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Abstract: We present a new idea to understand the structure of nuclei and compare it to the liquid drop model. After

discussing the probability that the nuclear system may be a fractal object with the characteristic of self-similarity,

the irregular nuclear structure properties and the self-similarity characteristic are considered to be an intrinsic aspect

of the nuclear structure properties. For the description of nuclear geometric properties, the nuclear fractal dimension

is an irreplaceable variable similar to the nuclear radius. In order to determine these two variables, a new nuclear

potential energy formula which is related to the fractal dimension is put forward and the phenomenological semi-

empirical Bethe–Weizsäcker binding energy formula is modified using the fractal geometric theory. One important

equation set with two equations is obtained, which is related to the concept that the fractal dimension should be a

dynamic parameter in the process of nuclear synthesis. The fractal dimensions of the light nuclei are calculated and

their physical meanings are discussed. We compare the nuclear fractal mean density radii with the radii calculated

by the liquid drop model for the light stable and unstable nuclei using rational nuclear fractal structure types. In

the present model of fractal nuclear structure there is an obvious additional feature compared to the liquid drop

model, since the present model can reflect the geometric information of the nuclear structure, especially for nuclei

with clusters, such as the α-cluster nuclei and halo nuclei.

Key words: nuclear radii, fractal dimension, binding energy, nuclear potential energy

PACS: 21.10.Dr DOI: 10.1088/1674-1137/39/10/104101

1 Introduction

Both in theory [1–5] and experiment [6–12], the con-
cept of the cluster structure plays an important role in
nuclear reactions, nuclear structure and nuclear excita-
tions. The nuclear distribution is non-uniform, especially
for halo nuclei. For instance, 11Li has a core and valence
nucleons (9Li+n+n) halo structure and the matter dis-
tribution is very non-uniform [10, 13]. Its radius is much
larger than that given by the usual expression (r0A

1

3 ),
which depends on the uniform-density liquid drop model.

In addition, the phenomenological semi-empirical
Bethe–Weizsäcker binding energy formula [14–16] for the
masses of nuclei has been derived from the liquid drop
model and successfully used to calculate the binding en-
ergies for stable nuclei and nuclei very near the stable
line. However, there are two points we cannot ignore.
On one hand, the liquid drop model for calculating nu-
clear binding energies depends strictly on the experimen-

tal data. On the other hand, it is difficult to describe
light and halo nuclei because it depends on statistics and
cannot reflect the structure properties of the nucleus pre-
cisely. Taking into consideration the fact that, due to the
nuclear particle properties and its quantum motion, it is
not proper to regard the nucleus as a compact sphere
with a smooth surface, and there is no explicit border.
The nucleons in a nucleus are separated and there are
void spaces among them. These void spaces near the
surface are much bigger in halo or weakly-bounded nu-
clei in comparison to those in stable nuclei. The notion of
radii is only a statistical average effect of nuclear matter
distribution. In fact, the nuclear structures are irregu-
lar, which is the most obviously different feature from
the description of the liquid drop model.

In order to describe the nuclear structure properties
reasonably well, the notion of a fractal object for irreg-
ular systems with non-integral dimensions is possible.
Fractal objects were introduced to science by Mandel-
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brot in 1967 [17], and their most important characteris-
tics are self-similarity and scale invariance. Fractal self-
similarity means that any part of the fractal object is
similar to the whole fractal object after magnification.
For an arbitrary part of the fractal object, its important
properties, such as shape, complexity and irregularity, re-
main invariant after magnification or shrinking by a cer-
tain proportion, which is the meaning of scale invariance.
For a regular fractal object, there is no characteristic size,
but a characteristic fractal dimension. However, the self-
similarity of an approximate or statistical fractal object
exists in a finite scale range. In a nuclear system with a
cluster structure, due to the similar nuclear and electro-
magnetic interactions between the clusters in a nucleus,
it is possible that the geometric structure and physi-
cal laws are similar between the nucleons in a cluster,
between clusters in the nucleus, and between the clus-
ters and the whole nucleus. The nucleus can be deemed
a statistical self-similar fractal system with finite scale
range. Xavier Campi has found the existence of finite
size scaling in nuclear fragmentation [18]. He introduced
the fractal dimension, which gives information on the in-
ternal structure of fragments during the fragmentation
process. Adamenko et al. [19] queried the liquid-like
model and studied the properties in super-heavy nuclear
isomers using fractal theory. These studies are the inspi-
ration for connecting the characteristics of the nuclear
structure with fractal geometric theory.

