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Bulk viscosity of hot dense Quark matter in the PNJL model *
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Abstract: Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot

dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak

near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of

the phase transition. These results agree with those from the lattice and other model calculations. In addition, we

show that the increase of chemical potential raises the bulk viscosity.
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1 Introduction

The study of the transport properties of strong in-
teracting matter has attracted considerable interest. It
is particularly important for hydrodynamic simulations
of heavy-ion collisions and for understanding the proper-
ties of compact stars [1–5]. Shear viscosity η character-
izes how fast a system goes back to equilibrium under a
shear mode perturbation. It is believed that the quark
gluon plasma (QGP) found in the relativistic heavy-ion
collider (RHIC) is strongly coupled, which is in contrast
to the weak coupling picture that was expected earlier:
this is the so-called sQGP. Lattice Monte Carlo simula-
tion on sQGP has demonstrated that, although the ratio
of the shear viscosity to the entropy density is rather
small, it is still probably larger than the universal lower
bound 1/4π that is obtained from Ads/CFT duality [6].
The experimental extracted value with viscous hydrody-
namics combined with a microscopic transport model lies
within in the range 1–2.5 times of the lower bound [5].

Bulk viscosity describes how fast a system goes back
to equilibrium under a uniform expansion, which relates
to the deviation from the conformal invariance of the
system. It vanishes when the system has a conformal
equation of state; therefore, the sharp peak of the bulk
viscosity would strongly affect the physics of the QCD
matter near critical temperatures, which is very impor-
tant for the study of the QCD phase structure. Bulk vis-
cosity also affects the elliptic flow near the QCD phase
transition in relativistic heavy ion collisions [7, 8]. The
study of bulk viscosity is also important for the physics
of compact stars [1–4].

Recently, the lattice QCD calculation has shown that

the trace of energy-momentum tensor anomaly and the
ratio of the bulk viscosity ζ over entropy density s either
have a sharp peak or diverge near phase transition [9–12].
This sharp peak behavior of ζ has also been observed in
many model calculations [13–16].

At present, most calculations are for zero baryon den-
sity [11, 17], except for a few papers that have tried to
estimate the bulk viscosity with finite density [18, 19].
For example, in Ref. [19] the authors studied viscosity
at finite µ with the Nambu-Jona-Lasinio (NJL) model.
In Ref. [20] the authors studied the viscosity of strange
quark matter at finite µ with a quasi particle model.
Meanwhile, the bulk viscosity was studied in [18] with
Dyson-Schwinger equations at finite µ but zero temper-
ature. In this paper we promote the calculation of bulk
viscosity to both finite temperature and finite baryon
density in the PNJL model, incorporating both confine-
ment and chiral symmetry.

2 Kubo formula in the QCD low energy

theorem

The bulk viscosity of hot dense quark matter is re-
lated to the retarded Green’s function of the trace of
the energy-momentum tensor, which is calculated by the
Kubo formula. By using low energy theorems at finite
temperature and chemical potential, we can extract the
bulk viscosity of hot dense quark matter from the small
frequency ansatz.

From the Kubo formula,we can express the bulk vis-
cosity at Lehmann representation [21]

ζ=
1

9
lim
ω→0

1

ω

∫∞
0

dt

∫
d3−→r exp(iωt)〈[θµ

µ(x),θµ
µ(0)]〉. (1)
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where ω is the frequency, and θµ
µ is the trace of the

energy-momentum tensor. Using Fourier transform and
P-invariance,the formula is changed as

ζ =
1

9
lim
ω→0

1

ω

∫∞
0

dt

∫
d3−→r exp(iωt)iGR(x)

=
1

9
lim
ω→0

1

ω
iGR(ω,

−→
0 )

= −1

9
lim
ω→0

1

ω
ImGR(ω,

−→
0 ). (2)

In Lehmann representation, the Green function is re-

lated to spectral density ρ(ω,−→p )=− 1

π

ImGR(ω,−→p ). For

Kramers-Kroning relation,we can obtain

GR(ω,−→p ) =
1

π

∫∞
−∞

ImGR(u,−→p )

u−ω−iε
du

=

∫∞
−∞

ρ(u,−→p )

ω−u+iε
du. (3)

The Euclidean Green’s function is

GE(ω,−→p )=−GR(iω,−→p ), ω>0.

