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1 Introduction

The main physics goals of the Large Hadron Collider
(LHC) are to understand the origin of electroweak sym-
metry breaking, and to search for the neutral Higgs bo-
son predicted by the standard model (SM) and its var-
ious extensions. Recently, ATLAS and CMS have re-
ported significant excess events that are interpreted to
be most probably related to a neutral Higgs with mass
mh0

∼124–126 GeV. This implies that the Higgs mech-
anism of breaking electroweak symmetry possibly has a
solid experimental cornerstone.

The oblique parameters S, T , U [1] are extracted
from electroweak precision data (EWPD) observations
that probe the radiative corrections with sufficient ac-
curacy. A light neutral Higgs with mass 124–126 GeV
also affects the theoretical evaluations of the oblique pa-
rameters S, T , U through loop corrections to the gauge
boson propagators, which contain the neutral Higgs as
a virtual field. In extensions of the SM, the corrections
from the exotic fields to the gauge boson propagators can
be expressed in terms of shifts of the parameters S, T ,
U [2].

A broken baryon number (B) conservation can ex-
plain the origin of the matter-antimatter asymmetry in
the Universe in a natural way. The heavy majorana neu-

trinos contained in the seesaw mechanism can induce the
tiny observed neutrino masses [3] to explain the results of
neutrino oscillation experiments. Hence, the lepton num-
ber (L) is also expected to be broken. In Ref. [4], two
extensions to the SM are examined, where B and L are
spontaneously broken gauge symmetries around the TeV
scale, while Ref. [5] also investigates the predictions for
the Higgs mass and the Higgs decays in a supersymmetric
model named BLMSSM, which is a minimal supersym-
metric extension of the SM (MSSM) with local gauged
B and L. Within the framework of the first extension of
the SM with spontaneously broken B and L [4], we ana-
lyze the gluon fusion production and then decay into two
photons of the Higgs with mass mh0

∼124–126 GeV. Ad-
ditionally, we also investigate the corrections from exotic
fields of the oblique parameters S, T , U .

This paper is organized as follows. In Section 2, we
briefly summarize the main ingredients of an extension of
the SM where the baryon and lepton numbers are local
symmetries, we then present the mass squared matrices
for the neutral Higgs sector. Inspired by the new results
from the ATLAS and CMS collaborations, in Section 3
we study in great detail the Higgs production through
gluon fusion, followed by the decay of the Higgs boson
into two photons. We discuss the constraints on the pa-
rameter space from the oblique parameters S, T , U in
Section 4. Our conclusions are given in Section 5.
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2 An extension of the SM where baryon

and lepton numbers are local gauge

symmetries

When baryon and lepton numbers are local gauge
symmetries, one can write the gauge group as SU(3)C⊗
SU(2)L⊗U(1)Y⊗U(1)B⊗U(1)L. In the first extension of
the SM proposed in Ref. [4], the exotic particles include
new quarks Q′

L, u′
R, d′

R, new leptons l′L, ν′
R, e′R and three

scalar singlets SB, SL, S along with a scalar doublet φ.
The Yukawa couplings are written as

−LY =

{

3
∑

I,J=1

[

(YU)IJQ̄I
LH̃uJ

R+(YD)IJ Q̄I
LHdJ

R

]

+Y ′
UQ̄′

LQ′c
LSB+

3
∑

I=1

[

(Y1)IQ̄
′
Lφ̃uJ

R+(Y2)IQ̄
I
Lφd′

R

]

+h.c.

}

+

{

3
∑

I,J=1

[(Yν)IJ L̄I
LH̃νJ

R+(YE)IJ L̄I
LHeJ

R]

+Y ′
EL̄′

LL′c
LSL+

1

2

3
∑

I,J=1

(λa)IJ ν̄I,c
R S∗

LνJ
R

+

3
∑

I=1

(λb)I ν̄
I,c
R SLν′

R+h.c.

}

. (1)

The scalar potential is generally given as follows:

−LS = m2
HH†H+m2

φφ†φ+m2
SB

S∗
BSB+m2

SL
S∗

LSL

+m2
SS

∗S+λHH(H†H)(H†H)+λφφ(φ†φ)(φ†φ)

+λBB(S∗
BSB)(S∗

BSB)+λLL(S∗
LSL)(S∗

LSL)

+λSS(S
∗S)(S∗S)+λHφ(H†H)(φ†φ)

+λHB(H†H)(S∗
BSB)+λHL(H†H)(S∗

LSL)

+λHS(H
†H)(S∗S)+λφB(φ†φ)(S∗

BSB)

+λφL(φ†φ)(S∗
LSL)+λφS(φ

†φ)(S∗S)

+λBL(S∗
BSB)(S∗

LSL)+λBS(S
∗
BSB)(S∗S)

+λLS(S
∗
LSL)(S∗S)+λ′

Hφ(H†φ)(φ†H)

+[µ1(H
†φ)S+µ2S

∗
BS2+h.c.]. (2)

When the SU(2)L doublet H and SU(2)L singlets SB, SL

acquire the nonzero vacuum expectation values (VEVs)

υ, υB,L,

H =





G+

1√
2
(υ+H0+iG0)



,

SB =
1√
2
(υB+S0

B+iG0
B),

SL =
1√
2
(υL+S0

L+iG0
L), (3)

the local gauge symmetry SU(2)L⊗U(1)Y⊗U(1)B⊗U(1)L
is broken down to the electromagnetic symmetry U(1)e,
where G+, G0, G0

