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Two-dimensional Langevin modeling of fission dynamics of the
excited compound nuclei 188Pt, 227Pa and 251Es
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Abstract: A stochastic approach based on one- and two-dimensional Langevin equations is applied to calculate the

pre-scission neutron multiplicity, fission probability, anisotropy of fission fragment angular distribution, fission cross

section and the evaporation cross section for the compound nuclei 188Pt, 227Pa and 251Es in an intermediate range

of excitation energies. The chaos weighted wall and window friction formula are used in the Langevin equations.

The elongation parameter, c, is used as the first dimension and projection of the total spin of the compound nucleus

onto the symmetry axis, K, considered as the second dimension in Langevin dynamical calculations. A constant

dissipation coefficient of K, γK =0.077(MeV zs)−1/2, is used in two-dimensional calculations to reproduce the above

mentioned experimental data. Comparison of the theoretical results of the pre-scission neutron multiplicity, fission

probability, fission cross section and the evaporation cross section with the experimental data shows that the results

of two-dimensional calculations are in better agreement with the experimental data. Furthermore, it is shown that

the two-dimensional Langevin equations together with a dissipation coefficient of K, γK = 0.077(MeV zs)−1/2, can

satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus 251Es.

However, a larger value of γK =0.250(MeV zs)−1/2 is needed to reproduce the anisotropy of fission fragment angular

distribution for the lighter compound nucleus 227Pa.
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1 Introduction

During recent decades different dynamical and sta-
tistical models have been extensively and rather success-
fully used to elucidate many problems of fusion–fission
reactions (see, for example Refs. [1-20]). Many re-
searchers in their computational representations of dif-
ferent features of fusion–fission reactions have assumed
that compound nuclei have zero spin about the symme-
try axis. This assumption is not consistent with either
the statistical model or with a dynamical treatment of
the orientation degree of freedom, the K coordinate, as
first pointed out by Lestone in Ref. [21]. The authors
in Ref. [10] also stressed that a large volume of heavy-
ion-induced fission data needs to be reanalyzed using a
dynamical treatment of the orientation degree of free-
dom. Consequently, in the present study we consider
the dynamical evolution of the orientation degree of free-
dom K to calculate the pre-scission neutron multiplicity,
fission probability, anisotropy of fission fragment angu-
lar distribution, fission cross section and the evapora-
tion cross section for the compound nuclei 188Pt, 227Pa

and 251Es. Furthermore, in our calculations, we consider
the deformation effects on determination of the particle
binding energies [22] to accurately reproduce the above
mentioned experimental data.

The present paper has been arranged as follows. In
Section 2, we describe the model and basic equations.
The results of calculations are presented in Section 3.
Finally, concluding remarks are given in Section 4.

2 Details of the model

In the present investigation, we use the well-known
{c,h,α} parameterization [23] to describe the nuclear
shapes. This parameterization was successfully used
both in statistical calculations and in dynamical calcu-
lations. However, we simplify the calculation by consid-
ering only symmetric fission (α = 0) and further ignore
the neck degree of freedom (h = 0). In cylindrical coor-
dinates the surface of a nucleus of mass number A can
be defined as

ρ2(z)= (1−z2/c2
0)(a0c

2
0 +b0z

2), (1)
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where {
c0 = cR, R =1.16A1/3

a0 =1/c3−b0/5, b0 =(c−1)/2,
(2)

where z is the coordinate along the symmetry axis and ρ
is the radial coordinate. The Langevin equations in one
dimension can be expressed as

dp

dt
=−p2

2
∂

∂c

(
1
m

)
− ∂F

∂c
−ηċ+R(t),

dc

dt
=

p

m(c)
, (3)

where c is the elongation parameter and p is the conju-
gate momentum. m and η are the shape-dependent col-
lective inertia and friction coefficients, respectively. R(t)
is a random force with the properties 〈R(t)〉 = 0 and
〈R (t)R (t′)〉 = 2ηTδ (t− t′), and F is the free energy of
the system

