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Double folding analysis of 3He elastic and inelastic scattering to

low lying states on 90Zr, 116Sn and 208Pb at 270 MeV
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Abstract: The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying

states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution

(FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a

modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials

form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary

part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This

comparison provides information about the similarities and differences of the models used in calculations.
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1 Introduction

When we bombard a nucleus with a nucleon or with
light ions like d, 3He, α-particles, etc., various nuclear
phenomena occur, including elastic scattering, inelastic
scattering, nucleon transfer reactions and projectile frag-
mentation, depending on the projectile species and the
bombarding energy. The simplest among these phenom-
ena is the elastic scattering. Elastic scattering can pro-
vide valuable information about the interaction potential
between two colliding nuclei [1]. Inelastic scattering of
3He particles provides useful methods for investigation of
excited states of nuclei. According to the importance of
these reactions, the analysis of experimental data on elas-
tic and inelastic scattering of 3He from different targets
is needed [2–4]. The main problem with investigating
the light heavy ion reactions by using nuclear reaction
models is to determine the most suitable potential form
to explain the experimental data. Optical (OM) and
Folding models (FM) are examples of simplified models
that exist for studying light heavy ion reactions [1, 5–8].
The OM has a potential including real and imaginary
potentials. The real potential plays an important role
in describing the elastic scattering of the reaction. The
imaginary potential expresses the loss of flux into non
elastic channels. The real and imaginary potentials can
be determined with either the phenomenological or the
microscopic model.

In the microscopic model, while the imaginary poten-

tial is taken as phenomenological Woods Saxon (PWS)
or PWS2 type potential, the real potential can be de-
fined using the double folding model (DFM). In DFM,
the density distributions (DD) of both projectile and tar-
get nuclei are used. Therefore, DD used in double folding
calculations is very important in examining nuclear re-
actions.

The purpose of this work is to analyze angular distri-
butions of the elastic and inelastic scattering of 3He with
an energy of 270 MeV leading to the excitation of 90Zr
levels, 2.18 MeV (2+), 2.75 MeV (3−), 116Sn levels 1.29
MeV (2+), 2.27 MeV (3−), and 208Pb levels 4.09 MeV
(2+), 2.61 MeV (3−) MeV [2] in the framework of DFM
by using Fermi density distribution (FDD) of target nu-
clei and Woods Saxon (WS) potential forms with differ-
ent powers (n=1 or 2) as case one and case two. The
similarities and differences between theses two cases are
pleasantly visible in this comparison. The importance of
inelastic scattering analysis to low lying states is to test
the strength of these states within DFM.

The method employed here and discussions are given
in Section 2, and the conclusions are presented in Sec-
tion 3.

2 Analysis and discussion

To study the elastic scattering for the reactions of
3He - particles with 90Zr, 116Sn and 208Pb, the program
code DFPOT [9] has been used. V (r) is the DF potential

Received 5 June 2014

1) E-mail:marwa1374@yahoo.com
©2015 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

034101-1



Chinese Physics C Vol. 39, No. 3 (2015) 034101

carried out by introducing the effective nucleon-nucleon
(NN) interaction over the ground state DD of the two
colliding nuclei. It is evaluated from the expression

V (r)=

∫∫
ρ1(r1)ρ2(r2)VNN(s)dr1dr2. (1)

ρ1(r1) and ρ2(r2) are the nuclear matter density of the
two colliding nuclei, and VNN(s) is the effective NN in-
teraction potential (s=r−r2+r1). VNN(s) is taken to be
a standard Reid-M3Y interaction [10] in the form,

VNN(r)=7999.0
e−4.0r

4.0r
−2134.0

e−2.5r

2.5r
+J00(E)δ(r). (2)

The first and second terms represent the direct part and
the third term represents the exchange part of the in-
teraction potential. It plays an important role in repro-
ducing the experimental results for elastic and inelastic
scattering [11, 12]. The exchange part can be written to
a good approximation in the form [10]

J00(E)=−276

(

1−0.005
E

A

)

, (3)

where E is the energy in the center of mass system and
A is the mass number of the projectile.

In our calculations, the nuclear matter DD of 3He
nucleus has the Gaussian form

ρ=ρ0exp(−αr2), (4)

where α = 0.5505 fm−2, ρ0 = 0.2201 fm−3 [13], and for
90Zr [14], 116Sn and 208Pb [15] the following FDD form
is used

ρ=ρ0

[

1+exp

(

r−R

a

)]

−n

· (n=1 or 2). (5)

The total potential must comprise both the real part
and the imaginary part, the latter being responsible for
the absorption of the incident particle in the inelastic
channels. Since the M3Y interaction is real, the folding
calculation gives the real part of the potential.

U(r)=NrV (r)+iW (r). (6)

In the model used here, the volume real part has the
folded form with normalization factors Nr. We have cho-
sen this form to be WS shape, while the imaginary part
is taken as PWS. The resulting folded form factors, in

addition with PWS potentials parameters in each case
(n=1 or 2) are introduced into the modified program
code DWUCK4 [16] to compute the differential scatter-
ing cross section, in which an additional form factor form
WS2 is added. The calculations for elastic scattering
were calculated by DWUCK4. First, we used WS for
real and PWS for imaginary parts of the potential as
case one. Secondly, in case two, we used WS2 for real
and PWS2 for imaginary parts of the potential. Thus,
the real potentials are represented by

V (r)=−V0

[

1+exp

(

r−Rv

av

)]

−n

,

while the imaginary potentials are represented by

W (r)=−W0

[

1+exp

(

r−Rw

aw

)]

−n

(7)

in which Rv,w = rv,w (A1/3
T +A

1/3
P ) and n=1 or 2. V (r)

is the DF potential of Eq. (1) and Nr, W0, rw, aw, are
variable parameters. Comparisons are shown in Fig. 1
between the present calculations and experimental data.