As explained above, the irregular nuclear structure
properties and the self-similarity characteristic may be
intrinsic aspects of nuclear structure properties. It is pos-
sible to use fractal theory to describe the nuclear struc-
ture properties. The objective of the present work is to
introduce this new concept of nuclear fractal structures
to study nuclear properties.

2 The nuclear fractal structure model

In our present description, a more general concep-
tion of nuclear fractal clusters (NFCs) is applied, which
is similar but different from the conventional one of the
α-cluster structure and the core plus valence nucleons
structure in halo nuclei. The latter is considered to be
one kind of the former, based on the concept of the char-
acteristics of fractal objects. The concept of NFCs is that
of the nucleus as a fractal assembly of structural subunits
that are themselves made up of no less than one nucleon
and keep a certain correlation of similarity with the en-
semble in both geometry and physics. The geometrical
boundaries of the NFCs within some nuclei are less dis-
tinguishable than those of the clusters in α-cluster nuclei
and halo nuclei.

Similar to the definition given in Ref. [20], an
isotropic self-similarity nuclear fractal dimension Df is

defined in the following relation:

M(b·r)=bDf
·M(r), (1)

where M(r) is the mass number within the size r of the
fractal object; M(b ·r) is the mass number of b times
the size r of the fractal object, where b is a scaling fac-
tor among the similar parts within the fractal object.
The only solution for relation (1) is M(r)∝rDf . The nu-
clear average matter density ρ(r) with the law of decay of

isotropic spatial correlation, ρ(r)=
M(r)

V (r)
∝

rDf

r3
∝rDf−3,

is a basic variable function in nuclei. So far, the geomet-
ric dimension of nuclei is considered as 3, because of the
concept of the liquid drop model. For a real physical nu-
clear object embedded in 3-dimensional Euclidean space,
its dimension must be less than or equal to 3. Most of the
nuclei with fractal dimensions approaching 3 are stable,
and are more like liquid drops.

In Eq. (2), we assume that there are several NFCs
and Ai is the mass number of an NFC within a nucleus
with mass number A. ρdis(r) is the density distribution
function. ρi is the fractal mean density of an NFC and
Ri is its fractal mean density radius. F is the number of
the NFCs in a given nucleus.

ρ =
A

V
=

∫
ρdis(r)·dv

∫
dv

=

F
∑

i=1

Ai

V

=

F
∑

i=1

∫
ρdis(ri)·dvi

V
=

F
∑

i=1

ρi·Vi

V

=
F
∑

i=1

Vi

V
·ρi=

F
∑

i=1

(

Ri

R

)3

·ρi (2)

where R is the nuclear fractal mean density radius de-

fined by the relation A=
4

3
πR3ρ and ρi=

3Ai

4πR3
i

.

In addition, due to the assumption of nuclear frac-
tal structure and the mass-radius relation of self-similar
fractal objects, we list several basic relations:

A=

F
∑

i=1

Ai; (3)

A∝RDf ;Ai∝R
Df

i . (4)

Using relations (3) and (4), we get the relation among
R, Ri and Df :

RDf =

F
∑

i=1

R
Df

i . (5)

Due to the two proportional relations in (4), the relation
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among R, Ri, A, Ai and Df is

R=Ri

(

A

Ai

) 1

Df

. (6)

Substituting (6) into (2), we then get

ρ=

F
∑

i=1

(

Ai

A

) 3

Df

ρi. (7)

The relation between the NFCs in a nucleus is then

ρi=ρj

(

Ai

Aj

)

Df−3

Df

. (8)

Therefore, to describe the nuclear geometric prop-
erties, the nuclear fractal dimension is an irreplaceable
variable similar to the nuclear radius. For a given nuclear
system with cluster structure, the final free variables are
(R, Df) or (ρ, Df ), which are also (Ri, Df) or (ρi, Df) due
to the relations (6) and (7). In order to determine these
two variables, we put forward a new nuclear potential en-
ergy formula which is related to fractal dimension. Then
the phenomenological semi-empirical Bethe–Weizsäcker
binding energy formula is modified and the total poten-
tial energy is obtained. One important equation set with
two equations is obtained, which is related to the con-
cept that the fractal dimension should be a dynamical
parameter in the process of nuclear synthesis. So, the
calculations of nuclear fractal dimensions and radii can
be done.

