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Transverse wakefield calculated by the double circuit model
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Abstract: X-band accelerators for multi-bunches are a new way to produce high luminosity and energy efficiency

bunches. The smaller the size and the more bunches, the more severe is the wakefield in the X-band accelerators,

unless some means of strongly suppressing the transverse wakefield is adopted in the design of the accelerating

structure. Here, the derivation of the wakefield function of the double circuit model and its application to the

designed accelerator structure have been demonstrated.
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1 Introduction

For multi-bunch accelerating structures, the long
range transverse wakefield is one of the most important
problems which needs to be addressed, as it has a bad
effect on the transverse emittance. To date, the trans-
verse wakefield can be calculated by four models: the
uncoupled model, single-band equivalent-circuit model,
double-band equivalent-circuit model and the spectral
function method. The calculation of wakefield by the
double circuit model and its application to the accelera-
tor structure is given here.

2 The difference equation

Discussing the influence of the transverse wakefield,
the TM110 mode is the one that contributes the most.
Differences of each model exist in the factors taken into
consideration that affect the parameters of the TM110
mode. In the double circuit model, not only the cou-
pling between the adjacent two cells, but also the effects
between the TM110 and TE111 modes are also consid-
ered. By expanding the fields in each cell into an infinite
set of orthonormal modes, and relating the coefficients
in adjacent cells to one another by treating the iris cou-
pling using Bethe’s static approximation, we can get the
difference equations for the double circuit [1]:

(xm−λ)fm−km+1/2

2
fm+1−

km−1/2

2
fm−1

= −

√

km+1/2k̂m+1/2

2
f̂m+1+

√

km−1/2k̂m−1/2

2
f̂m−1,(1)

(x̂m−λ)f̂m+
k̂m+1/2

2
f̂m+1+

k̂m−1/2

2
f̂m−1

=

√

km+1/2k̂m+1/2

2
fm+1−

√

km−1/2k̂m−1/2

2
fm−1, (2)

where xm, km±1/2, fm are parameters of the TM110

mode, and x̂m, k̂m±1/2, f̂m are parameters of the TE110
mode. An equivalent circuit model of Eqs. (1) and (2)

is shown in Fig. 1 [2], where xm =
1

ω2
m

, x̂m =
1

ω̂2
m

are the

resonant frequencies of loop m of the TM mode and TE
mode respectively.

The double circuit model takes loop m of the chain
to represent cell m of the cavity, and the currents in the

Fig. 1. Equivalent double circuit LC loop of the
accelerator structure.
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two chains vary in time as ejωt, ejω̂t with ω, ω̂ the angle
resonant frequency of the two chains respectively and t
the time, and takes the currents in the frequency domain
as im(ω), îm(ω̂).

First, the parameters of Eqs. (1) and (2) are derived
from the dispersion curve of each cell. The dispersion
curve for the periodic structure corresponding to the
double circuit model is obtained by setting:

fm=f0cos(mφ) and f̂m=f̂0sin(mφ). (3)

In Eqs. (1, 2), taking all parameters independent of m
Eqs. (1, 2) become:

(x−λ−kcosφ)f = −
√

kk̂sinφf̂ , (4)

(x̂−λ+k̂cosφ)f̂ = −
√

kk̂sinφf. (5)

Combining the two equations above, the dispersion rela-
tion of the two modes is:

cosφ=
kk̂−(x−λ)(x̂−λ)

(x−λ)k̂−(x̂−λ)k
. (6)

When the phase shift φ equals zero or π, derived from
Eq. (6), the frequencies of the zero and π modes of the
two bands, which can be obtained by the simulation soft-
ware CST, are given by:

λ(1,2)
0 =x−k,x̂+k̂ and λ(1,2)

π
=x+k,x̂−k̂. (7)

The four parameters x, x̂, k, k̂ can be obtained directly
from Eq. (7). Given the boundary condition correspond-
ing to a structure with N full cells:

f0=f1,fN+1=fN ,κ1/2=κ1,κN+1/2=κN ,

f̂0=−f̂1,f̂N+1=−f̂N ,κ̂1/2=κ̂1,κ̂N+1/2=κ̂N .
(8)

The eigen-functions of the double circuit model can be
then determined by:
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Written in a more compact manner, Eq. (9) simply
becomes:

M̃f̃=λf̃. (13)

By Eq. (13), the eigenmodes of the accelerator struc-
ture equivalent to the double circuit model can be found.

