
Chinese Physics C Vol. 39, No. 7 (2015) 076102

A data readout approach for physics experiments *

HUANG Xi-Ru(�â[)1,2;1) CAO Ping(ù²)1,2;2) GAO Li-Wei(på�)1,2 ZHENG Jia-Jun(xZd)1,2

1 State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
2 Anhui Key Laboratory of Physical Electronics, Department of Modern Physics, University of Science and

Technology of China, Hefei 230026, China

Abstract: With increasing physical event rates and the number of electronic channels, traditional readout schemes

meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane. In this

paper, a high-speed data readout method based on the Ethernet is presented to make each readout module capable

of transmitting data to the DAQ. Features of explicitly parallel data transmitting and distributed network architecture

give the readout system the advantage of adapting varying requirements of particle physics experiments. Furthermore,

to guarantee the readout performance and flexibility, a standalone embedded CPU system is utilized for network

protocol stack processing. To receive the customized data format and protocol from front-end electronics, a field

programmable gate array (FPGA) is used for logic reconfiguration. To optimize the interface and to improve the

data throughput between CPU and FPGA, a sophisticated method based on SRAM is presented in this paper. For

the purpose of evaluating this high-speed readout method, a simplified readout module is designed and implemented.

Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ.

Key words: data readout, physics experiments, readout system, data acquisition

PACS: 29.85.Ca DOI: 10.1088/1674-1137/39/7/076102

1 Introduction

In a typical particle physics experiment, the read-
out system is generally implemented in a standard crate
(e.g. VME). The crate contains a variety of electronic
modules, generally including: readout modules used for
receiving data from the front-end electronics (FEE) and
transmitting event data to the crate controller via the
crate backplane bus, and a crate controller used for col-
lecting event data and sending event data through Gi-
gabit networks to the data acquisition (DAQ) system in
real time [1]. Fig. 1 shows a simplified version of the
architecture of a typical readout system.

An “event” describes the result of a single reaction
between two colliding particles in nuclear and particle
physics. Among the large amounts of events, only a rare
event is associated with the physics objects (electrons,
muons, photon, etc.) of interest to physicists. In order
to take out most of the irrelevant events and reduce the
challenges of storage, it is essential to realize an efficient
trigger system to filter events. In a conventional data
acquisition electronics system, the level-1 trigger that
makes the first level of event selection is implemented by

Fig. 1. (color online) Simplified architecture of a
typical readout system.

hardware and provides trigger signals for readout mod-
ules to select event data. As a result, the data rate to be
transmitted can be reduced by several orders of magni-
tude. However, research on various particle physics ex-
periments shows that the physical event rate and number
of electronic channels are increasing. ATLAS, which is
a particle physics experiment at the Large Hadron Col-
lider at CERN, has over 107 electronic channels and the
raw data rate is up to hundreds of GBytes/s [2, 3]. In

Received 24 October 2014

∗ Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of
Particle Detection and Electronics (201301)

1) E-mail: xiru@mail.ustc.edu.cn

2) E-mail: cping@ustc.edu.cn
©2015 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

076102-1



Chinese Physics C Vol. 39, No. 7 (2015) 076102

addition, some collider physics experiments, for exam-
ple GREAT [4] at Jyväskylä and CBM [5] at GSI/FAIR,
have begun to use a triggerless data collection method
called Total Data Readout [6] to solve some problems
(e.g. dead time) caused by the traditional trigger struc-
ture. Here, the “triggerless” is not entirely without trig-
gering, but the hardware trigger is replaced by a soft-
ware trigger in the DAQ system. Therefore, the readout
scheme meets the challenge of improving readout speed
caused by the limited bandwidth of the crate backplane.