In a nuclear system, considering the self-similarity
properties of the nuclear fractal system, we put forward
a nuclear potential energy formula

u(r)=
v0Df

3(Df−2)

(

r

rs

)Df−3

, 2<Df63. (9)

This is proportional to the nuclear average density ρ(r).
2rs stands for the minimum scale size of a nuclear fractal
system and it is also the maximum size of the minimum
cluster element. v0 is a coefficient and keeps constant,
corresponding to the estimation of the depth of the nu-
clear potential well in the liquid drop model when Df =3.

From (9) and using the idea of self-similarity, the re-
lation for the nuclear potential energy of one NFC within
the nucleus is obtained:

ui(ri)=
v0Df

3(Df−2)

(

ri

rs

)Df−3

, 2<Df63. (10)

Because of u(R) ∝ ρ(R), ui(Ri) ∝ ρi(Ri) and (7), the
relation between u(R) and ui(Ri) is

u(R)=

F
∑

i=1

(

Ai

A

) 3

Df

ui(Ri). (11)

Next, we modify the phenomenological semi-
empirical Bethe–Weizsäcker binding energy formula with

the Fermi gas model and the fractal theory. Here we
are mainly concerned with the liquid drop energy and
put aside the correction term based on the microscopic
method, such as the description in Ref. [21]. The original
equation derived from the liquid drop model is:

B = (udepth−cv−cas

(

1−
2Z

A

)2

)A−csurfA
2

3

−cQ

Z(Z−1)

A
1

3

+cp

(−1)Z+(−1)A−Z

2A
4

3

; (12)

where udepth ≈ 58 [22](the estimation of the depth of
the nuclear potential well); cv = 42.27; cas = 23.48;
csurf = 17.72; cQ = 0.72; and cp = 19.39. We use the
experimental mass data [23] to fit the other parameters.

The modified formulae are:

Bstrong=

(

vdepth−c1(ρ)−c2(ρ)

(

1−
2Z

A

)2
)

A; (13)

Bsurf =−cs4πR2; (14)

BQ=−

3

5

Z(Z−1)e2

R
; (15)

Bp=cp

(−1)Z+(−1)A−Z

2A
4

3

; (16)

B=Bstrong+Bsurf+BQ+Bp; (17)

where

c1(ρ)=
3

5
ε(ρ)ρ

2

3 ; c2(ρ)=
1

3
ε(ρ)ρ

2

3 ;

cs=0.98 MeV·fm2; cp=19.39 MeV;

ε(ρ)=ε0

(

ρ

ρ0

)α

;

ε0=264.12 MeV−1; and ρ0=0.138 fm−3. Eq. (13) is the
volume energy, consisting of three parts. The first part
is the depth of nuclear potential energy, which is not a
constant, but depends on the structure type. The sec-
ond and third parts, derived from the Fermi gas model,
are the kinetic energy of the nuclear system, because of
which the binding energy decreases. ε(ρ) shares the ki-
netic energy, which decreases the contribution of kinetic
energy. ε0 was explained as a constant related to the
virial coefficient in Ref. [19]. Since we consider that the
nuclear system has a fractal structure which is very dif-
ferent from the Fermi gas, ε0 cannot be kept constant
any more, but depends on the mean density, which is re-
lated to the mean density of every cluster in the nucleus
as shown by Eq. (7). In the formula for ε(ρ), α is a pa-
rameter. Formulas (14) and (15) for surface energy and
the energy because of Coulomb interaction do not have
any parameters. cs, the coefficient of surface tension, is
about 1 MeV/fm2. Here we still keep the pair energy be-
cause the binding energy is larger when the proton and
neutron numbers are even, smaller when one of the num-
bers are odd and even more so when both are odd, which
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may have nothing to do with the nuclear fractal struc-
ture. Thus all the terms contributing to binding energy
depend on the fractal dimension Df except the pair term.
When Df →3 , the modified formula degenerates to the
ordinary binding energy formula (12), and then the state
of the nucleus shifts from the non-uniform density, which
has NFCs, to the uniform state of the liquid drop model.
So, the parameters cs, cp, ε0 and ρ0 can all be derived
from (12–17) when Df→3.

