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Quantum phase transitions in matrix product states of
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1
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Abstract: For the matrix product system of a one-dimensional spin-
1

2
chain, we present a new model of quantum

phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described

by phases |Ψa〉=|1···1〉 representing all particles spin up and |Ψb〉=|0···0〉 representing all particles spin down, while

the phase transition point is an isolated intermediate-coupling point where the two phases coexist equally, which is

described by the so-called N -qubit maximally entangled GHZ state |Ψpt〉=
√

2

2
(|1···1〉+|0···0〉). At the critical point,

the physical quantities including the entanglement are not discontinuous and the matrix product system has long-

range correlation and N -qubit maximal entanglement. We believe that our work is helpful for having a comprehensive

understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential

directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and

N -qubit maximal entanglement.
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1 Introduction

The study of matrix product states now mainly fo-
cuses on two aspects, one is the ability of matrix prod-
uct states to characterize quantum many body systems,
the other is the quantum phase transitions in matrix
product systems. Related articles [1, 2] showed that for
one-dimensional spin lattice models, every many-body
state, in particular, every ground state (GS) of a finite
many-body system dictated and characterized by a lo-
cal Hamiltonian can be represented as a matrix prod-
uct state (MPS). The power of this representation stems
from the fact that in many cases, a low-dimensional
MPS already yields a very good approximation of the
state [3, 4]. Thus MPSs are undoubtedly a new powerful
and convenient playground for studying one-dimensional
spin lattice models theory, especially for quantum phase
transitions, by using the quantum information approach
[1, 5–13].

For one-dimensional spin-1 chains, our previous re-
search [11, 12] realized the quantum phase transitions be-

tween subsystems in the composite matrix product sys-
tems, while our article [13] realized the quantum phase
transition between the different special basic freedoms
in the matrix product system. While in this paper, for

one-dimensional spin-
1

2
chains, we realize the quantum

phase transition between the different special basic free-
doms in the matrix product system. To be specific about
the model that we construct, in the thermodynamic
limit both sides of the critical point are respectively de-
scribed by phases |Ψa〉 = |1···1〉 representing all parti-
cles spin up and |Ψb〉= |0···0〉 representing all particles
spin down, while the phase transition point is an isolated
intermediate-coupling point where the two phases coexist
equally, which is described by the so-called N -qubit max-

imally entangled GHZ state |Ψpt〉=
√

2

2
(|1···1〉+|0···0〉).

At the critical point, the physical quantities including
the entanglement are not discontinuous and the MPS
|Ψ〉 has long-range correlation and N -qubit maximal en-
tanglement due to its coherent and collective properties.
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2 Model and method

2.1 The concrete model

Let us begin with the one-dimensional translation in-
variant MPS:

|Ψ〉= 1√
N

d
∑

i1,···,iN =1

Tr(Ai1 ···AiN )|i1,··· ,iN〉, (1)

where d is the dimension of Hilbert space of one site in
the spin chain, and a set of D×D matrices {Ai,i=1,···,d}
parameterize the correlations of the N -spin state with

the dimension D 6 dN/2 [2]. E =
d

∑

i=1

Āi⊗Ai contained

in the normalization factor N = TrEN , is the so-called
transfer matrix and the symbol bar denotes complex con-
jugation.

Here we present the MPS |Ψ〉 with

A1=

[

1 0

0 0

]

, A2=

[

0 0

0 γ

]

, (2)

where γ>0. It is shown that the transfer matrix E has
eigenvalues 1,γ2,0,0 and then E = |λR

a 〉〈λL
a |+γ2|λR

b 〉〈λL
b |

where the normalized right (left) eigenvector |λR(L)
a 〉 cor-

responds to the nonzero eigenvalue λa≡1, and the nor-
malized right (left) eigenvector |λR(L)

b 〉 corresponds to the
nonzero eigenvalue λb ≡ γ2. Obviously for 0 < γ < 1
and γ>1, the largest absolute eigenvalue is respectively
λmax=λa and λmax=λb. Hence, the point γ=1 is a phase
transition point. In the following, we will investigate in
detail the properties of the kind of MPS QPT by the
aforementioned quantum information approach.

2.2 The properties of the kind of MPS QPT

2.2.1 The properties of local physical observables

First we turn to the properties of local physical ob-
servables. For a local observable of l adjacent spins,
O

(1,l)≡O[1]
i1
···O[l]

il
the expectation is expressed as

〈Ψ |O(1,l)|Ψ〉= Tr(E
O(1,l)EN−l)

Tr(EN )
, (3)

where E
O(1,l) = EOi1

EOi2
···EOil

and EOk
≡

∑

i,i′
〈i|Ok|i′〉Āi⊗Ai′ , taking the thermodynamic limit

N→∞, which reduces to

〈O(1,l)〉=



































〈O(1,l)〉a=
〈λL

a |EO(1,l) |λR
a 〉

(λa)l
γ<1,

〈O(1,l)〉b=
〈λL

b |EO(1,l) |λR
b 〉

(λb)l
γ>1,

〈O(1,l)〉pt=
1

2
(〈O(1,l)〉a+〈O(1,l)〉b) γ=1.