B and G0
L denote massless Goldstone

bosons. Correspondingly, the mass terms for the neutral
Higgs are formulated as

−LH
mass=

1

2

(

H0, S0
B, S0

L

)

m2
CPE







H0

S0
B

S0
L






, (4)

where the symmetric 3×3 mass squared matrix m2
CPE is

m2
CPE=







2λHHυ2 λHBυυB λHLυυL

λHBυυB 2λBBυ2
B λBLυBυL

λHLυυL λBLυBυL 2λLLυ2
L






. (5)

Through the orthogonal 3×3 transformation matrix ZCPE,
the mass squared matrix m2

CPE can be diagonalized as

ZT
CPEm2

CPEZCPE=
(

m2
H0

1

, m2
H0

2

, m2
H0

3

)

, (6)

where mH0

1
=mh0

≈125 GeV.
In a similar way, we can write the SU(2)L doublet φ

and the SU(2)L singlet S as

φ=





φ+

1√
2

(

φ0
R+iφ0

I

)



,

S=
1√
2

(

S0
R+iS0

I

)

.

(7)

Since the local gauge symmetry SU(2)L⊗U(1)Y⊗U(1)B⊗
U(1)L is broken down to the electromagnetic symmetry
U(1)e, the terms in square brackets in Eq. (2) induce
mixing among the neutral scalar particles φ0

R, φ0
I , S0

R,
S0

I , and the mass terms are written as

−LΦ
mass=

1

2

(

φ0
R, S0

R, φ0
I , S0

I

)

m2
CPM











φ0
R

S0
R

φ0
I

S0
I











, (8)

with the symmetric 4×4 mass squared matrix m2
CPM being
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m2
CPM=

















m2
φ

√
2υ<(µ1) 0 −

√
2υ=(µ1)

√
2υ<(µ1) m2

S+2
√

2υB<(µ2) 0 −2
√

2υB=(µ2)

0 0 m2
φ −

√
2υ<(µ1)

−
√

2υ=(µ1) −2
√

2υB=(µ2) −
√

2υ<(µ1) m2
S+2

√
2υB<(µ2)

















. (9)

We also diagonalize the mass squared matrix m2
CPM

through the 4×4 orthogonal rotation ZCPM:

ZT
CPMm2

CPMZCPM=
(

m2
Φ0

1

, m2
Φ0

2

,m2
Φ0

3

,m2
Φ0

4

)

. (10)

Similarly, the mass for the charged scalar φ± is expressed
by

m2
φ± =

1

2
m2

φ−
1

2
λ′

Hφυ2. (11)

Since the field φ does not get a nonzero VEV after the
electroweak symmetry is broken down, there is no mass
mixing between the exotic quarks and the SM quarks.

In the left-handed basis (νI
L, ν′

L, ν′c
R , νI,c

R ), (I=1, 2,
3), the mass matrix for neutrinos is given by the 8×8
matrix

Mn=





03×3

(

MD

)

3×5
(

MT
D

)

5×3

(

MN

)

5×5



. (12)

Here, the 3×5 matrix MD is written as

MD=

(

03×2,
υ√
2

(

Y ∗
ν

)

3×3

)

, (13)

and the 5×5 matrix MN is

MN=

















0,
υ√
2
Y ′∗

ν , 01×3

υ√
2
Y ′∗

ν , 0,
υL√

2
(λ∗

b)1×3

03×1,
υL√

2

(

λ†
b

)

3×1
,

υL√
2

(λ†
a)3×3

















, (14)

By integrating the heavy freedoms out, we get the fol-
lowing mass matrix for three light neutrinos:

Mν=−MDM−1
N MT

D , (15)

which is diagonalized by the Pontecorvo-Maki-
Nakagawa-Sakata matrix UPMNS

UT
PMNSMνUPMNS=diag(mν1

,mν2
,mν3

). (16)

Meanwhile, the Majorana mass matrix MN is similarly
diagonalized by a 5×5 matrix ZN

ZT
NMNZN=diag(mN1

,mN2
,mN3

,mN4
,mN5

). (17)

3 The gg → h0 → γγ process in gauged

baryon and lepton numbers

At the LHC, the Higgs is produced chiefly through
gluon fusion. In the SM, the leading order (LO) contribu-
tions originate from the one-loop diagram, which involves
virtual top quarks. The cross section for this process is
known as the next-to-next-to-leading order (NNLO) [6],
which can enhance the LO result by 80%–100%. Fur-
thermore, any new particle that couples strongly with
the Higgs can significantly modify this cross section. In
the extension of the SM considered here, the LO decay
width for the process h0→gg is given by (see Ref. [7] and
the references therein)

ΓNP(h0→gg) =
GFα2

sm
3
h0
|(ZCPE)11|2

64
√

2π3

∣

∣

∣A1/2(xt)

+A1/2(xt′)+A1/2(xb′)
∣

∣

∣

2

, (18)

where xa=m2
h0

/(4m2
a), a=t, t′, b′, and the loop function

A1/2 is defined as given in the Appendix.
The Higgs to diphoton decay is also obtained from

loop diagrams. The LO contributions are derived from
the one-loop diagrams containing virtual charged gauge
bosons W± or virtual top quarks in the SM. In this
model, the additional charged scalar φ± and exotic
fermions t′, b′, τ′ contribute corrections to the decay
width of the Higgs to diphoton at LO. The correspond-
ing expression is written as