A possible formula for the depth of the nuclear po-
tential well in the nuclear fractal system is found to be

vdepth =
1

2

(

1−

(

A−(1+s)Z

A

)2
)

×

F
∑

i=1

Ai

A

(

58+3ui(Ri)
Df−2

Df

)

, (18)

which depends on the nuclear fractal structure. In fact,
the depth of nuclear potential well cannot be 58 MeV
for all nuclei because of the different fractal structure
for different nuclei. The product factor is introduced to
describe the difference between the number of neutrons

and protons in a nucleus, and s =
Ns

Zs

, Ns and Zs are

the number of neutrons and protons in a nucleus on the
stable line, which makes sure the depth of the nuclear
potential well is at a maximum for nuclei on the stable
line. For light stable nuclei, s≈1, and for the nuclei 4He,
8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar and 40Ca, s=1.
When Df→3, u=ui=v0=−udepth.

We define the total potential energy U =U(A, Z, Df ,
ρ), which is the sum of the total nuclear potential en-
ergy UA = UA(A, Df , ρ) and the total electromagnetic
potential energy UZ=UZ(Z, Df , ρ). Namely,

U =UA+UZ. (19)

The interaction among clusters in a given nucleus is
shown in Fig. 1. The total nuclear potential energy is

UA=

F
∑

i=1

(

Ai

A

) 3

Df

Ui+

F
∑

i=1

F
∑

i6=j

(

Aj

A

) 3

Df

Uij , (20)

where,

Ui = 4π

v0Df

3(Df−2)

∫Ri

0

(

ri

rs

)Df−3

ρdis(ri)r
2
i dri

=
4πv0ρiR

Df

i

3(Df−2)rDf−3
s

. (21)

Uij = 2π

∫π

0

∫Rj

0

ui(r)ρdis(rj)r
2
j sin(θ)drjdθ

= 2π

v0Df

3(Df−2)

ρj(Rij+Rj)
Df+1G(Df)

(Df+D3
f )Rij(R2

ij−R2
j)r

Df−3
s

. (22)

In (22), G(Df) = (R2
ij +DfR

2
j )

(

(

Rij−Rj

Rij+Rj

)Df+1

−1

)

+

(Df +1)RijRj

(

(

Rij−Rj

Rij+Rj

)Df+1

+1

)

; the distance r =

√

r2
j +R2

ij−2rjRij cosθ as shown in Fig. 1; Rij ≈Ri+Rj .

The total electromagnetic potential energy is

UZ =

F
∑

i=1

UZi
+

F
∑

i=1

F
∑

i6=j

UZij
, (23)

where,

UZi
=

3

5
Zi(Zi−1)

e2

Ri

; (24)

UZij
=

ZiZje
2

Rij

. (25)

Fig. 1. The interaction among clusters in a given
nucleus. The notations i, j, k stand for different
NFCs.

For a given nucleus containing NFCs, we consider
that its fractal dimension Df is constant. However, in
the process of nuclear synthesis it should be a dynamic
parameter. In a given nuclear reaction the binding en-
ergy B =B(A, Z, Df , ρ) and the total potential energy
U = U(A, Z, Df , ρ) are changing with Df . When Df

reaches its fixed value, then B = B(A, Z, Df , ρ) and
U = U(A, Z, Df , ρ) reach their minimum value, which
corresponds to an interacting system becoming relatively
stable. So one equation set is obtained:

{

∂Df
B(A,Z,Df ,ρ)=0

∂Df
U(A,Z,Df ,ρ)=0.

(26)

Because of the uncertain parameter α, we need more
than two equations to study the structure properties in
the nucleus. The additional one is

B(A,Z,Df ,ρ)=Bexp+Eexcited, (27)
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where Bexp is the experimental value of the binding en-
ergy, and Eexcited is the change in binding energy due to
the nucleus being excited from the ground state, which
corresponds to the situation where the NFC structure
is forming in the excited nucleus. If only the nuclei in
ground states are considered, Eexcited=0.

Finally, we arrive at the modified binding energy for-
mula B(A, Z, Df , ρ) and the total potential energy U(A,
Z, Df , ρ), which are functions of A, Z, Df and ρ. With
the important equation set (26) obtained, (26) and (27)
can be used, assuming rational fractal structure types in
the nucleus, to determine the nuclear fractal dimension
and radius.