Using formula (3), we have

GE(0,
−→
0 )=2

∫∞
0

ρ(u,
−→
0 )

u
du. (4)

For QCD, the trace of energy-momentum stress ten-
sor reads

θµ
µ =mqq̄q+

β(g)

2g
F a

µνF aµν≡θF+θG, (5)

where g is the strong coupling constant, θF and θG are
the contribution of quark fields and of the gluon field,
respectively, and β(g) is the QCD β-function that deter-
mines the running behavior of g. In Eq. (5) q are quark
fields with two flavors (in this letter we will limit our-
selves in two flavor case and set the current quark mass
mu=md=m).

From the QCD low-energy theorems at finite temper-
ature T and µ [22], one can find

(
T

∂
∂T

+µ
∂

∂µ
−d

)
〈Ô〉T=

∫
d4x〈Tt{θG(x),Ô(0)}〉, (6)

where d is the canonical dimension of the operator Ô.
Using the above equation, one has

(
T

∂
∂T

+µ
∂

∂µ
−4

)
〈θG〉T=

∫
d4x〈Tt{θG(x),θG(0)}〉, (7)

(
T

∂
∂T

+µ
∂

∂µ
−3

)
〈θF〉T=

∫
d4x〈Tt{θG(x),θF(0)}〉. (8)

From the above two relations one obtains

9ζω0=

∫
d4x〈Tt{θµ

µ(x),θµ
µ(0)}〉

=

(
T

∂
∂T

+µ
∂

∂µ
−4

)
〈θG〉T+2

(
T

∂
∂T

+µ
∂

∂µ
−3

)
〈θF〉T

+

∫
d4x〈Tt{θF(x), θF(0)}〉

≈
(

T
∂

∂T
+µ

∂
∂µ

−4

)
〈θµ

µ〉T+

(
T

∂
∂T

+µ
∂

∂µ
−2

)
〈θF〉T

= f1(T,µ)(ε−3P )+f2(T,µ)〈θF〉T, (9)

where

f1(T,µ) =

(
T

∂
∂T

+µ
∂

∂µ
−4

)

f2(T,µ) =

(
T

∂
∂T

+µ
∂

∂µ
−2

)
, (10)

and ε is the energy density and P is the pressure density
of QCD. Here, because the current quark mass m of u
and d quark is very small, in deriving Eq. (9) we have
neglected the term proportional to m2.

The low energy theorems adapt to long distance,low
frequency and strong coupling QCD [23, 24]. Using non-
perturbation theory, the Euclidean Green’s function can
be represented as

GE(0,
−→
0 ) =

∫
d4x〈Tθ(x),θ(0)〉

= f1(T,µ)〈θ〉T+f2(T,µ)〈θF〉T, (11)

where 〈θ〉T is the trace of the energy-momentum tensor.
Its average value in zero temperature is 〈θ〉0=−4|εv|, εv

is the vacuum energy density,including the quark con-
densates and the gluon condensates in our work. In
the low energy theorems, the difference of energy den-
sity and the pressure corresponds to the non-zero vac-
uum expectation value of the energy-momentum tensor
ε−3P =〈θ〉T−〈θ〉0. Analogously, 〈θF〉T=〈mq̄q〉T+〈mq̄q〉0.
Using the PCAC relations, we can express the vacuum
expectation value 〈mq̄q〉0 through the Pion and Kaon
masses and decay constants 〈mq̄q〉0 = −M 2

π
f 2

π
−M 2

kf 2
k .