Advanced Telecommunications Computing Architec-
ture (ATCA) [7] developed by the PCI Industrial Com-
puter Manufacturers Group (PICMG) is a set of indus-
try standard specifications for the next generation of
telecommunication network and data center equipment.
The ATCA backplane provides point-to-point connec-
tions between the boards and supports the dual star,
dual-dual star, and mesh topologies. The dual star topol-
ogy based on 4X InfiniBand links supports 10 Gbit/s of
raw throughput between hub boards and node boards
[8]. The ATCA high performance backplane has been
proposed to develop the next generation of electronics
standards for physics [9]. Despite all of these features,
however, ATCA has not been widely applied and is pop-
ularizing only slowly in particle physics experiments.

The main task of the crate controller in a typical read-
out system is to gather data from the crate backplane
and then transmit them to the DAQ system through
networks. This is a centralized architecture that needs
to improve backplane performance for applications with
higher readout speed requirement. Actually, a decentral-
ized architecture can be used for readout systems as it
has the advantage of improved readout speed, compared
with the centralized architecture.

In this paper, a high-speed data readout method
based on the Ethernet is introduced. A simplified read-

out prototype module is designed and implemented. This
module has a 100 M Ethernet port on it. The test result
shows that the raw data throughput from the readout
module to DAQ can reach up to 70 Mbps.

2 High-speed data readout method

Instead of improving backplane performance, each
readout module is designed to have the capability of
transmitting data to the DAQ, as shown in Fig. 2.

To make each readout module support network com-
munication, a dedicated CPU is utilized to establish an
embedded system. Fig. 3 shows the system architecture
of the method. It consists of two main blocks: embedded
CPU and field programmable gate array (FPGA). There
are three important transmission channels: a high-speed
data transmission channel, a low-speed command trans-
mission channel, and an Ethernet interface. Considering
the fact that the throughput of data upload from FEE
to DAQ is much larger than that of data download to
FEE in particle physics experiments, the high-speed data

Fig. 2. (color online) Simplified architecture of a
new-type of readout system.

Fig. 3. System architecture of the high-speed data readout method.

076102-2



Chinese Physics C Vol. 39, No. 7 (2015) 076102

transmission channel is designed as a simplex mode and
only used for transmitting data from FPGA to CPU,
while the low-speed command transmission channel is
also committed as the simplex mode for sending com-
mands or configurations from CPU to FPGA. Based on
these two dedicated channels, a full-duplex data commu-
nication mode between CPU and FPGA can be realized.

Unrelated with FPGA, the CPU is a standalone chip
for maintaining an embedded Linux operation system.
The TCP/IP protocol stack is supported in the operat-
ing system. This embedded system can be considered
as a small computer based on a particular micropro-
cessor core. This chip generally integrates various nec-
essary features and peripherals such as internal mem-
ory (e.g., ROM, RAM), input/output control unit, serial
bus interface (e.g., serial peripheral interface (SPI), uni-
versal asynchronous receiver transceiver (UART), inter-
integrated circuit (I2C)), and external memory controller
etc. The external memory controller is capable of han-
dling several types of external memories and peripheral
devices, such as SRAM, Flash, and SDRAM. There are
many embedded CPUs that can be considered as a can-
didate for implementing the readout module, such as
ARM, Power PC, MIPS, Am186/88, and so on.

With the help of the embedded Linux system, data
can be packaged with the TCP/IP protocol and sent
to the DAQ, but there lies a problem in how to trans-
fer data from the FEE to this CPU system efficiently
and smoothly in real-time. Considering simplicity and
universality, in this readout architecture, the high-speed
data transmission channel is implemented by using an ex-
ternal SRAM interface which connects CPU and FPGA
together. On one side, the FPGA receives data from the
FEE, re-packages and feeds the data to this SRAM in-
terface. On the other side, the CPU receives data from
this SRAM interface and relays to the DAQ through
the Ethernet port. The use of the SRAM interface
makes it easier to design or implement readout modules,
whether for hardware circuit or FPGA logic. There is
no need to use special IP (intellectual property) cores,
which degrades the cost or requirement for FPGA. The
SRAM interface has advantages of simplicity, low cost
and high performance as well. In fact, the maximum
data throughput of a synchronous SRAM interface can
reach up to 1600 Mbps with 100 MHz running clock and
16 bit data width. The maximum data throughput of an
asynchronous SRAM interface can be up to 800 Mbps
with 20 ns read/write cycle period and 16 bit data width.