ΓNP(h0→γγ) =
GFα2m3

h0

128
√

2π3

∣

∣

∣(ZCPE)11

(

4

3
A1/2(xt)

+
4

3
A1/2(xt′ )+

1

3
A1/2(xb′)

+A1/2(xτ′)+A1(xW)

)

+
8m2

Ws2
W

e2m2
φ±

(

λHφ(ZCPE)11

+
υB

υ
λφB(ZCPE)21

+
υL

υ
λφL(ZCPE)31

)

A0(xφ±)
∣

∣

∣

2

, (19)

the concrete expressions for the loop functions A0, A1
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are given in the Appendix.
The Higgs discoveries from both the ATLAS and

CMS experiments have observed an excess in Higgs pro-
duction and decay into the diphoton channel, which is
a factor of 1.4–2 times larger than the SM expectations.
The observed signal for the diphoton channels is quanti-
fied by the ratio

Rγγ=
ΓNP(h0→gg)ΓNP(h0→γγ)

ΓSM(h0→gg)ΓSM(h0→γγ)
, (20)

where we assume that all exotic fields are heavier than
the lightest Higgs h0. The current value of this ratio is
as follows [8, 9]:

ATLAS:Rγγ=1.90±0.5,

CMS:Rγγ=1.56±0.43,

ATLAS+CMS:Rγγ=1.71±0.33. (21)

Note that the combination of the ATLAS and CMS re-
sults is taken from Ref. [10].

4 Corrections to the oblique parameters

A common approach to constrain physics beyond
the SM is to use global electroweak fitting through the
oblique parameters S, T , U [1]. In the SM, electroweak
precision tests imply a relationship between mh0

and mZ.
In the model considered here, the electroweak precision

tests also strongly constrain the mass spectrum and rel-
evant couplings.

Here, we adopt the definitions of the oblique param-
eters S, T , U given in [1, 11]:

S = 16π

{

Π33(m
2
Z)−Π33(0)

m2
Z

−Π3Q(m2
Z)−Π3Q(0)

m2
Z

}

,

T = 4π
Π11(0)−Π33(0)

m2
Zs2

Wc2
W

, (22)

U = 16π

{

Π11(m
2
Z)−Π11(0)

m2
Z

−Π33(m
2
Z)−Π33(0)

m2
Z

}

,

where sW=sinθW and cW=cosθW with the Weinberg an-
gle θW defined at the energy scale µ=mZ. In the above
definitions, Π11 and Π33 are the vacuum polarizations of
isospin currents, and Π3Q is the vacuum polarization of
one isospin and one hypercharge current.

By comparing the measurable electroweak observ-
ables with the theoretical predictions, one finds the fitted
values [12]

∆S = S−SSM=0.04±0.10,

∆T = T−TSM=0.05±0.11, (23)

∆U = U−USM=0.08±0.11.

As mentioned above, there is no mass mixing between
the exotic quarks and the SM quarks. The corresponding
corrections to the oblique parameters from exotic quarks
are

∆SQ′ =
1

π

{∫1

0

dxx(1−x)ln
m2

b′−x(1−x)m2
Z

m2
t′−x(1−x)m2

Z

−3m2
t′

2m2
Z

∫1

0

dxln
m2

t′−x(1−x)m2
Z

m2
t′

−3m2
b′

2m2
Z

∫1

0

dxln
m2

b′−x(1−x)m2
Z

m2
b′

}

,

∆TQ′ = − 3

4πs2
Wc2

W

{

m2
t′

m2
Z

∫1

0

dxxln
xm2

t′+(1−x)m2
b′

m2
t′

+
m2

b′

m2
Z

∫1

0

dx(1−x)ln
xm2

t′+(1−x)m2
b′

m2
b′

}

,

∆UQ′ =
1

π

{

3

∫1

0

dxx(1−x)ln
[xm2

t′+(1−x)m2
b′−x(1−x)m2

Z]2

[m2
t′−x(1−x)m2

Z][m2
b′−x(1−x)m2

Z]

−3

∫1

0

dx

(

x
m2

t′

m2
Z

+(1−x)
m2

b′

m2
Z

)

ln
xm2

t′+(1−x)m2
b′−x(1−x)m2

Z

xm2
t′+(1−x)m2

b′

−3m2
t′

2m2
Z

∫1

0

dxln
m2

t′−x(1−x)m2
Z

m2
t′

−3m2
b′

2m2
Z

∫1

0

dxln
m2

b′−x(1−x)m2
Z

m2
b′

}

. (24)

Here, mb′ and mt′ denote the masses of the charged −1/3
exotic quark b′ and the charged 2/3 exotic quark t′, re-
spectively.