3 The kick factors

Assuming that the cavity is empty at t=0, and the
exciting charge reaches the center of cell m at t=mL/c,
then the charge in the cell m at time t is:

Q(t)=qδ(t−mL/c). (14)

Then in the frequency domain, by the Fourier transform,
Eq. (14) becomes:

Q(ω)=qexp(−jmωL/c). (15)

Then the driving terms in the structure has the effect of
adding
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to the right of Eqs. (1) and (2) respectively.
For the pth eigenvalue, Eq. (13) is written as

M̃f̃p=λpf̃
p, (18)

where M̃ is the matrix of the system, f̃p the pth eigen-
function and λp=ω−2

p the pth eigenvalue.
When the exciting charge enters this system, then the

eigenfunction becomes:
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Combining with Eq. (18) leads to:
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Going back to the time domain,
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The integral in the above equation contains two poles,
at ω =±ωp. According to the residual theorem [3], the
result is:
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In addition, the current in the mth circuit corresponding
to the TM110 mode is [1]:
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The voltage drop caused by the exciting charge in the
loop m is:
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Combining Eqs. (23–25), the voltage drop across the ca-
pacitor is:
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The voltage drop across the capacitor represents the en-
ergy loss of a test particle to the dipole modes of the
cavity. By using the Panofsky-Wenzel theorem [4], the
transverse kick can be obtained from the longitudinal
one,
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Thus, the transverse kick in cell m is:
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Ĉn

)

×sin(ωp(t−nL/c)). (28)

Besides, the value of the capacitor is assumed to be
Cm =(2Km

s,//xexL)−1, where Km
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s /c (29) is

the loss factor of the dipole mode.
So Eq. (28) becomes:
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By the trigonometric function, Eq. (28) can be writ-
ten in terms of amplitude and phases of the modes:
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In space coordinates with a test particle following a dis-
tance s behind the driving charge, the transverse kick is
given by:
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Summing up the contribution of all the cavity cells, the
total kick felt by the test charge is:
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Combining Eq. (32–34) the total kick felt by the test
charge going through the whole structure is:
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Assuming that the couplings are small so that the effects
of any precursor voltage can be ignored, then when s<0,
Ṽ (s)=0, which then leads to
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Fig. 2. (color online) Results of the double circuit model for: (a) the mode spectrum, (b) the mode density (nor-
malized), (c) the product of kick factor and mode density, (d) the kick factor. Red lines show the results of the
uncoupled model and green dashed lines show the results of the double circuit model for comparison.
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The wakefield function of the entire structure is then
given by:

W (s)≈2
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c
. (40)

When taking the effects of the TE111 mode into consid-
eration, the kick factor should be
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Considering the definition of shunt impedance [5] and
Eq. (29)
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4 Wakefield calculation results

Using Eq. (39, 40), the distribution of the wakefield
parameters and its envelope are calculated, giving the
results shown in Figs. 2 and 3.

From Fig. 2, modes of the second band (roughly over
17 GHz) have low kick factors and therefore do not con-
tribute significantly to the wakefield. As can be seen in
Fig. 3, there are some differences between the results of
the uncoupled model and the double circuit model, but
they have the same general tendency.

Fig. 3. (color online) The envelope of the wake
function calculated using the uncoupled model
(red line) and the double circuit model (green
dashed line).

5 Conclusion

On the basis of the eigen-functions of the equivalent
double circuit model, expressions to calculate the long
range transverse wakefield and its parameters, the mode
frequency and kick factor, have been deduced, as shown
in Eqs. (38–43). The results of those parameters of the
designed accelerator structure, calculated by the deduced
expressions, have been given in the end, together with
a comparison with the results of the uncoupled model.
From the comparison of the results of the two different
models, the double equivalent circuit model does give
some more information about the TE111 mode, which
gives secondary impact on the following bunches, just as
the result shows. On the other hand, the comparison of
the wakefield envelope not only gives a support of the
second model, but also shows the effects of the TE111
mode on the distribution of the wakefield envelope.
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