Using these relations, by combining formula (4) and (5)
we obtain [11]:

2

∫∞
0

ρ(u,
−→
0 )

u
du

=

(
T

∂
∂T

+µ
∂

∂µ
−4

)
〈θ〉T

+

(
T

∂
∂T

+µ
∂

∂µ
−2

)
〈θF〉T

=

(
T

∂
∂T

+µ
∂

∂µ
−4

)
(ε−3P−4|εv|+〈mq̄q〉0)

+

(
T

∂
∂T

+µ
∂

∂µ
−2

)
(〈mq̄q〉T+〈mq̄q〉0). (12)
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This formula does not include the perturbative contribu-
tion as long as we consider the strong coupling situation.
So we can use the following ansatz in the small frequency
region [11]

ρ(ω,
−→
0 )

ω
=

9ζω2

π(ω2
0+ω2)

.

Where ζ is the bulk viscosity and ω0 is a scale at which
the perturbation theory becomes valid, ω0 ∼ T . Using
this ansatz and the formula (6),we extract the bulk vis-
cosity:

ζ =
1

9ω0

(
T

∂
∂T

+µ
∂

∂µ
−4

)
(ε−3P−4|εv|+〈mq̄q〉0)

+
1

9ω0

(
T

∂
∂T

+µ
∂

∂µ
−2

)
(〈mq̄q〉T+〈mq̄q〉0). (13)

3 Parameters of PNJL model

The NJL model is based on an effective Lagrangian
of relativistic fermions, which interact through local
current-current couplings. It can be used to illustrate
both the transmutation of originally light quarks into
massive quasi-particles, as well as the spontaneously bro-
ken chiral symmetry. However, the quark confinement is
missing in the NJL model. The de-confinement phase
transition is characterized by spontaneous breaking of
the Z(3)center symmetry of QCD. The corresponding
order parameter is the Polyakov loop (p-loop). So, the
PNJL model introduces both the chiral condensate 〈ΨΨ〉
and the p-loop Φ coupling to the quarks to solve the prob-
lem of the NJL model [25, 26]. The PNJL model is an
effective method to deal with the non-perturbative QCD.
Consequently, the bulk viscosity extracted from the for-
mula in the low energy theorems can be calculated in
this model. The Lagrangian of two-flavor PNJL model
at finite chemical potential is given by [26]

LPNJL = q(iγµDµ−m̂)q+g
[
(qq)

2
+(qiγ5

−→τ q)
2
]

− U(Φ(A), Φ(A), T ). (14)

Where Dµ=∂µ−iAµ, Aµ=δµ0A
0. The effective potential

U is expressed in terms of the traced p-loop Φ =
TrcL

NC

and its conjugate Φ=
TrcL

†

NC

, where L=exp

(
iA4

T

)
, A4

is the gauge field.

U(Φ,Φ,T )

T 4
= −b2(T )

2
ΦΦ−b3

6

(
Φ

3
+Φ3

)
+

b4

4

(
ΦΦ

)2
;

b2(T ) = a0+a1

T0

T
+a2

(
T0

T

)2

+a3

(
T0

T

)3

.

The parameters in the effective potential are chosen in
Table 1 [25]:

Table 1. The parameters in the effective potential.

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5

With the definition of the chiral condensate σ=〈qq〉
and the constituent quark mass M =m−2gσ, the grand
potential density is given by

Ω(Φ,Φ,M,T,µ) = U(Φ,Φ,T )+g〈qq〉2

−2NCNf

∫
d3p

(2π)3
Ep

+2NfT

∫
d3p

(2π)3
[lnN+

Φ (Ep)

+lnN−
Φ (Ep)]. (15)

Where

1

N+
Φ (Ep)

= 1+3(Φ+Φexp(−βE+
p ))exp(−βE+

p )

+exp(−3βE+
p ),

1

N−
Φ (Ep)

= 1+3(Φ+Φexp(−βE−
p ))exp(−βE−

p )

+exp(−3βE−
p ),

Ep=
√

p2+M 2 is the quasi-particle energy for the quarks.
E±

p =Ep∓µ, µ is the quark chemical potential. Here we
consider the isospin symmetry. Now, we introduce the
mean-field approach by minimizing Ω with respect to σ,
Φ and Φ, the mean-field equations are given by

σ = −6Nf

∫
d3p

(2π)3
Ep

M

Ep

[θ(Λ2−p2)