In a similar way, there is no mass mixing between

the exotic charged leptons and the SM leptons. Ignoring
the tiny mixing between the left-handed neutrinos and
heavy majorana neutrinos, we write the corrections to
the oblique parameters from exotic leptons as
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∆SL′ =
1

π

5
∑

i,j=1

(ZN)1i(Z
†
N)i1(ZN)1j(Z

†
N)j1

{

−1

2

∫1

0

dx

(

x
m2

Ni

m2
Z

+(1−x)
m2

Nj

m2
Z

)

×ln
xm2

Ni
+(1−x)m2

Nj
−x(1−x)m2

Z

xm2
Ni

+(1−x)m2
Nj

− m2
τ′

2m2
Z

∫1

0

dxln
m2

τ′−x(1−x)m2
Z

m2
τ′

+

∫1

0

dxx(1−x)ln
xm2

Ni
+(1−x)m2

Nj
−x(1−x)m2

Z

m2
τ′−x(1−x)m2

Z

}

,

∆TL′ = − 1

4πs2
Wc2

W

5
∑

i,j=1

(ZN)1i(Z
†
N)i1(ZN)1j(Z

†
N)j1

{

m2
Ni

m2
Z

∫1

0

dxln
xm2

Ni
+(1−x)m2

τ′

xm2
Ni

+(1−x)m2
Nj

+
m2

τ′

m2
Z

∫1

0

dx(1−x)ln
xm2

Ni
+(1−x)m2

τ′

m2
τ′

}

,

∆UL′ =
1

π

5
∑

i,j=1

(ZN)1i(Z
†
N)i1(ZN)1j(Z

†
N)j1

{

m2
τ′

2m2
Z

∫1

0

dxln
m2

τ′−x(1−x)m2
Z

m2
τ′

+

∫1

0

dxx(1−x)ln
[xm2

Ni
+(1−x)m2

τ′−x(1−x)m2
Z]2

(xm2
Ni

+(1−x)m2
Nj
−x(1−x)m2

Z)(m2
τ′−x(1−x)m2

Z)

−
∫1

0

dx

(

x
m2

Ni

m2
Z

+(1−x)
m2

τ′

m2
Z

)

ln
xm2

Ni
+(1−x)m2

τ′−x(1−x)m2
Z

xm2
Ni

+(1−x)m2
τ′

+
1

2

∫1

0

dx

(

x
m2

Ni

m2
Z

+(1−x)
m2

Nj

m2
Z

)

ln
xm2

Ni
+(1−x)m2

Nj
−x(1−x)m2

Z

xm2
Ni

+(1−x)m2
Nj

}

. (25)

Here, the 5×5 unitary matrix ZN is the mixing matrix for heavy majorana neutrinos, mNi
(i=1, 2, ··· ,5) are the

corresponding masses of the heavy neutrinos, and mτ′ is the mass of the charged exotic lepton τ′.
Since the radiative corrections to the self energy of gauge bosons originate from three CP -even Higgs (h0, H0

2,
H0

3), the corresponding contributions to the oblique parameters are given by

∆SH =
1

π

3
∑

i=1

(ZCPE)21i

{

1

2

∫1

0

dxx(1−x)ln
x2m2

Z+(1−x)m2
H0

i

m2
Z

+

∫1

0

dx

(

1−x

2
−(1−x)

m2
H0

i

2m2
Z

)

ln
x2m2

Z+(1−x)m2
H0

i

xm2
Z+(1−x)m2

H0

i

}

,

∆TH =
1

4πs2
Wc2

W

3
∑

i=1

(ZCPE)21i

{

−
∫1

0

dx

(

1−x

2
−(1−x)

m2
H0

i

2m2
Z

)

ln
xm2

Z+(1−x)m2
H0

i

m2
Z

+

∫1

0

dx

(

(

1−x

2

)

c2
W−(1−x)

m2
H0

i

2m2
Z

)

ln
xm2

W+(1−x)m2
H0

i

m2
Z

}

,

∆UH =
1

π

3
∑

i=1

(ZCPE)21i

{

1

2

∫1

0

dx

(

x2+(1−x)
m2

H0

i

m2
Z

)

ln
x2m2

Z+(1−x)m2
H0

i

m2
Z

−
∫1

0

dxln
x2m2

Z+(1−x)m2
H0

i

xm2
Z+(1−x)m2

H0

i

−1

2

∫1

0

dx

(

x+(1−x)
m2

H0

i

m2
Z

)

ln
xm2

Z+(1−x)m2
H0

i

m2
Z

+

∫1

0

dx

(

(

1−x

2

)

c2
W−(1−x)

m2
H0

i

2m2
Z

)

ln
xm2

W+(1−x)m2
H0

i

−x(1−x)m2
Z

xm2
W+(1−x)m2

H0

i
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+
1

2

∫1

0

dxx(1−x)ln
xm2

W+(1−x)m2
H0

i

−x(1−x)m2
Z

m2
Z

}

. (26)

Here, we adopt the notation H0
1 to represent the lightest neutral Higgs h0. In addition, the contributions from Φ0

i

and φ± to the oblique parameters are formulated as follows

∆Sφ =
1

2π

{

4
∑

i,j

(ZCPM)21i(ZCPM)23j

[

−
∫1

0

dx

(

x
m2

Φ0

i

m2
Z

+(1−x)
m2

Φ0

j

m2
Z

)

ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

−x(1−x)m2
Z

xm2
Φ0

i

+(1−x)m2
Φ0

j

−
∫1

0

dxx(1−x)ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

−x(1−x)m2
Z

m2
φ±−x(1−x)m2

Z

]

+
m2

φ±

m2
Z

∫1

0

dxln
m2

φ±−x(1−x)m2
Z

m2
φ±

}

,

∆Tφ =
1

8πs2
Wc2

W

{

−
4
∑

i=1

[

(ZCPM)21i+(ZCPM)23i

]