3 Results and discussion

In the present work, we have done some calculations
and obtained some results for light nuclei in ground
states. Combining the analyses given in Refs. [1–12]
and [24–26] and the consideration that the rational frac-
tal structure of one nucleus is determined by making the
separated energy of NFCs as small as possible, the possi-
ble NFC structures for these nuclei are shown in Table 1.
We consider that the scale rs is about 1.25 fm, which is
half the maximum size of one nucleon. We then compare
the radii (RL =r0A

1

3 , r0=1.25 fm) from the liquid drop
model with the nuclear fractal mean density radii.

Table 1. The possible NFC structures for light nuclei.

nuclei NFCs nuclei NFCs
5He 4He+n 14B 13B+n
6He 4He+n+n 15B 14B+n
7He 6He+n 16B 15B+n
8He 6He+n+n 9C 8B+p
5Li 4He+p 10C 8Be+p+p
6Li 4He+2H 11C 7Be+4He
7Li 6Li+n 12C 8Be+4He
8Li 7Li+n 13C 12C+n
9Li 8Li+n 14C 13C+n
10Li 9Li+n 15C 14C+n
11Li 9Li+n+n 16C 15C+n
8Be 4He+4He 13N 12C+p
9Be 8Be+n 14N 10B+4He
10Be 9Be+n 15N 11B+4He
11Be 10Be+n 16N 15N+n
12Be 11Be+n 17N 16N+n
13Be 12Be+n 13O 12N+p
14Be 12Be+n+n 14O 13N+p
8B 7Be+n 15O 14N+p
9B 8Be+n 16O 12C+4He
10B 6Li+4He 17O 13C+4He
11B 7Li+4He 18O 14C+4He
12B 11B+n

In order to describe the essential feature of the nu-
clear fractal self-similarity symmetry, the fractal dimen-

sion is one of the basic geometric parameters. It is re-
lated to the nuclear homogeneity and the ingredients in
the nucleus, which reflect the degree of nuclear irregular-
ity. It can be seen that the values of the dimensions are
quite close to 3, if the mean densities of every NFC in a
nucleus and the mean density of that nucleus are all not
too different and the degree of irregularity of the nuclear
structures is low. Based on the NFC structures (Table
1) and the values of the dimensions (Fig. 2), some in-
teresting results may be discussed. For isobars, because
the degree of homogeneity of the stable nuclei is gener-
ally higher than the nuclei far from the stable line, the
values of the fractal dimension for the former are greater
than for the latter. The fractal dimensions of isobars are
comparable or the same, if the NFC structure types of
these nuclei are similar. For example, the fractal dimen-
sions of the isobars with two-body structure type, (5Li,
5He), (8Li, 8Be, 8B), (10Be, 10B), (11C, 11B), (13N, 13C)
and (16C, 16N), are respectively almost the same. For
nuclei with the same A, the fractal dimensions of nuclei
with a three-body structure, such as, 6He, 8He, 10C, 11Li
and 14Be, are distinctly lower than the nuclei with two-
body structure. The values of fractal dimension decrease
due to the increase of nuclear mass number, which may
be associated with the scale rs. The fractal scale vari-
ables amount to the resolution of the measurement [33],
which are related to the scale relativity. For instance, if
half the maximum size of one nucleon serves as the frac-
tal scale, using a 3-dimensional bulk whose radius equals
this scale to cover a nucleon, the dimension of one nu-
cleon is 3. However, along with the increase of the nu-
clear mass number, the nuclear structure becomes more
irregular. Therefore, using this 3D structure to mea-
sure the nucleus, the dimension of this nucleus is lower
than 3, which reflects the information of the irregular
nuclear structures. In brief, as the results of the effects
of all structure variables and binding energy, the fractal
dimension can generally describe the nuclear structure
well. Besides, in the process of nuclear synthesis Df is a

Fig. 2. (color online) Values of the fractal dimen-
sions of certain nuclei.
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dynamic parameter; when Df reaches a fixed value, this
explains the existence of relatively stable nuclei.