F (c,T )= V (c)−a(c)T 2, (4)

where V (c) and T are the potential energy and tem-
perature of the system, respectively. The coordinate-
dependent level density parameter a(c) can be considered
as follows

a(c)= avA+asA
2/3Bs(c), (5)

where A is the mass number of the compound nucleus,
and Bs is the dimensionless functional of the surface en-
ergy in the liquid drop model. The values of the pa-
rameters av = 0.073 MeV−1 and as = 0.095 MeV−1 in
Eq. (5) are taken from the work of Ignatyuk et al. [24].
The collective inertia, m, is obtained by assuming an in-
compressible irrotational flow and making the Werner–
Wheeler approximation [25]. The potential energy can
be obtained from the liquid drop model with a finite
range of nuclear forces as Refs. [10, 26]

V (c,A,Z,I,K,T )= (S′(c)−1)E0
s (A,Z)

+(C(c)−1)0.7053
Z2

A1/3
+

(I(I +1)−K2)~2

I⊥(c)
4
5
MR2

0 +8Ma2

+
K2~2

I‖(c)
4
5
MR2

0 +8Ma2

, (6)

where E0
c and E0

s are the Coulomb and surface energies
of the corresponding spherical system and can be deter-
mined as Refs. [27, 28]. C(c), I⊥(c) and I‖(c) are the
Coulomb energy and moments of inertia perpendicular
to and about the symmetry axis for a sharp-edged nu-
clear density distribution. M and R0 are the mass and
radius of the spherical system. S′(c) is an empirically
adjusted surface energy in units of the corresponding
spherical value [26] and a = 0.6 fm. Figure 1 shows the
potential energy surface calculated with Eq. (6) for the

compound nucleus 227Pa in the collective coordinates c
and K at I = 30~. It can be seen from Fig. 1 that the
inclusion of the K coordinate changes the fission barrier
height. It is also clear from Fig. 1 that the height of the
potential energy surface increases with increasing K.

Fig. 1. (color online) The potential energy surface
for the compound nucleus 227Pa in the collective
coordinates c and K at I =30~.

In our calculations, we should specify the entrance
channel through which a compound nucleus is formed.
Assuming complete fusion of the projectile with the tar-
get, the spin distribution of the compound nucleus can
be described by the formula

dσ(I)
dI

=
2π

k2

2I +1

1+exp
(

I−Ic

δI

) , (7)

where Ic is the critical spin and δI is the diffuseness. The
parameters Ic and δI can be approximated by the rela-
tions presented in Ref. [13]. The initial spin of the com-
pound nucleus can be obtained by sampling the above
spin distribution function.

In the present calculations, dissipation is generated
through the chaos weighted wall and window friction for-
mula. For small elongation before neck formation we use
the chaos weighted wall formula, and after neck forma-
tion we use the chaos weighted wall and window friction
formula

η(c)=

{
µ(c)ηwall(c) for c< cwin

µ(c)ηwall(c)+ηwin(c) for c> cwin.
(8)

The magnitude of chaoticity µ changes from 0 to 1 as
the nucleus evolves from a spherical to a deformed shape.
The chaoticity µ is a measure of chaos in the single par-
ticle motion and depends on the shape of the nucleus.
In the classical picture this can be given as the average
fraction of the nucleon trajectories which are chaotic and
is evaluated by sampling over a large number of classical
trajectories for a given shape of the nucleus. Each such
trajectory is identified either as a regular or a chaotic
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one by considering the magnitude of its Lyapunov expo-
nent and the nature of its variation with time [29]. ηwall

and ηwin can be calculated as Refs. [30–32]. For nuclear
shapes featuring no neck (c< cwin)

ηwall(c)=
πρm

2
v̄

∫ zmax

zmin

(
∂ρ2

∂c

)2
[
ρ2 +

(
1
2

∂ρ2

∂z

)2
]−1/2

dz,

(9)
and for nuclear shapes featuring a neck (c> cwin)