Differing from the data channel, the low-speed com-
mand transmission channel is implemented by using a
serial data interface between CPU and FPGA. Besides,
the CPU system must also support a high-speed Ether-
net MAC and physical signal interface, which is used for
transmitting/receiving data to/from Ethernet transmis-
sion lines.

Nowadays, FPGAs have large resources of logic gates
and RAM blocks which make them good for implement-
ing complex digital logic design. In this system architec-
ture, the key task of the FPGA is to process data sent
from the FEE with customized format and protocol, and
to send valid data to the CPU through the high-speed
data channel for Ethernet transmission.

3 Implementation of the module inside

FPGA

During transferring, the CPU reads data from the
FPGA via the SRAM interface. However, FPGA is not
a standard SRAM for CPU. It should always be ready
and respond correctly whenever there is a data receiv-
ing or transmitting transaction. A data synchronization
mechanism should be guaranteed between the CPU and
FPGA. Here a hand-shake protocol is provided. Table 1
lists all of the hand-shake signals.

Table 1. Additional hand-shake signals.

signal name description

The read ready signal is used
read ready

for initiating a data transfer by CPU.

IRQ The interrupt request signal is used for

interrupting CPU by FPGA. When FPGA

detects that the read ready signal is valid, it

will judge whether the data is ready. If it

is ready, FPGA makes the interrupt request

signal valid. Then, when FPGA detects that

the read ready signal is invalid, it will

make the interrupt request signal invalid.

CLK The clock signal is used for synchronizing

signal timing of the SRAM interface. If the

SRAM interface is an asynchronous SRAM

interface, CPU needs to provide a clock

signal for FPGA.

In the FPGA, the main logic module is called the
buffer module. It is in charge of caching data from the
user logic module and sending them to the CPU through
the SRAM bus. Fig. 4 shows the detailed structure of
this buffer module. It consists of three parts: FIFO,
FIFO controller, and state machine. FIFO is used for
caching data. It is designed as an asynchronous FIFO.
It provides a general FIFO interface (including signals
of datain, wrclk, wrreq, wrfull) to the user logic mod-
ule from the input side. From the output side, there is
a data bus connecting it with the SRAM interface. To
guarantee synchronous operation, the clock of the FIFO
output side is provided by the CPU.

The FIFO controller generates the read request sig-
nal for FIFO according to the control signal timing of the
SRAM bus, and does not need to use the address signal
of the SRAM bus. When the read ready signal is valid,
the state machine will judge whether the data in FIFO
is ready by comparing the transmission length with the

076102-3



Chinese Physics C Vol. 39, No. 7 (2015) 076102

Fig. 4. Block diagram of the buffer module.

FIFO count. Then the state machine makes the IRQ
signal valid to respond to the read data request of the
CPU. In addition, the transmission length can be set to
a default value or configured by a command.

4 Implementation of network transmis-

sion

An embedded Linux operating system will be in-
stalled on this microcomputer system. Linux OS pro-
vides complete, powerful network functions for users,
with performance in real-time applications improving
with the development of new scheduling algorithms. The
Linux kernel is released under an open source license, so
anyone can read and modify its code.

4.1 Design of device-driver

A device driver (commonly called a driver) provides a
software interface to hardware devices and tells the oper-
ating system and other software how to access hardware
without needing to know precise details of the hardware
being used. In Linux environments, drivers are built as

modules that can be easily loaded into or unloaded from
the kernel during running time.

For the Linux OS, the buffer module can be viewed
as a device which cannot be driven by the generic SRAM
driver. Therefore, a special driver needs to be prepared
for controlling and managing the buffer module. The
driver can be classified as a character driver. Fig. 5 shows
the structure of the driver in kernel space.

There are several major modules in this structure:
initialization module, exit module, open module, release
module, read module, memory mapping (mmap) mod-
ule, and interrupt handler.