[

m2
φ±

m2
Z

∫1

0

dxxln
xm2

φ±+(1−x)m2
Φ0

i

m2
φ±

+
m2

Φ0

i

m2
Z

∫1

0

dxxln
xm2

Φ0

i

+(1−x)m2
φ±

m2
Φ0

i

]

+
4
∑

i,j

(ZCPM)21i(ZCPM)23j

∫1

0

dx

(

x
m2

Φ0

i

m2
Z

+(1−x)
m2

Φ0

j

m2
Z

)

ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

m2
Φ0

i

}

,

∆Uφ =
1

2π

{

−
4
∑

i=1

[

(ZCPM)21i+(ZCPM)23i

]

[∫1

0

dx

(

x
m2

φ±

m2
Z

+(1−x)
m2

Φ0

i

m2
Z

)

ln
xm2

φ±+(1−x)m2
Φ0

i

−x(1−x)m2
Z

xm2
φ±+(1−x)m2

Φ0

i

+
1

2

∫1

0

dxx(1−x)ln
xm2

φ±+(1−x)m2
Φ0

i

−x(1−x)m2
Z

m2
φ±−x(1−x)m2

Z

]

+

4
∑

i,j

(ZCPM)21i(ZCPM)23j

[∫1

0

dx

(

x
m2

Φ0

i

m2
Z

+(1−x)
m2

Φ0

j

m2
Z

)

×ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

−x(1−x)m2
Z

xm2
Φ0

i

+(1−x)m2
Φ0

j

+

∫1

0

dxx(1−x)ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

−x(1−x)m2
Z

xm2
Φ0

i

+(1−x)m2
φ±−x(1−x)m2

Z

+

∫1

0

dxx(1−x)ln
xm2

Φ0

i

+(1−x)m2
Φ0

j

−x(1−x)m2
Z

xm2
φ±+(1−x)m2

Φ0

j

−x(1−x)m2
Z

]

+
m2

φ±

m2
Z

∫1

0

dxln
m2

φ±−x(1−x)m2
Z

m2
φ±

}

. (27)

5 Numerical analysis

As mentioned above, the most stringent constraint on
the parameter space is that the 3×3 mass squared matrix
in Eq. (5) should produce the lightest eigenvector with a
mass mh0

=125 GeV.
In order to make the final results consistent with this

condition, we require the self coupling of the Higgs dou-
blet to satisfy

λHH=
A

B
, (28)

where

A = m6
h0
−2
[

λBBυ2
B+λLLυ2

L

]

m4
h0

+
[

(4λBBλLL−λ2
BL)υ2

Bυ2
L

−λ2
HBυ2υ2

B−λ2
HLυ2υ2

L

]

m2
h0

+2
[

λBBλ2
HL+λLLλ2

HB

−λHBλHLλBL

]

υ2υ2
Bυ2

L,

B = 2υ2
[

m4
h0
−2(λBBυ2

B+λLLυ2
L)m2

h0

+(4λBBλLL−λ2
BL)υ2

Bυ2
L

]

. (29)

The present experimental lower bounds on the fourth
generation charged lepton τ′, up-type and down-type
quarks t′ and b′ at 95% C.L. are mτ′ >100.8 GeV,
mt′ >420 GeV and mb′ >372 GeV, respectively. The
fourth generation quarks t′ and b′ acquire nonzero

masses mt′ = mb′ =
Y ′

Q√
2
υB when local U(1)B symmetry

is broken. In addition, the charged leptons of the fourth

generation τ′ obtain nonzero masses mτ′ =
Y ′

E√
2
υL when

local U(1)L symmetry is broken.
However, there are too many free parameters in the

model considered here. In our numerical analysis, we
adopt the assumption on the parameter space

mt′ = mb′ =mτ′=mF,

λBB = λLL=0.5, λHL=λBL=λHB=λNP, (30)

λφH = λφB=λφL=λ′
NP,

to decrease the number of free parameters in the con-
cerned model. Furthermore, we assume υ � υB,L,
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(λa)3×3=diag(λa, λa, λa), and choose the hierarchical as-

sumption on Yukawa couplings
∣

∣

∣(Yν)IJ

∣

∣

∣�|Y ′
ν|∼λa∼λbI

,

(I , J =1, 2, 3) to obtain our final results. Applying the
assumptions above, we obtain the majorana mass for the
lightest exotic neutrino N1 to be

mN1
≈ υ2

√
2υL

λa|Y ′
ν|

λ2
b

, (31)

with λ2
b = λ2

b1
+λ2

b2
+λ2

b3
. Of course, we need this mass

to be greater than mZ/2 in order to be consistent with
the measured Z-boson decay width. The masses of other
heavy majorana neutrinos are

mNi
≈
(

υL√
2
λa,

υL√
2
λa,

υL

2
√

2
(∆−λa),

υL

2
√

2
(∆+λa)

)