ηwall(c)=
πρm

2
v̄

{∫ zN

zmin

(
∂ρ2

∂c
+

∂ρ2

∂z

∂D1

∂c

)2

×
[
ρ2 +

(
1
2

∂ρ2

∂z

)2
]−1/2

dz+
∫ zmax

zN

(
∂ρ2

∂c
+

∂ρ2

∂z

∂D2

∂c

)2

×
[
ρ2 +

(
1
2

∂ρ2

∂z

)2
]−1/2

dz



 , (10)

ηwin(c)=
1
2
ρmv̄

(
∂R

∂c

)2

∆σ, (11)

where ρm is the mass density of the nucleus, v̄ is the
average nucleon speed inside the nucleus, D1,D2 are po-
sitions of mass centers of the two parts of the fissioning
system relative to the center of mass of the whole system,
ρ is the radial coordinate of the nuclear surface, ∆σ is
an area of the window between two parts of the system,
R is the distance between centers of mass of future frag-
ment, zN is the position of the neck plane that divides
the nucleus into two parts, and zmin and zmax are the left
and right ends of the nuclear shape.

In our calculations, we start modeling fission dynam-
ics from the ground state with the excitation energy E∗

of the compound nucleus. Evaporation of pre-scission
light particles along a Langevin trajectory is taken into
account using a Monte Carlo simulation technique. The
decay widths for emission n,p,α and γ quanta are cal-
culated at each Langevin time step ∆t. The emission of
a particle is allowed by asking at each time step along
the trajectory whether the ratio of the Langevin time
step ∆t to the particle decay time τpart is larger than a
random number ξ

∆t/τpart〉ξ (0 6 ξ 6 1), (12)

where τpart = ~/Γ tot and Γtot =
∑

v

Γv, (v =n,p,α,γ).

The probabilities of decay via different channels can be
calculated using a standard Monte Carlo cascade proce-
dure where the kind of decay is selected with the weights
Γv/Γtot. After the particle type is randomly chosen, the
kinetic energy εv of the emitted particle is also generated
via a Monte Carlo procedure. The intrinsic excitation

energy, mass, and spin of the residual compound nucleus
are recalculated and the dynamics is continued. The loss
of angular momentum is taken into account by assuming
that each neutron, proton, or γ quantum carries away 1~
while the α particle carries away 2~. In the simulation of
evolution of a fissile nucleus a Langevin trajectory either
reaches the scission point, in which case it is counted
as a fission event, or if the excitation energy for a tra-
jectory which is still inside the saddle reaches the value
Eint+Ecoll <min(Bv,Bf), the event is counted as an evap-
oration residue (Bv is the binding energy of the particle
v =n,p,α,γ and Bf is the fission barrier height).

The particle emission width of a particle of kind ν
can be calculated as in Ref. [33]:

Γv =(2sv +1)
mv

π2~2ρc(Eint)

×
∫ Eint−Bv

0

dεvρR(Eint−Bv−εv)εvσinv(εv), (13)

where ρc(Eint) and ρR(Eint−Bv−εv) are the level densi-
ties of the compound and residual nuclei, sv is the spin
of the emitted particle v, and mv is its reduced mass
with respect to the residual nucleus. The intrinsic en-
ergy and the separation energy of particle ν are denoted
by Eint and Bv. The variable εν is the kinetic energy of
the evaporated particle v. The inverse cross sections can
be written as [33]:

σinv(εv)=

{
πR2

v(1−Vv/εv) for εv >Vv

0 for εv <Vv

, (14)

with

Rv =1.21[(A−Av)1/3 +A1/3
v ]+(3.4/ε1/2

v )δv,n, (15)

where Av is the mass number of the emitted particle
v= n,p,α. The barriers for the charged particles are