First, the initialization module has to configure the
device resources, for example, set IRQ pin, set read ready
pin, and configure the SRAM interface. Then the mod-
ule allocates a major and a minor number for this char
device. Finally, the initialization is finished after regis-
tration of the char device.

Once the module has been installed successfully, the
driver is ready for work. The transmission software in
user space uses the open method to request the I/O mem-
ory resources according to the memory mapping of CPU.
Then the open method completes an important process:
requesting an interrupt number from the system and in-
stalling an interrupt handler. Finally, if the open method
is called successfully, it will return a file descriptor that
establishes an access path to the device.

In our design scheme, the transmission software does
not use the read method to acquire data, but accesses
the address pointer returned from the mmap method to
fetch data. Procedures for obtaining data are described
as follows: first, the transmission software tries to read
the device and waits for its return. On the kernel side,
the read module first sets read ready pin valid to inform
FPGA that it is ready to receive data. Next a macro

Fig. 5. (color online) Driver in kernel space.

076102-4



Chinese Physics C Vol. 39, No. 7 (2015) 076102

called wait event interruptible is used to put the pro-
cess into an interruptible sleep. Once the data in
the buffer module is ready, an interrupt is generated
and the corresponding handler is immediately evoked.
Then the interrupt handler sets read ready pin invalid
and wakes the read module up by the function called
wake up interruptible. Finally the read module returns
a status flag to the transmission software. At this point,
the read method is complete, and then the transmission
software can access the address pointer to read data.

4.2 Design of software

One of the main tasks of the readout module designed
by the high-speed data readout method is to transfer
data to the concentration center or PC farms through the
Ethernet. To optimize transfer performance, the trans-
mission software residing in the embedded Linux system
must be designed in a simple and parallel structure, as
shown in Fig. 6.

Fig. 6. (color online) Structure of the transmission
software in user space.

There are four kinds of threads in this transmission
software: a command-network creating and monitoring
thread, a command processing thread, a data-network
creating and monitoring thread, and a data transceiv-
ing thread. When the transmission software starts run-
ning, these threads will automatically be created with
detached attributes and be run in parallel in the user
space. The command-network creating and monitoring
thread creates a server socket and then builds a com-
mand channel by accepting connections from the PC
client. This command channel is only used for receiv-
ing commands. After the channel is built, the thread
monitors its connected state. Once the channel is dis-
connected, the thread will close the original channel and
rebuild a new one. The data-network creating and mon-
itoring thread also works in a similar way.

The task of the command processing thread is to
deal with commands. If the command is a local com-
mand used for configuring and controlling the software,
the thread will analyze the command and then make an
appropriate response. If the command is a downward

command used for configuring and controlling the hard-
ware, the thread will send the command to FPGA via
the write method related to the serial device.

The task of the data transceiving thread is to receive
data from the FPGA and then transmit them to the PC
via the Ethernet. During the initialization of the thread,
it creates a file descriptor related to the buffer module by
using the open method and gets an address pointer re-
lated to the physical address space of the buffer module
by using the mmap method. Then in the loop process, it
first needs to ensure that the data in the buffer module
is ready using the read method with the file descriptor,
and next transfers this piece of data to the PC using the
write method with the data server socket and address
pointer, and then returns to the beginning of the loop.

5 Experiments and evaluation

For the purpose of evaluating this high-speed read-
out method, a simplified readout module is designed and
implemented with an AT91RM9200 and EP3C40F780C8
chip.

The AT91RM9200 chip [10] is a microcontroller pro-
duced by the Atmel Corporation, which is based on
the ARM920T 32 bit RISC processor with 16 KB in-
struction and 16 KB data cache memories and mem-
ory management unit (MMU). Its speed can achieve
200 MIPS when working at 180 MHz frequency. The
chip supports a 16 bit asynchronous SRAM interface, a
10/100 Base-T Ethernet MAC, and four universal syn-
chronous/asynchronous receiver transceivers (USART).
Therefore, this chip is able to satisfy the application re-
quirements of the readout method. The EP3C40F780C8
chip [11] is an FPGA of the Cyclone 0 device family,
which is a high functionality, low-power and low-cost
FPGA family of the Altera Corporation.