, (32)

for i=2, 3, 4, 5 and ∆=
√

λ2
a+4λ2

b.
Correspondingly, the 5×5 mixing matrix ZN is ap-

proximated as

ZN≈







































1,
λaY

∗
ν υ

λ2
bυL

−,
λb1

Y ∗
ν υ

λ2
bυL

,
λb2

Y ∗
ν υ

λ2
bυL

,
λb3

Y ∗
ν υ

λ2
bυL

λaY
∗

ν υ

λ2
bυL

, 0, 0, −i

√

∆+λa

2∆
,

√

∆−λa

2∆

−λb1
Y ∗

ν υ

λ2
bυL

, − λb3
√

λ2
b1

+λ2
b3

, − λb2
√

λ2
b1

+λ2
b2

,
i
√

2λb1√
∆2+λa∆

,

√
2λb1√

∆2−λa∆

−λb2
Y ∗

ν υ

λ2
bυL

, 0, 0,
i
√

2λb2√
∆2+λa∆

,

√
2λb2√

∆2−λa∆

−λb3
Y ∗

ν υ

λ2
bυL

,
λb1

√

λ2
b1

+λ2
b3

,
λb1

√

λ2
b1

+λ2
b2

,
i
√

2λb3√
∆2+λa∆

,

√
2λb3√

∆2−λa∆







































. (33)

For the relevant parameters in the SM, we take [13]

αs(mZ) = 0.118, α(m
Z
)=1/128,

s2
W(mZ) = 0.23, mt=174.2 GeV, mW=80.4 GeV. (34)

5.1 Numerical results of Rγγ

Under our assumptions of the parameter space, the
theoretical prediction of Rγγ depends on six parameters
in the model: mF, mφ± , λNP, λ′

NP, υB and υL. Taking
mφ±=500 GeV, λNP=0.5 and λ′

NP = −0.5, we plot the
variation of Rγγ with the mass scalar of exotic fermions
MF, as shown in Fig. 1. The dotted line corresponds
to υB = υL=500 GeV, the dashed line corresponds to
υB = υL=1000 GeV, and the solid line corresponds to
υB = υL =1500 GeV. In general, the ratio Rγγ depends
very weakly on the mass scale mF, and the value of Rγγ

is about 1.8–1.9 when 500 GeV6υB=υL61500 GeV.
In Fig. 2(a), we plot the variation of Rγγ with the

VEV υL when mφ± = υB = 500 GeV, λ′
NP = −0.5 and

λNP=0.5. The dotted line corresponds to mF=500 GeV,
the dashed line corresponds to mF = 550 GeV, and the
solid line corresponds to mF=600 GeV. The dependence
of Rγγ on υL is relatively sensitive for υL6600 GeV, and
is weak for υL>600 GeV. Since the dependence of Rγγ

on mF and υB is very weak, the three lines almost coin-
cide with each other. In Fig. 2(b), we plot the variation
of Rγγ with the VEV υL when mF=mφ±=υB=500 GeV,
λ′

NP =−0.5. The dotted line corresponds to λNP = 0.5,
the dashed line corresponds to λNP=0, and the solid line
corresponds to λNP =−0.5. Generally, there is a weak
dependence of the ratio Rγγ on υL.

Fig. 1. Variation of Rγγ with the mass scale of ex-
otic fermions mF when mφ±=500 GeV, λNP=0.5,
λ′

NP = −0.5. The dotted line represents υB =
υL=500 GeV, the dashed line represents υB =
υL=1000 GeV, and the solid line represents υB=
υL=1500 GeV.

In Fig. 3(a), we show the variation of Rγγ with the
VEV υB when mF =υL=500 GeV, λNP =0.5. The dot-
ted line corresponds to λ′

NP = 0.5, the dashed line cor-
responds to λ′

NP = 0, and the solid line corresponds to
λ′

NP =−0.5. The dependence of Rγγ on υB is relatively
sensitive for υB6600 GeV, and is weak for υB>600 GeV.
In Fig. 3(b), we show the variation of Rγγ with υB when
mF=υL=500 GeV, λ′

NP=−0.5 and λNP=0.5. The dotted
line corresponds to mφ±=1500 GeV, the dashed line

053101-7



Chinese Physics C Vol. 38, No. 5 (2014) 053101

Fig. 2. Variation of Rγγ with the VEV υL when
mφ± =υB=500 GeV, λ′

NP =−0.5. In (a), λNP =
0.5, the dotted line corresponds to mF=500 GeV,
the dashed line corresponds to mF=550 GeV, and
the solid line corresponds to mF=600 GeV. In
(b), mF=500 GeV, the dotted line corresponds to
λNP=0.5, the dashed line corresponds to λNP=0,
and the solid line corresponds to λNP=−0.5.

corresponds to mφ±=1000 GeV, and the solid line cor-
responds to mφ±=500 GeV. Generally, there is a very
weak dependence of the ratio Rγγ on υB.

Choosing υB = υL=500 GeV, λ′
NP = −0.5, Fig. 4

presents the variation of the ratio Rγγ with λNP.
The dotted line represents mF =500 GeV, mφ±=
1500 GeV, the dashed line represents mF =550 GeV,
mφ± =1000 GeV, and the solid line represents mF =
mφ±=500 GeV. As ΛNP increases, Rγγ changes dras-
tically and can easily coincide with the present exper-
imental data, as −0.56λNP 61.0. Choosing mF =υB =
υL=500 GeV, and λNP = −0.5, Fig. 5 shows the ratio
Rγγ versus mφ± . The dotted line represents λ′

NP =0.5,
the dashed line represents λ′

NP = 0, and the solid line
represents λ′

NP = −0.5. For λ′
NP = 0, there is a slight

dependence of Rγγ on the mass mφ± . When λ′
NP=±0.5,

Fig. 3. Variation of Rγγ with the VEV υB when
mF = υL=500 GeV, λNP = 0.5 for: (a)
mφ±=500 GeV, where the dotted line corre-
sponds to λ′

NP =0.5, the dashed line corresponds
to λ′

NP = 0, and the solid line corresponds to
λ′

NP=−0.5; (b)λ′
NP=−0.5, where the dotted line

corresponds to mφ± =1500 GeV, the dashed line
corresponds to mφ±=1000 GeV, and the solid line
corresponds to mφ±=500 GeV.