Vv = [(Z−Zv)ZvKv]/(Rv +1.6), (16)

with Kv =1.15 for proton and 1.32 for α.
The width of the gamma emission can be calculated

as in Ref. [34].
The conservation of energy is satisfied by

E∗ =Eint(t)+Ecoll +V (c,I,K)+Eevap(t), (17)

where E∗ is the total excitation energy of the nucleus,
Ecoll and Eevap(t) are the kinetic energy of the collec-
tive motion of the nucleus and energy carried away by
evaporated particles, respectively. The variation of the
orientation degree of freedom (K coordinate) can be de-
termined by using the following equation [10]

dK =−γ2
KI2

2
∂V

∂K
dt+γKI

√
Tdtξ(t), (18)
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where γK is a parameter controlling the coupling be-
tween the orientation degree of freedom K and the heat
bath and ξ(t) is a random variable that possesses the fol-
lowing statistical properties 〈ξi〉= 0 and 〈ξi(t1)ξj(t2)〉=
2δijδ(t1− t2). By averaging Eq. (18), it can be shown
that

d〈K〉
dt

=−γ2
KI2

2

〈
∂V

∂K

〉
. (19)

From the expression for the rotational energy (the last
two terms in Eq. (6)), it follows that

d〈K〉
dt

=−γ2
KI2~2

2Jeff

〈K〉 . (20)

Assuming a constant γK , it can be shown that the solu-
tion of this equation has the form

〈K(t)〉K0
=K0 exp

[
−γ2

KI2~2

2Jeff

(t− t0)
]
, (21)

which gives the following expression for the relaxation
time as

τK =
2Jeff

γ2
KI2~2

. (22)

The authors in Refs. [10, 35], based on the works of
Døssing and Randrup [36, 37], have shown that the dis-
sipation coefficient of K can be calculated as

γK(c)=
1

RRN

√
2π3n0

√
JR |Jeff |J‖

J3
⊥

, (23)

where RN is the neck radius, R is the distance between
the centers of mass of the nascent fragment, n0 =0.0263
MeV zs fm−4 is the bulk flux in the standard nuclear
matter [36] and JR = MR2/4 for a reflection symmetric
shape. It should be noted that the Langevin equation for
the K coordinate, Eq. (18), and the Langevin equations,
Eq. (3), are connected through the potential energy. The
Langevin dynamics of the K coordinate depends on the
value of the potential energy. At the same time, the ro-
tational part of the potential energy is dependent on the
value of K at time t. Consequently, in this way K co-
ordinate can affect the dynamical evolution of the shape
variable.

The fission cross section can be obtained in terms of
the fusion cross section as follows

σfiss =
∑

I

σfus(I)
Γf

Γtot

. (24)

In the present paper, we use the saddle point transition
model (SPTS) [38–40] to analyze the fission fragment
angular distributions. In analyzing the fission fragment
angular distributions, it is usually assumed that fission
fragment travel in the direction of the symmetry axis of
the nucleus. Consequently, the fission fragment angular

distributions can be determined by three quantum num-
bers: I,M,K, where I is the spin of a compound nucleus,
M is the projection of I on the axis of the projectile ion
beam, and K is the projection of I on the symmetry axis
of the nucleus. In the case of heavy-ion-induced fission
reactions, the spin of the compound nucleus is usually
much larger than the ground state spins of the target
and projectile, and is perpendicular to the beam axis, so
that M = 0. At fixed values of I and K, the angular
distribution can be determined as follows

W (θ,I,K)= (I +1/2)
∣∣dI

M=0,K(θ)
∣∣2 , (25)

where θ is the angle between the beam axis and the nu-
clear symmetry axis and function dI

M,K(θ) can be defined
as in Ref. [38]. At high values of I,W (θ,I,K) can be
approximated as

W (θ,I,K)≈ I+1/2
π

×[
(I+1/2)2 sin2 θ−K2

]1/2
. (26)

The fission fragment angular distribution can be calcu-
lated by averaging Eq. (25) over the quantum numbers
I and K as follows

W (θ)=
∞∑

I=0

σI

I∑
K=−I

P (K)W (θ,I,K). (27)

