∏

i

[dνi]det
ij

(

ρf (PQ)r−1
)

(νi,νj).

Note that the multiplication between boldface variables
is understood as matrix multiplication with indices µ,ν
and summation being replaced by integration with mea-
sures [dµ], [dν] in Eq. (47). We then have

Ξr(z) =

∞
∑

N=0

zNZr(N) =Det(1+zρr),

∞
∑

N=0

zNWr(N) =Det
(

1+zρf (PQ)r−1
)

. (116)

Using the relation

Det
(

1+zρf (PQ)r−1
)

=Det(1+zρr) (117)

×det
p,q

(

δpq +zt〈ap |(1+zρr)−1
ρ

r−1|bq〉
)

,

we can get

〈det
p,q

(δpq + tWr,(ap|bq))〉GC

= det
p,q

(

δpq +zt〈ap |(1+zρr)−1
ρ

r−1|bq〉
)

. (118)

The coefficient of ts in both sides of the above equation
gives

〈Wr,(a1a2···as|b1b2···bs)〉GC = det
p,q

(

z〈ap |(1+zρr)−1
ρ

r−1|bq〉
)

.

(119)
Restricted to hook representation cases, we have

〈Wr,(a|b)〉GC = z〈a |(1+zρr)−1
ρ

r−1|b〉. (120)

So finally we get

〈Wr,(a1a2···as|b1b2···bs)〉GC = det
p,q

〈Wr,(ap|bq)〉GC. (121)

This shows that the grand canonical ensemble expec-
tation values of the circular 1/2 BPS Wilson loops are
Giambelli compatible at least in the matrix model sense.

7 Discussion and conclusions

In this paper, we have calculated the vacuum expec-
tation values of the circular BPS Wilson loops in arbi-
trary representations in the N = 4 orbifold ABJM theory.
We used both the saddle point approach in Ref. [22] and
the Fermi gas approach in Refs. [23, 24], and the results
agree with the available gravity results in Refs. [31, 32].
It will be quite interesting to study the string/M the-
ory dual of the Wilson loops in the higher dimensional
representations.

There are other N = 4 SCSM theories [29, 40–43] and
N = 3 SCSM theories [44–47]. Recently there have been
investigations of partition functions of these theories in
the Fermi gas approach [48, 49]. There are also 1/2 BPS
Wilson loops in general N = 4 SCSM theories [32]. It
would be interesting to investigate the vacuum expec-
tation values of supersymmetric Wilson loops in these
theories.

Expectation values of the 1/4 and 1/2 BPS Wilson
loops of orbifold ABJM theory in weak coupling can be
calculated directly in the matrix model, like the ABJM
theory case in Ref. [17]. Also one can calculate the vac-
uum expectation values of Wilson loops perturbatively
using Feynman rules in the orbifold ABJM theory in
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weak coupling, like the ABJM theory case in Refs. [12–
14, 50–52]. It would be nice to compare the results of
the matrix model to the results of Feynman rules. In
fact it was proposed in Refs. [32] that a perturbative
calculation of expectation values of the 1/2 BPS Wilson
loops using Feynman rules would be helpful in fixing the
coefficients in the true 1/2 BPS Wilson loop (79).

We would like to thank Martin Ammon, Min-xin

Huang, Xin Wang and especially Marcos Mariño for very

valuable discussions. JW would also like to thank the

participants of the advanced workshop “Dark Energy and

Fundamental Theory” supported by the Special Fund for

Theoretical Physics from NSFC with grant No. 11447613

for stimulating discussion.

Appendix A
More general 1/2 BPS Wilson loops in orbifold ABJM theory?

For two adjacent gauge fields in the quiver diagram and
matter fields that couple to them of the N = 4 orbifold ABJM
theory, one can define two kinds of 1/2 BPS Wilson loops, i.e.
the ψ1-loop [31, 32] and the ψ2-loop [32]. In this appendix
we will investigate if there is a more general 1/2 BPS Wilson
loop that preserves the same supersymmetries as the ψ1-loop
and ψ2-loop.