Rγγ decreases steeply as mφ± increases.
In Fig. 6, we plot the variation of the ratio Rγγ with

λ′
NP when mF =υB =υL=500 GeV and λNP =−0.5. The

dotted line represents mφ±=1500 GeV, the dashed line
represents mφ±=1000 GeV, and the solid line represents
mφ±=500 GeV. The dependence of Rγγ on λ′

NP is strong
when mφ±=500 GeV but weaker for higher values of
mφ± .

Generally, the ratio Rγγ depends strongly on the pa-
rameters λNP, λ′

NP and mφ± , and depends weakly on υB,
υL and mF. These numerical results can be reasonably
explained from Eq. (18) and Eq. (19), where λNP affects
theoretical predictions of Rγγ through the 3×3 mixing
matrix ZCPE, while λ′

NP and mφ± affect theoretical pre-
dictions of Rγγ through the last term in Eq. (19).
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Fig. 4. Variation of Rγγ with λNP when υB =
υL=500 GeV, λ′

NP = −0.5, where the dotted
line represents mF=500 GeV, mφ±=1500 GeV,
the dashed line represents mF=550 GeV,
mφ±=1000 GeV, and the solid line represents
mF=mφ±=500 GeV.

Fig. 5. Variation of Rγγ with mφ± when mF=υB=
υL=500 GeV, λNP =−0.5, where the dotted line
represents λ′

NP = 0.5, the dashed line represents
λ′

NP=0, and the solid line represents λ′
NP=−0.5.

The important point is that the parameters λa,
λbi

(i=1, 2, 3) do not affect the theoretical predictions of
Rγγ since there is no correction to the decay widths of
h0→γγ and h0→gg from the neutrino sector at one-loop
level. Similarly, the parameters MS, µ1, µ2 also do not
affect theoretical evaluations of Rγγ because there is no
one-loop correction to the decay widths of h0→γγ and
h0→gg from virtual Φ0

i (i=1, 2, 3, 4).

Fig. 6. Variation of Rγγ with λ′
NP when mF=υB=

υL=500 GeV, λNP =−0.5, where the dotted line
represents mφ±=1500 GeV, the dashed line rep-
resents mφ±=1000 GeV, and the solid line repre-
sents mφ±=500 GeV.

Fig. 7. Adopting the assumptions mentioned in the
text and assuming θ1=arg(µ1)=π, θ2=arg(µ2)=
π/4, we present the theoretical values for a) ∆S
(solid line), b) ∆U (dash-dot-dot line), and c) ∆T
(dashed line) versus the mass mφ± .

5.2 The constraints on parameter space from

oblique corrections

The heavy neutrinos contribute one-loop radiative
corrections to the self energies of ZZ, W±W∓ in this
model. This results in the theoretical values of the S,
T , U parameters depending on λa, λbi

(i=1, 2, 3) here.
Furthermore, the theoretical values of the S, T , U pa-
rameters also depend on mS, µ1, µ2 through the virtual
φ±, Φ0

i , (i=1, 2, 3, 4) radiative corrections to the self
energies of ZZ, W±W∓ at one-loop level. So far, fitting
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S, T , U within 3σ deviation indicates

−0.266∆S60.34,

−0.286∆T60.38,

−0.256∆U 60.41. (35)

In order to obtain theoretical values of S, T , U that sat-
isfy present experimental data, we adopt the following
additional assumptions:

mN1
≈ υ2

√
2υL

λa|Y ′
ν|

λ2
b

=mF,

λb1
= λb2 =λb3

=
1√
3
λb,

υB = υL=mS=mF=500 GeV,

|µ1| = 20 GeV, |µ2|=200 GeV,

λa = λb=0.6, λBB=λLL=0.5, λNP=λ′
NP=0.01. (36)

Choosing θ1 =arg(µ1)=π, θ2 =arg(µ2)=π/4, we de-
pict the theoretical values of ∆S, ∆U , ∆T versus the
mass of charged scalar φ± in Fig. 7, in which the solid
line represents ∆S, the dash-dot-dot line represents ∆U ,
and the dashed line represents ∆T . For our choices of
the relevant parameters, the theoretical value of ∆T is
very sensitive to the mass mφ± , while the theoretical val-
ues of ∆S and ∆U have a weak dependence on the mass
mφ± . When the mass of the charged scalar lies in the
range 4006mφ±/GeV6700, the theoretical predictions
of ∆S, ∆T , ∆U simultaneously satisfy the inequalities
in Eq. (35). The CP phases θ1, θ2 also affect the nu-
merical results of ∆S, ∆U , ∆T through the 4×4 mixing
matrix ZCPM. Taking mφ±=600 GeV and θ2 =π/4, we
present the theoretical evaluations on ∆S, ∆U , ∆T ver-
sus the CP phase θ1 in Fig. 8. With our assumptions on
the parameter space, the theoretical value of ∆T varies

Fig. 8. Adopting the assumptions mentioned in the
text and assuming mφ±=600 GeV, θ2=arg(µ2)=
π/4, we present the theoretical values of a) ∆S
(solid line), b) ∆U (dash-dot-dot line), and c) ∆T
(dashed line) versus the CP phase θ1=arg(µ1).

strongly with the CP phase θ1, while the theoretical val-
ues of ∆S and ∆U vary weakly with the CP phase θ1. In
the neighbourhoods of θ1=0, ±π/2, ±π, the theoretical
predictions on ∆S, ∆T , ∆U simultaneously lie within
the ranges presented in Eq. (35).