It is clear from Eq. (27) that for calculation of the an-
gular distribution, it is necessary to specify the type of
distributions σI and P (K) of the compound nuclei over I
and K, respectively. In the SPTS model an equilibrium
distribution of K values is assumed, this is determined
by the Boltzmann factor exp(−Erot/T ) [40] at the sad-
dle point. Therefore, the equilibrium distribution with
respect to K can be expressed as

Peq(K)=
exp(−K2/(2K2

0 ))
I∑

K=−I

exp(−K2/(2K2
0 ))

, (28)

where variance of the equilibrium K distribution, K0,
is given by the expression K2

0 = (T/~2)Ieff and Ieff =
I‖I⊥/(I⊥−I‖), where I‖, I⊥, are the parallel and perpen-
dicular moments of inertia which are calculated at the
transition state and T is the nuclear temperature. It can
be shown that the anisotropy of fission fragment angular
distribution can be given by the approximate relation

A =
〈W (180◦)〉
〈W (90◦)〉 ≈ 1+

〈I2〉
4K2

0

. (29)
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3 Results and discussion

In the present investigation, we have used a stochastic
approach based on one- and two-dimensional Langevin
equations to calculate the pre-scission neutron multiplic-
ity, fission probability, anisotropy of fission fragment an-
gular distribution, fission cross section and the evap-
oration cross section for the compound nuclei 188Pt,
227Pa and 251Es produced in the reactions 19F+169Tm,
19F+208Pb and 19F + 232Th, respectively. In the one-
dimensional calculations we have used only the elonga-
tion parameter c and in the two-dimensional calculations,
we have used the elongation parameter c and the projec-
tion of the total spin of the compound nucleus onto the
symmetry axis. Furthermore, in our dynamical calcula-
tions, we have used a constant dissipation coefficient of
K, γK = 0.077(MeV zs)−1/2 to simulate the dynamics of
nuclear fission of the compound nuclei 188Pt, 227Pa and
251Es. It should be stressed that the authors in Ref. [41]
obtained the value of 0.077 (MeV zs)−1/2 for the dissipa-
tion coefficient of K. Figures 2 and 3 show the results of
pre-scission neutron multiplicity and fission probability

Fig. 2. (color online) Pre-scission neutron multi-
plicities for the compound nuclei 188Pt and 251Es
as a function of excitation energy. The open tri-
angles and open squares are the calculated results
with one- and two-dimensional Langevin equa-
tions, respectively. The closed circles are the ex-
perimental data [42, 43].

Fig. 3. (color online) Fission probability as a
function of excitation energy for the compound
nucleus 188Pt. The open triangles and open
squares are the calculated results with one-
and two-dimensional Langevin equations, respec-
tively. The closed circles are the experimental
data [44].

calculated for the compound nuclei 188Pt and 251Es. It
is clear from Figs. 2 and 3 that the results of the two-
dimensional calculations can reproduce the experimental
data more accurately than the one-dimensional calcula-
tions.

It can be seen from Fig. 2 that the two-dimensional
calculations predict a larger pre-scission neutron multi-
plicity than the one-dimensional calculations. This can
be explained as follows: the fission barrier height in-
creases when considering the effect of the K coordinate
in calculation of the potential energy (see Fig. 1). Such
an increase of fission barrier height decreases the fission
rate and increases the fission time and consequently in-
creases the number of evaporated pre-scission particles.

It can also be seen from Fig. 3 that at higher excita-
tion energies the fission probability reaches a stationary
value. This is because with increasing excitation energy
the pre-scission particle multiplicity increases and each
emission of a light particle carries away excitation en-
ergy and angular momentum, therefore the fission barrier
height of the residual nucleus increases and consequently
the fission event is less and less probable.