Fig. 1. Angular distributions of 3He elastically
scattered on 90Zr, 116Sn and 208Pb. The theo-
retical cross section obtained with the DF model
is represented by dotted lines for case one and
solid lines for case two. Experimental points are
denoted by black symbols, � for 90Zr, N for 116Sn
and • for 208Pb.

Table 1. The real and imaginary potentials parameters of 3He elastic scattering on different nuclei.

reaction n V0/MeV Rv/fm av/fm Nr W0/MeV rw/fm aw/fm χ2
R

3He+90Zr 1 143 4.292 1.228 0.78 20 1.20 0.24 0.19

2 209 5.011 1.528 1 29 1.20 0.54 0.09
3He+116Sn 1 143.4 4.795 1.238 0.69 20 1.14 1.0 0.11

2 205.3 5.517 1.529 1 52 1.14 1.19 0.10
3He+208Pb 1 143.8 6.136 1.222 0.69 20 1.18 0.24 0.31

2 192.3 6.861 1.486 1 35 1.18 0.66 0.15
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Fig. 2. Angular distributions of 3He inelastically
scattered on 90Zr (a), 116Sn (b) and 208Pb (c).
The theoretical cross section obtained with the
DF model is represented by solid lines for case
two. Experimental points are denoted by black
symbols.

The variable parameters of the two cases and DF-
equivalent potential parameters (V0, rv, av) are listed in

Table 1. In order to estimate the quality of the fit, one
can calculate a relative error

χ2
R=

1

N

N
∑

i=1

[

(σcalc.(θi)−σexp.(θi)

(σcalc.(θi)+σexp(θi)

]2

, (8)

where N is the number of data points and σcalc.(θi) is
the ith calculated scattering cross section and σexp.(θi) is
the corresponding experimental scattering cross section.

For the first case, the agreement of the theoretical an-
gular distribution with the experimental one is excellent
at forward angles θc.m.< 22o, then discrepancy appeared
in larger angular regions. Thus, these results should be
improved with another theoretical approach. Therefore
secondly in case two, we increased the power of the po-
tential form to be squared as it was successful in many
other analyses within OM [17, 18]. According to an in-
crease of the real normalization factor (Nr = 1) values
by increasing power (n), the results are better than in
case one, with less relative error χ2

R values. This is an
important point in the study of the interaction of 3He
because, when investigated, the interaction of 3He with
different target nuclei within the framework of DFM gen-
erally needed normalization to obtain satisfied agreement
results with the experimental data.

Thus, we used the case two potential parameters in
the inelastic scattering analysis. The difficulty in fitting
elastic scattering cross sections is reflected in the inelas-
tic predictions and indicated a deficiency in the present
potential form.

The analysis of the inelastic scattering of the 3He
particles has been performed and the comparison of the-
oretical calculations and the experimental data has been
presented in Fig. 2.

Table 2. Real normalization factor and χ
2
R values

from best fit to inelastic scattering data for dif-
ferent levels of 90Zr, 116Sn and 208Pb.

reaction n level Nrr χ2
R

3He+90Zr 2 2.18(2+) 0.13 0.14

2.75(3−) 1.40 0.14
3He+116Sn 2 1.29(2+) 0.17 0.03

2.27(3−) 0.84 0.03
3He+208Pb 2 4.09(2+) 0.23 0.19

2.61(3−) 1.44 0.16

In the case of 90Zr and 208Pb (3−) state, there is an
overestimation in forward regions and poor agreement
in case 208Pb (2+) state. The potentials for elastic scat-
tering analysis are subsequently used to calculate the
inelastic scattering cross sections. The calculations are
performed using the modified DWUCK4. The inelastic
potentials are calculated according to the following form

Uλ(r)=NrrV
λ(r)+iW λ(r), (9)
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where λ is the multi-polarity [19]. V λ(r) is the real
folded (transition) inelastic potential multiplied by the
normalization factor Nrr and W λ(r) is an imaginary de-
formed PWS potential. The calculated real folded in-
elastic potential normalization factor Nrr as well as the
corresponding values of χ2

R are shown in Table 2.

3 Conclusion

Although there are many detailed analyses concern-
ing the elastic and inelastic scattering angular distribu-
tions of these investigated systems studied in OM with
various potential forms, just a few of them make an ef-
fort to evolve a systematization for the folding potential
parameters. So, we have re-analyzed elastic and inelas-
tic scattering of 3He particles with 90Zr, 116Sn and 208Pb
at 270 MeV with minimal 4-parameter nuclear poten-
tial sets having (WS2+iPWS2) and (WS+iPWS) forms.
When the real potential parameters are used with differ-
ent normalization factors given in this work, FM anal-
yses with these two folded potential sets have provided

different results. Calculations with the squared potential
forms can reproduce the experimental elastic angular dis-
tributions in a good agreement, especially in case 116Sn.
The difficulty found in fitting elastic scattering cross sec-
tions is reflected in the inelastic predictions in case 90Zr
and 208Pb and indicated a deficiency in the present po-
tential form.

However, this approach has shown that an increase
of power (n) from 1 to 2 is accompanied by an increase
of real normalization factor (Nr=1 for all cases) values,
i.e. it does not need normalization to fit the data. The
similarities and differences between the two cases used
in our analysis are pleasantly visible in this comparison.
Generally on the basis of these results, we conclude that
the WS2 form is more suitable than the PWS form for
real potential.

The author thanks researcher Ahmed Fouad (Fac-
ulty of Education, Physics and Chemistry department,
Alexandria University, Egypt) for providing an addi-
tional form factor form WS2 in the DWUCK4 program.
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