Here, the high-speed data transmission channel is im-
plemented by using the static memory controller, an ex-
ternal interrupt source, a programmable external clock
signal and a programmable I/O line of the AT91RM9200
chip. The low-speed command transmission channel is
implemented by using a USART of the AT91RM9200
chip. The prototype of the readout module is shown in
Fig. 7.

To measure the network transfer performance of the
readout module, the Ethernet port of the readout mod-
ule is directly connected to a PC using a good wire.
Then an embedded Linux OS with kernel version 2.6
runs on the readout module. As shown in Fig. 8, route
1 is used for measuring the throughput of the SRAM
bus from EP3C40F780C8 to AT91RM9200, route 2 is
used for measuring the throughput of the 100M Ether-
net from AT91RM9200 to the PC, and route 3 is used
for measuring the throughput of the 100M Ethernet from
EP3C40F780C8 to PC. Moreover, the data in the buffer

076102-5



Chinese Physics C Vol. 39, No. 7 (2015) 076102

Fig. 7. (color online) Prototype PCB of the read-
out module.

Fig. 8. Measurement scheme.

Fig. 9. Data throughput of the SRAM interface.

module is always ready.
The measurement of the three throughputs men-

tioned above is limited in a wide range of transmission
lengths, as shown in Figs. 9 and 10. There are two main
time costs in route 1 and route 3: data synchronization
time and data transmission time. When the transmis-
sion length is relatively small, e.g. 256 bytes, most of the

time is spent on data synchronization. With the increas-
ing of transmission length, data synchronization time de-
creases. Meanwhile, the throughput of route 1 and 3 in-
creases and finally approaches a stable value. For trans-
mission length larger than 16384 bytes, the throughput
of route 2 and 3 can reach up to 70 Mbps, while route 1
can reach more than 350 Mbps.

Fig. 10. Network throughput.

6 Conclusions and future work

A high-speed data readout method based on embed-
ded CPU and FPGA is presented in this paper. This
method makes each readout module capable of commu-
nicating with the DAQ system through the network. It
has the advantages of simplicity, universality, expansibil-
ity and low cost. It is suitable for various applications of
data readout in particle physics experiments. To verify
and evaluate this method, a prototype readout module
has been designed and implemented. Test results show
that this module can support up to 70 Mbps valid data
throughput from the readout module to the DAQ.

To further improve the data throughput (e.g.
1000 Mbps), a more powerful CPU should be adopted for
data and protocol processing. To achieve higher perfor-
mance of transmitting data to the CPU from the FPGA
with this method, there is little modification except for
improving the clock frequency and modifying the logical
behavior of the SRAM interface based on the CPU.

References

1 BES0 Design Report. BES0 DAQ System (Online).
http://bes.ihep.ac.cn/bes3/design05/design/design1.htm

2 ATLAS Collaboration. ATLAS Inner Detector: Technical De-
sign Report. Volume 1. 1997, CERN-LHCC-97-016

3 ATLAS Collaboration. ATLAS High-Level Trigger, Data-
Acquisition and Controls: Technical Design Report. 2003,
CERN-LHCC-2003-022

4 Page R D, Andreyev A N, Appelbe D E et al. Nuclear In-
struments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 2003, 204: 634–637

5 Friese V. Nuclear Physics A, 2006, 774: 377–386
6 Lazarus I H et al. IEEE Trans. on Nucl. Sci., 2001, 48(3): 567
7 http://www.picmg.org/openstandards/advancedtca/
8 http://picmg.org//wp-content/uploads/PICMG 3 2 Shortfor

m.pdf
9 Raymond S. Larsen. Advances in Developing Next-Generation

Electronics Standards for Physics. Real Time Conference, 2009.
RT’09. 16th IEEE-NPSS. 2009, 7–15

10 http://www.atmel.com/Images/doc1768.pdf
11 http://www.altera.com/literature/hb/cyc3/cyclone3 handbook.

pdf

076102-6