There is no spacelike BPS Wilson loop in Minkowski
spacetime [39]. The BPS Wilson loops along straight lines
in Euclidean space are just the timelike BPS Wilson loops of
straight lines along Minkowski spacetime after Wick rotation.
The circular BPS Wilson loops in Euclidean space can be ob-
tained by the conformal transformation of the BPS Wilson
loops along infinite straight lines. Also, for straight lines the
cases of Poincaré supersymmetries and conformal supersym-
metries are separated and very similar. So it is enough to just
consider the Poincaré supersymmetries of the 1/2 BPS Wil-
son loops along timelike infinite straight lines in Minkowski
spacetime.

We use the conventions in Refs. [31, 39]. Especially
we choose the coordinates xµ = (x0,x1,x2), and we use the
gamma matrices

γ
µ β
α = (iσ2

,σ
1
,σ

3), (A1)

with σ1,2,3 being the Pauli matrices. For the infinite straight
line xµ = τδ

µ
0 , we want to get a 1/2 BPS Wilson loop that

preserves the Poincaré supersymmetries

γ0θ
1ı̂ =iθ1ı̂

, γ0θ
2ı̂ =−iθ2ı̂

,

θ̄1ı̂γ0 =iθ̄1ı̂, θ̄2ı̂γ0 =−iθ̄2ı̂, (A2)

with ı̂= 1̂, 2̂. We only use the gauge fields A
(2`+1)
µ and Â

(2`)
µ

and matter fields that couple to them. A general Wilson loop
would be of the form

W
(`)

1/2
=P exp

(

−i

∫

dτL
(`)

1/2
(τ )

)

,

L
(`)

1/2
=

(

A(2`+1) f̄
(2`)
1

f
(2`)
2 Â(2`)

)

,

A(2`+1) =A
(2`+1)
µ ẋ

µ +
2π

k

(

M
i
jφ

(2`+1)
i φ̄

j
(2`+1)

+M
ı̂
̂φ

(2`)
ı̂ φ̄

̂
(2`)

)

|ẋ|, (A3)

Â(2`) = Â
(2`)
µ ẋ

µ +
2π

k

(

N
j

i φ̄
i
(2`−1)φ

(2`−1)
j

+N
̂

ı̂ φ̄
ı̂
(2`)φ

(2`)
̂

)

|ẋ|,

f̄
(2`)
1 =

√

2π

k
η̄
(2`)
i ψ

i
(2`)|ẋ|,

f
(2`)
2 =

√

2π

k
ψ̄

(2`)
i η

i
(2`)|ẋ|,

with η̄
(2`)
i and ηi

(2`) being Grassmann even spinors. To make

the loop BPS we must find ḡ
(2`)
1 and g

(2`)
2 that satisfy [53]

δA(2`+1) = i(f̄
(2`)
1 g

(2`)
2 − ḡ(2`)

1 f
(2`)
2 ),

δÂ(2`) = i(f
(2`)
2 ḡ

(2`)
1 −g(2`)

2 f̄
(2`)
1 ), (A4)

δf̄
(2`)
1 =Dτ ḡ

(2`)
1 ≡ ∂τ ḡ

(2`)
1 + iA(2`+1)

ḡ
(2`)
1 − iḡ(2`)

1 Â(2`)
,

δf
(2`)
2 =Dτg

(2`)
2 ≡ ∂τg

(2`)
2 + iÂ(2`)

g
(2`)
2 − ig(2`)

2 A(2`+1)
.

Because of the form of f̄
(2`)
1 and f

(2`)
2 , terms with fields

ψı̂
(2`+1) and ψ̄

(2`+1)
ı̂ should cancel in the variation of A(2`+1).