In our calculations, in order to distinguish only the
effect of the K coordinate on the fission rate, we have per-
formed the calculations with fixed spin I =30~ and with-
out taking into account the evaporation of pre-scission
particles. In Fig. 4, we have demonstrated the influence
of the K coordinate on the fission rate of the compound
nucleus 188Pt at fixed spin I = 30~ and E∗ = 80 MeV.
It is clear from Fig. 4 that the fission rate decreases
when considering the effect of the K coordinate in two-
dimensional calculations.

In the present investigation, we have also calculated
the fission and evaporation cross sections for the com-
pound nucleus 188Pt as a function of excitation energy.
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The results of the calculations are presented in Figs. 5
and 6. It can be seen from Figs. 5 and 6 that the re-
sults of the two-dimensional calculations can reproduce
the experimental data more accurately.

Fig. 4. (color online) The results of fission rate for
the compound nucleus 188Pt as a function of time
at fixed spin I =30~ and E∗=80 MeV. The solid
and dotted curves are the calculated results with
one- and two-dimensional Langevin equations, re-
spectively.

Fig. 5. (color online) Results of fission cross sec-
tion for the compound nucleus 188Pt as a func-
tion of excitation energy. The open triangles and
open squares are the calculated results with one-
and two-dimensional Langevin equations, respec-
tively. The experimental data (closed circles) are
taken from Ref. [44].

Finally, we have calculated the anisotropy of the fis-
sion fragment angular distribution for the compound nu-
clei 227Pa and 251Es. Figure 7 shows the calculated re-
sults of anisotropy of the fission fragment angular dis-
tribution for the compound nuclei 227Pa and 251Es. The
open triangles and open squares in Fig. 7 are the cal-
culated results of one- and two-dimensional Langevin
equations together with γK = 0.077(MeV zs)−1/2 re-
spectively, and the open circles are the results of the
two-dimensional Langevin equations together with γK =
0.250(MeV zs)−1/2.
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Fig. 6. (color online) Results of evaporation
residue cross section for the compound nucleus
188Pt as a function of excitation energy. The
open triangles and open squares are the calculated
results with one- and two-dimensional Langevin
equations, respectively. The experimental data
(closed circles) are taken from Ref. [44].

Fig. 7. (color online) Anisotropy of fission frag-
ment angular distribution for the compound nu-
clei 227Pa and 251Es as a function of excitation
energy. The experimental data (closed circles) are
taken from Refs. [45, 46].

It can be seen from Fig. 7 that the results of the
two-dimensional calculations together with a dissipation
coefficient of K, γK =0.077(MeV zs)−1/2, can satisfacto-
rily reproduce the anisotropy of fission fragment angular
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distribution for the heavy compound nucleus 251Es.
However, a larger value of γK = 0.250(MeV zs)−1/2 is
needed to reproduce the anisotropy of fission fragment
angular distribution for the lighter compound nucleus
227Pa. This can be explained by considering Eq. (22)
for the relaxation time of the K collective coordinate.
The larger γK value causes a faster relaxation of the K
coordinate and more narrow K distribution, which cor-
responds to the large A values as can be seen from Eq.
(29).

4 Conclusions

A stochastic approach based on one- and two-
dimensional Langevin equations has been applied to
reproduce the experimental data on the pre-scission neu-
tron multiplicity, fission probability, anisotropy of fission
fragment angular distribution, fission cross section and
the evaporation cross section for the compound nuclei
188Pt, 227Pa and 251Es. The chaos weighted wall and win-
dow friction formula has been used in the Langevin equa-
tions. In the two-dimensional calculations, a constant

dissipation coefficient of K, γK = 0.077(MeV zs)−1/2

has been used to reproduce the above mentioned ex-
perimental data. Comparison of the theoretical results
of the pre-scission neutron multiplicity, fission proba-
bility, fission cross section and the evaporation cross
section with the experimental data showed that the re-
sults of the two-dimensional calculations are in better
agreement with the experimental data. Furthermore,
one- and two-dimensional Langevin equations have been
used to calculate the anisotropy of fission fragment an-
gular distribution for the compound nuclei 227Pa and
251Es. It was shown that the two-dimensional Langevin
equations together with a dissipation coefficient of K,
γK =0.077(MeV zs)−1/2 can satisfactorily reproduce the
anisotropy of fission fragment angular distribution for
the heavy compound nucleus 251Es. However, a larger
value of γK = 0.250(MeV zs)−1/2 is needed to reproduce
the anisotropy of fission fragment angular distribution
for the compound nucleus 227Pa.