−M+
Φ (Ep)N

+
Φ (Ep)−M−

Φ (Ep)N
−
Φ (Ep)]; (16)

0 =
T 4

2
[−b2(T )Φ−b3Φ

2+b4ΦΦ
2
]

−12T

∫
d3p

(2π)3
[exp(−2βE+

p )N+
Φ (Ep)

+exp(−βE−
p )N−

Φ (Ep)]; (17)

0 =
T 4

2
[−b2(T )Φ−b3Φ

2
+b4ΦΦ2]

−12T

∫
d3p

(2π)3
[exp(−βE+

p )N+
Φ (Ep)

+exp(−2βE−
p )N−

Φ (Ep)]. (18)

The limit of integration is 0∼Λ, which is a global cutoff
[25]. Where

M+
Φ (Ep) = (Φ+2Φexp(−βE+

p ))exp(−βE+
p )

+exp(−3βE+
p ),

M−
Φ (Ep) = (Φ+2Φexp(−βE−

p ))exp(−βE−
p )

+exp(−3βE−
p ).

By numerically solving the three coupled equations
above, we can obtain a series of σ, Φ, Φ at different
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temperatures and chemical potentials. The thermody-
namic quantities (such as pressure, quark number den-
sity, entropy and energy density) can be computed with
the thermodynamic relations:

P = −Ω

V
; ρq=−

(
∂Ω

∂µ

)

T

;

S = −
(

∂P

∂T

)

µ

; ε=TS+µρq−P.

To this end, we can calculate the bulk viscosity from
Eq. (13).

In this work we consider two-flavor quark matter.
For numerical calculations, we choose the parameters
as follows [25]: the global cutoff Λ = 0.651 GeV, the
quark current mass m=0.0055 GeV, the coupling con-
stant g = 5.04 GeV. We also choose T0 = 0.27 GeV, the
zero temperature quark condensation |σ0|=0.2513 GeV
and ω0 = 1 GeV. The vacuum energy density |εv|1/4 =
0.25 GeV.

The temperature dependences of the order parame-
ters for chiral phase transition and de-confinement phase
transition σ/σ0, Φ, Φ are plotted in Fig. 1, which shows
that the chiral phase transition temperature is about
0.24 GeV with a quark chemical potential µ=0.2 GeV.
This phase transition is a cross over. While the decon-
finement phase transition might happen at higher tem-
perature, the Polyakov loops are not exact order parame-
ters for the deconfinement phase transition of QCD with
quarks included.

Fig. 1. Scaled chiral condensate and Polyakov
loops as functions of temperature at µ=0.2 GeV.

4 Numerical results for bulk viscosity

The numerical results for bulk viscosity are depicted
in Fig. 2 at different quark chemical potentials. One can
see that the bulk viscosity has a sharp peak around the
chiral phase transition temperature, just as it does in the
results of Masashi Mizutani [17]. This indicates that the

finite quark chemical potential increases the bulk viscos-
ity with the same temperature.

Fig. 2. Bulk viscosity in unit (GeV)−3 at differ-
ent chemical potentials, the increasing chemical
potential raises the bulk viscosity.

We have also computed the specific bulk viscosity,
and the ratio of the bulk viscosity and entropy density,
at finite temperature and density, as shown in Fig. 3.
We show that this ratio starts to increase rapidly and
blows up around the critical temperature. This result
is in agreement with the results obtained in Ref. [11],
where the bulk viscosity is obtained by combining low
energy theorems with lattice results for QCD with a
physical strange quark mass and almost physical light
quark masses at zero quark chemical potential. The be-
havior of bulk viscosity is also qualitatively similar to
the one observed for the case of SU(3) gluodynamics in
Ref. [27]. The finite quark chemical potential decreases
the specific bulk viscosity through increases in the bulk
viscosity, which happens because the finite chemical po-
tential enhances the entropy density more rapidly than
the bulk viscosity.