Similarly, terms with ψ ı̂
(2`−1) and ψ̄

(2`−1)
ı̂ should cancel in the

variation of Â(2`). This forces us to choose

M
i
j =N

j
i = diag(−1,1). (A5)

If we take the ansatz

η̄
(2`)
i = η̄

(2`)
δ
1
i , η

i
(2`) = η(2`)δ

i
1, (A6)

we get the ψ1-loop with

M
ı̂
̂ =N

̂
ı̂ = diag(1,1), (A7)

η̄
(2`)α = β̄(−i,1), η(2`)α =(i,1)β, β̄β=−i.

Or if we take the ansatz

η̄
(2`)
i = η̄

(2`)
δ
2
i , η

i
(2`) = η(2`)δ

i
2, (A8)

we get the ψ2-loop with

M
ı̂
̂ =N

̂
ı̂ = diag(−1,−1), (A9)

η̄
(2`)α = β̄(i,1), η(2`)α =(−i,1)β, β̄β=−i.

We wonder if there is a more general 1/2 BPS Wilson loop
that preserves the same supersymmetries (A2) as the ψ1-loop
and ψ2-loop, at least classically. One of the consequences of
(A4) is that

ḡ
(2`)
1 = ḡ

(2`)ı̂
1 φ

(2`)
ı̂ , g

(2`)
2 = g

(2`)
2ı̂ φ̄

ı̂
(2`), (A10)
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with ḡ
(2`)ı̂
1 and g

(2`)
2ı̂ being Grassmann odd and having no

color index or spinor index. From (A4) and the variation of
A(2`+1) we must have

γ0θ
iı̂ =−iM ı̂

̂θ
i̂− i

√

k

8π

η
i
(2`)ḡ

(2`)ı̂
1 ,

θ̄iı̂γ0 =−iM ̂
ı̂θ̄i̂ +i

√

k

8π

η̄
(2`)
i g

(2`)
2ı̂ . (A11)

Then from (A2) we have

θ
1ı̂ =−M ı̂

̂θ
1̂−

√

k

8π

η
1
(2`)ḡ

(2`)ı̂
1 ,

−θ2ı̂ =−M ı̂
̂θ

2̂−

√

k

8π

η
2
(2`)ḡ

(2`)ı̂
1 ,

θ̄1ı̂ =−M ̂
ı̂θ̄1̂ +

√

k

8π

η̄
(2`)
1 g

(2`)
2ı̂ , (A12)

−θ̄2ı̂ =−M ̂
ı̂θ̄2̂ +

√

k

8π

η̄
(2`)
2 g

(2`)
2ı̂ .

Note that θ1ı̂ and θ2ı̂ are nonvanishing, general and linearly
independent, and similarly θ̄1ı̂ and θ̄2ı̂ are nonvanishing, gen-
eral and linearly independent. First of all, ḡ

(2`)ı̂
1 and g

(2`)
2ı̂

cannot be vanishing, otherwise there would be no solutions
for the matrix M ı̂

̂. Then we must have η1
(2`) = 0 or η2

(2`) = 0,

as well as η̄
(2`)
1 = 0 or η̄

(2`)
2 = 0. When η1

(2`) = 0, we have

M ı̂
̂ = −δı̂

̂, and then there is η̄
(2`)
1 = 0. This gives the ψ2-

loop. When η2
(2`) = 0, we have M ı̂

̂ = δı̂
̂, and then there is

η̄
(2`)
2 = 0. This gives the ψ1-loop.

In summary we have no choices other than the ψ1-loop
and ψ2-loop that satisfies the following conditions.

1) It is constructed by two adjacent gauge fields A
(2`+1)
µ

and Â
(2`)
µ in quiver diagrams and fields that couple to

them in the general form (A3).

2) It preserves the same supersymmetries as the ψ1-loop
and ψ2-loop (A2), at least classically.

This result can be taken as a small step towards classification
of BPS Wilson loops in N = 4 SCSM theories.
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