The support of the Research Committee of the Per-
sian Gulf University is greatly acknowledged.
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13 P. Fröbrich and I. I. Gontchar, Phys. Rep., 292: 131 (1998)
14 H. Eslamizadeh, Int. J. Mod. Phys. E, 21: 1 (2012)
15 H. Eslamizadeh, Chinese Phys. C, 34: 1714 (2010)
16 W. Ye and N. Wang, Tian J. Phys. Rev. C, 90: 041604 (2014)
17 W. Ye and J. Tian, Phys. Rev. C, 91: 064603 (2015)
18 J. Tian, N. Wang and W. Ye, Chinese Phys. C, 39: 034102

(2015)
19 E. G. Ryabov, A. V. Karpov, P. N. Nadtochy and G. D. Adeev,

Phys. Rev. C, 78: 044614 (2008)
20 H. Eslamizadeh and M. Pirpour, Chinese Phys. C, 38: 064101

(2014)
21 J. P. Lestone, Phys. Rev. C, 59: 1540 (1999)
22 N. Wang and W. Ye, Phys. Rev. C, 87: 051601 (2013)
23 M. Brack et al, Rev. Mod. Phys., 44: 320 (1972)

24 A. V. Ignatyuk et al, Yad. Fiz., 21: 1185 (1975)
25 K. T. R. Davies, A. Sierk and J. R. Nix, Phys. Rev. C, 13:

2385 (1976)
26 J. P. Lestone, Phys. Rev. C, 51: 580 (1995)
27 W. D. Myers and W. J. Swiatecki, Nucl. Phys., 81: 1 (1966)
28 W. D. Myers and W. J. Swiatecki, Ark Fys., 36: 343 (1967)
29 J. Blocki et al, Nucl. Phys. A, 545: 511c (1992)
30 G. Chaudhuri, and S. Pal, Phys. Rev. C, 65: 054612 (2002)
31 S. Pal and T. Mukhopadhyay, Phys. Rev. C, 57: 210 (1998)
32 D. V. Vanin et al, Phys. Rev. C, 59: 2114 (1999)
33 M. Blann, Phys. Rev. C, 21: 1770 (1980)
34 J. E. Lynn, The theory of neutron resonance reactions (Claren-

don: Oxford, 1968), p.325
35 S. G. McCalla and J. P. Lestone, Phys. Rev. Lett., 101: 032702

(2008)
36 T. Døssing and J. Randrup, Nucl. Phys. A, 433: 215 (1985)
37 J. Randrup, Nucl. Phys. A, 383: 468 (1982)
38 R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Aca-

demic: New York, 1973)
39 A. Bohr in Proceedings of the United Nations international

conference on the peaceful uses of atomic energy (United Na-
tions: New York, 1956), 2: 151

40 I. Halpern and V. M. Strutinsky, in Proceedings of the United
Nations international conference on the peaceful uses of atomic
energy (United Nations: Geneva, 1958), 15: 408

41 J. P. Lestone et al, J. Phys. G: Nucl. Part. Phys., 23: 1349
(1997)

42 D. J. Hinde et al, Phys. Rev. C, 45: 1229 (1992)
43 J. O. Newton et al, Nucl. Phys. A, 483: 126 (1988)
44 R. J. Charity et al, Nucl. Phys. A, 457: 441 (1986)
45 B. B. Back et al, Phys. Rev. C, 32: 195 (1985)
46 Z. Liu et al, Phys. Rev. C, 54: 761 (1996)

024103-7