Fig. 3. The ratio of bulk viscosity to entropy at
different chemical potential.
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5 Summary

In summary, we have studied the bulk viscosity of hot
quark matter at finite temperature and density within
PNJL model by making use of the the Kubo formula
and the QCD low energy theorems. We show that the
bulk viscosity has a sharp peak near the chiral phase
transition, and that the ratio of bulk viscosity and the
entropy density rises dramatically in the vicinity of the
chiral phase transition. These results agree qualitatively
with those from the lattice and other model calculations
[11, 16, 27]. In addition, we show that the increase of
chemical potential raises the bulk viscosity but decreases
the ratio of the bulk viscosity and entropy density. Al-
though the bulk viscosity is small away from the critical

temperature, close to the critical temperature the rapid
growth of the trace anomaly causes a dramatic increase
of bulk viscosity. Therefore, we cannot neglect the bulk
viscosity correction to the ideal hydrodynamical behavior
in the vicinity of the deconfinement and chiral symmetry
restoration phase transitions.

In this paper we have worked within the effective
QCD model PNJL model. The advantage of the phe-
nomenological model is that it is possible to provide
equations of state (EOS), even at nonzero chemical po-
tential. The EOS from the PNJL model can reproduce
recent progress in lattice QCD with small chemical po-
tential with good agreement [28].

We would like to extend our gratitude for the helpful

discussions that we had with Hai-chang Ren.

References

1 Raymond, Sawyer F. Phy. Rev. D, 1989, 39: 3804–3806
2 Jones P B. Phys. Rev. D, 2001, 64: 084003
3 Drgo A, Lavagno A, Pagliara G. Phys. Rev. D, 2005, 71:

103004
4 Sa’d B B A, Shovkovy I A, Rischke D H. arXiv:astro-

ph/0703016
5 SONG H C, Bass S A, Heinz U et al. Phys. Rev. Lett., 2011,

106: 192301
6 Policastro G, Son D T, Starinets A O. Phys. Rev. Lett., 2001,

87: 081601
7 Denicol G S, Kodama T, Koide T et al. Phys. Rev. C, 2009,

80: 064901
8 Monnai A, Hirano T. Phy. Rev. C, 2009, 80: 054906
9 Boyd G, Engels J, Karsch F et al. arXiv:Hep-lat/9602007

10 CHENG M, Christ N H, Datta S et al. arXiv:Hep-lat/0710.0354
11 Karsch F, Kharzeev D, Tuchin K. Phys. Lett. B, 2008, 663:

217
12 Meyer H B. Phys. Rev. Lett. 2008, 100: 162001
13 Paech K, Pratt S. Phys. Rev. C, 2008, 74: 014901
14 LI B C, HUANG M. Phys. Rev. D, 2008, 78: 117503; Phys.

Rev. D, 2009, 80: 034023
15 CHEN J W, WANG J. Phys. Rev. C, 2009, 79: 044913
16 Sasaki C, Redlich K. Phys. Rev. C, 2009, 79: 055207
17 Mizutani M, Muroya S, Namiki M. Phy. Rev. D, 1988, 37: 10
18 JIANG Y, WANG B, SUN W M et al. Modern Physics Letters

A, 2010, 25: 1689
19 Sasaki C, Redlich K. Nucl. Phys. A, 2010, 832: 62
20 ZHENG X P, KANG M, LIU X W et al. Phys. Rev. C, 2005,

72: 025809
21 Kapusta J I. Finite-Temperature Field Theory. Second edition.

London: Cambridge University Press, 2006.107
22 Shushpanov I A, Kapusta J I, Ellis P J. Phys. Rev. C, 1999,

59: 2931
23 Shushpanov I A, Kapusta J I, Ellis P J. Phys. Rev. C, 1999,

59: 2931
24 Fujii H, Kharzeev D. Phys. Rev. D, 1999, 60: 114039
25 Hansen H, Alberico W M, Beraudo A et al. Phys. Rev. D, 2007,

75: 065004
26 Robner S, Ratti C, Weise W. Phys. Rev. D, 2007, 75: 034007
27 Kharzeev D, Tuchin K. arXiv:Hep-ph/0705.4280
28 Costa P, Hansen H, Ruivo M C et al. Phys. Rev. D, 2010, 81:

016007

054101-5