In Fig. 9, we present the theoretical values of
∆S, ∆T , ∆U varying with the CP phase θ2 when
mφ± =600 GeV and θ1 =π. As the CP phase θ2 varies,
the theoretical value of ∆T changes drastically, while the
theoretical values of ∆S and ∆U change slowly. In the
neighbourhoods around θ2=±π/4, ±3π/4, the theoreti-
cal predictions of ∆S, ∆T , ∆U coincide with the present
global EWPD fit within 3σ deviations.

Fig. 9. Adopting the mentioned assumptions in
text and assuming mφ±=600 GeV, θ1=arg(µ1)=
π, we present the theoretical values of a) ∆S
(solid line), b) ∆U (dash-dot-dot line), and c) ∆T
(dashed line) versus the CP phase θ2=arg(µ2).

6 Summary

For an extension of the SM with local gauged baryon
and lepton numbers, we have discussed the constraints
from the oblique parameters S, T , U when the lightest
Higgs has a mass around 125 GeV. Considering these
constraints, we find that there is parameter space to ac-
count for the excess in Higgs production and decay in the
diphoton channel observed in the ATLAS and CMS ex-
periments. Of course, our numerical results strongly de-
pend on the assumptions made in the model considered
here. In other words, our theoretical prediction cannot
be precise because of the theoretical uncertainties. The
purpose of our calculation is to show that this extension
of the SM may still be right even after the constraints
from LHC data on the Higgs and oblique parameters
have been taken into account.
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Appendix A

Higgs masses and relevant couplings

After diagonalizing the mass matrix Eq. (5), we obtain

m2
h0

= Min(m2
1, m2

2, m2
3)

m2
H0

3

= Max(m2
1, m2

2, m2
3) (A1)

with

m2
1 = −a

3
+

2

3
pcosφ,

m2
2 = −a

3
−1

3
p(cosφ−

√
3sinφ), (A2)

m2
3 = −a

3
−1

3
p(cosφ+

√
3sinφ).

To formulate the expressions in a concise form, we define
the notations

p=
√

a2−3b,φ=
1

3
arccos

(

− 1

p3

(

a3−9

2
ab+

27

2
c

))

(A3)

where

a = −2
(

λHHυ2+λBBυ2
B+λLLυ2

L

)

,

b = 4(λHHλBBυ2υ2
B+λHHλLLυ2υ2

L+λBBλLLυ2
Bυ2

L)

−λ2
HBυ2υ2

B−λ2
HLυ2υ2

L−λ2
BLυ2

Bυ2
L,

c = 2
(

λHHλ2
BL+λBBλ2

HL+λLLλ2
HB−4λHHλBBλLL

−λHBλHLλBL

)

υ2υ2
Bυ2

L . (A4)

The normalized eigenvectors of the mass squared matrix in
Eq. (5) are given by







(ZCPE)11

(ZCPE)21

(ZCPE)31






=

1
√

|X1|2+|Y1|2+|Z1|2







X1

Y1

Z1






,







(ZCPE)12

(ZCPE)22

(ZCPE)32






=

1
√

|X2|2+|Y2|2+|Z2|2







X2

Y2

Z2






,







(ZCPE)13

(ZCPE)23

(ZCPE)33






=

1
√

|X3|2+|Y3|2+|Z3|2







X3

Y3

Z3






, (A5)

with

X1 = (2λBBυ2
B−m2

1)(2λLLυ2
L−m2

1)−λ2
BLυ2

Bυ2
L,

Y1 = λHLλBLυυBυ2
L−λHBυυB(2λLLυ2

L−m2
1),

Z1 = λHBλBLυυ2
BυL−λHLυυL(2λBBυ2

B−m2
1),

X2 = λHLλBLυυBυ2
L−λHBυυB(2λLLυ2

L−m2
2),

Y2 = (2λHHυ2−m2
2)(2λLLυ2

L−m2
2)−λ2

HLυ2υ2
L,

Z2 = λHBλHLυ2υBυL−λBLυBυL(2λHHυ2−m2
2),

X3 = λHBλBLυυ2
BυL−λHLυυL(2λBBυ2

B−m2
3),

Y3 = λHBλHLυ2υBυL−λBLυBυL(2λHHυ2−m2
3),

Z3 = (2λHHυ2−m2
3)(2λBBυ2

B−m2
3)−λ2

HBυ2υ2
B. (A6)

Appendix B

The loop functions

The loop functions in Eq. (18) and Eq. (19) are given as

A1(x) = −
[

2x2+3x+3(2x−1)g(x)
]

/x2,

A1/2(x) = 2
[

x+(x−1)g(x)
]

/x2,

A0(x) = −(x−g(x))/x2, (B1)

with

g(x)=











arcsin2√x,x61

−1

4

[

ln
1+
√

1−1/x

1−
√

1−1/x
−iπ

]2

, x>1
(B2)
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