The nuclear fractal mean density radii, depending on
the scale variable rs in the process of measurement, can
represent the nuclear size statistically; this is mainly de-
termined by the binding energy and NFC structure types
and related to the fractal dimension by Equation (5). For
isobars, the higher the binding energy, the smaller the
radii. Generally, as shown in Fig. 3, for stable nuclei
and the nuclei very near the stable line, the values of the
nuclear fractal mean density radii approach the line of
RL from the liquid drop model. When the nuclei are far
from the line of stability, the values of the nuclear frac-
tal mean density radii will be greater than RL and this
will increase as the deviation from the line of stability
increases. In some special cases, nuclei with the same
NFC structure and almost the same binding energy, such
as 5Li and 5He, have almost the same radii. The same
situation arises in the pairs of isobars (8B, 8Li), (9Be,
9B) and (13C, 13N). As a matter of fact, the liquid drop
model cannot successfully calculate the radii of nuclei far
from the stable line, as they have much larger radii than
the predictions of the liquid drop model. The present
fractal structure model, however, can successfully pre-
dict the radii of such nuclei far from the line of stability.
Moreover, the comparison of the calculated values of
the nuclear fractal mean density radii using the nuclear
fractal structure model with the experimental results of
root-mean-square (rms) matter (Rm) radii are listed in

Table 2, where, Rm =

√

Z

A
R2

p+
N

A
R2

n [31]. For the sta-

ble nuclei, the results of the calculated radii using both
the liquid drop model and the present method are larger

Fig. 3. (color online) Comparison of the calculated
values of radii using the nuclear fractal structure
model and the liquid drop model. The symbols
(excluding the black quadrant circles) stand for
the nuclear fractal mean density radii and the line
is for the liquid drop model. The experimental
points (black quadrant circles) are corresponding
to the experimental values of rms matter radii in
Table 2.

than the experimental results of root-mean-square (rms)
matter (Rm). Generally, the results of the calculated
radii using the present method are larger than the ex-
perimental results of rms matter radii (Rm). Fig. 3
also shows the experimental results of rms matter radii
(Rm), which are corresponding to the experimental val-
ues shown in Table 2.

Table 2. Comparison of the calculated values of nu-
clear fractal mean density radii (here denoted Rf

for convenience) using the nuclear fractal struc-
ture model with the experimental results of root-
mean-square (rms) matter (Rm) radii. The clus-
ter structures of the nuclei listed here are the same
as those in Table 1.

nuclei Rf/fm Rm/fm Ref.

6Li 2.217 2.32±0.03 [27]
6He 2.583 2.45(10) [28]
7Li 2.374 2.33±0.02 [27]

8He 3.100 2.53(8) [28]
8B 2.635 2.55±0.08 [29]
8Li 2.629 2.583±0.023 [27]
9C 2.874 2.71(32) [30]
10B 2.647 2.56±0.23 [27]
11Li 3.432 3.34+0.04

−0.08 [31]
11Be 3.027 3.039±0.038 [32]
12B 3.016 2.723±0.050 [27]
12C 2.848 2.48±0.08 [27]
13B 3.193 2.746±0.050 [27]
14Be 3.736 3.36±0.19 [27]
14B 3.383 3.00±0.10 [27]
14N 3.027 2.61±0.10 [27]
16O 3.194 2.63±0.06 [27]

With regard to the parameter α introduced in Sec-
tion 2, it can be solved as the same time as the fractal
dimension Df and the nuclear fractal mean density ra-
dius R through the three equations explained at the end
of Section 2. It varies from 0 to 1 in present calculations,
generally corresponding to the range of nuclei from sta-
bility to instability.

In summary, the NFC structures are determined by
the interactions within nuclear systems, and the frac-
tal dimension can generally describe such structural fea-
tures. The nuclear fractal mean density radii represents
approximately the nuclear size, which is associated with
the scale variables. Actually, the relations among the
nuclear structure geometric variables are complex and
correlative.

4 Conclusions

In this, we consider the importance of the irregular
nuclear structure properties and self-similarity character-
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istics as intrinsic aspects of nuclear structure properties.
For the description of nuclear geometric properties, the
nuclear fractal dimension is an irreplaceable variable
similar to the nuclear radius. Compared with the liquid
drop model, a feature of the fractal description is that
it can reflect the important characteristics of the NFC
structures, especially for describing the nuclei far from
the line of stability and α-cluster nuclei. Similar to the
liquid drop model, the present model can get the same
results for the relation between A and Z on the β sta-
ble line for light stable nuclei, but cannot predict the
existence of the magic nuclei. For heavier nuclei whose
fractal structure is more complicated, more realistic for-

mulae for the depth of nuclear potential energy need to
be obtained. These heavy nuclei may have multilevel
fractal structure with several clusters in every level. An
anisotropic description for the nuclear fractal structure
and the scale-dependent properties of the nuclear fractal
system will be further studied in future. Further studies
will also focus on combining the properties of the nuclear
fractal structure and quantum mechanics.
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