(4)

For simplicity, let us study the properties of the operator
σz. The behaviors of the physical quantity 〈σz〉 for the

different system size N as a function of the dimensionless
parameter γ are shown in Fig. 1 and Fig. 2, where Fig. 1
is for finite N and Fig. 2 is for N→∞. Concretely, Fig. 1
shows the curves of 〈σz〉 for different N from bottom to
top which takes values of 5,10,15 and 20 in turn in the
vicinity of the point γ = 0.9. Fig. 2 shows the behav-
ior of 〈σz〉 for N →∞, here 〈σz〉 takes a discrete form
for 0 < γ < 1 and γ > 1, it respectively takes the defi-

nite values of
1

2
and −1

2
independent of the parameter

γ, and when γ = 1, 〈σz〉= 0. It is readily seen that for
the average magnetization 〈σz〉 as γ approaches 1, the de-
gree of dependence on the parameter γ becomes stronger,
while it becomes weaker with N increasing. Only in the

Fig. 1. The average magnetization 〈σz〉 for differ-
ent values N as a function of the dimensionless
parameter γ, where in the vicinity of the point
γ = 0.9, from bottom to top, the system size N

respectively takes the values of 5, 10, 15 and 20
in turn.

Fig. 2. The average magnetization 〈σz〉 for N→∞
as a function of the dimensionless parameter γ.
When 0<γ <1 and γ>1, 〈σz〉 respectively takes

the value of
1

2
and −1

2
. When γ=1, 〈σz〉=0.
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thermodynamic limit, the average magnetization 〈σz〉
turns out to be discontinuous, at the point γ = 1 from
Fig. 1 and Fig. 2. It follows that the phase transition
can take place only in the thermodynamic limit and is
clearly manifested by the singularity of the above physi-
cal quantity.

2.2.2 The property of the correlation

The property of the correlation at the transition point

is discussed below. Firstly, the correlation function of
two local blocks is

Cn[O(1,l)]≡〈Ψ |O(1,l)O(n+1,n+l)|Ψ〉−〈Ψ |O(1,l)|Ψ〉2. (5)

In the thermodynamic limit, for large distances n � 1
and in the vicinity of the transition point, this formula
reduces to

Cn[O(1,l)] =

(

λb(a)

λa(b)

)n 〈λa(b)
L|E

O(1,l) |λR
b(a)〉〈λL

b(a)|EO(n+1,n+l) |λR
a(b)〉

λ2l
a(b)

. (6)

It is readily seen that from the above equation, as the
coupling strength approaches its QPT, i.e., γ → 1 from
either side of the critical point, we get λb→λa, thus, the

correlation length ξ =
1

ln(λa(b)/λb(a))
clearly diverges at

the phase transition point. At this point, the long-range
correlation is expressed as

C∞[O(1,l)]=
1

4
(〈O(1,l)〉pt

a −〈O(1,l)〉pt
b )2. (7)

For the physical observable σz , the long-range correla-

tion is C∞[σz]=
1

4
. It follows that the proposed MPS |Ψ〉

has long-range correlation at the phase transition point.

2.2.3 The entanglement property

Now, let us study the entanglement property of the
MPS, the key quantity of quantum information theory
[14–17], in detail. There are many kinds of methods to

measure entanglement, such as the quantification char-
acteristic function of quantum nonlocality [18], Bell in-
equality [19, 20], quantum discord [21], averaged entropy
[22] and so on. For our system, we shall adopt the von
Neumann entropy which [23–30] according to the bipar-
tition parameterization by the adjacent spin number n
of a Bn spin block is,

Sn=−Tr(ρn log2ρn), (8)

where ρn =TrB̄n
ρ is the reduced density matrix for the

Bn block of n adjacent spins. Given an MPS, the reduced
density matrix of n adjacent spins is given by

ρi1···in,j1···jn
=

Tr((Āi1 ···Āin
⊗Aj1 ···Ajn

)EN−n)

Tr(EN )
, (9)

in the thermodynamic limit N→∞, which reduces to

ρi1···in,j1···jn
=



























ρa
i1···in,j1···jn

=
〈λL

a |Āi1 ···Āin
⊗Aj1 ···Ajn

|λR
a 〉

λn
max

γ<1,

ρb
i1···in,j1···jn

=
〈λL

b |Āi1 ···Āin
⊗Aj1 ···Ajn

|λR
b 〉

λn
max

γ>1,

ρpt
i1···in,j1···jk

=
1

2
(ρa

i1···in,j1···jn
+ρb

i1···in,j1···jn
) γ=1.

(10)

For the MPS defined by Eq. (2), considering the ther-
modynamic limit N→∞ concretely, the n-spin reduced
density matrix reads

ρn =























|1···1〉〈1···1| γ<1,

|0···0〉〈0···0| γ>1,

1

2
(|1···1〉〈1···1|+|0···0〉〈0···0|) γ=1.

(11)

That is to say, in the thermodynamic limit N → ∞,
for 0 < γ < 1 and γ > 1 the n-spin state is respec-
tively described by the pure state |Ψn〉 = |1···1〉 and
|Ψn〉 = |0···0〉. When γ = 1, the n-spin state is mixed

state ρn =
1

2
(|1···1〉〈1···1|+|0···0〉〈0···0|). According to

our calculations, it is worth pointing out that whether
the n spins are consecutive or not, the n-spin state is
exactly the same. Then we can conclude that in the

thermodynamic limit, the proposed MPS is described by

|Ψ〉=















|Ψ〉a=|1···1〉 0<γ<1,

|Ψ〉b=|0···0〉 γ>1,

|Ψ〉pt=

√
2

2
(|1···1〉+|0···0〉) γ=1.

(12)

That is to say, for 0 < γ < 1 and γ > 1, the MPS |Ψ〉 is
respectively in the region of phase |Ψa〉=|1···1〉 represent-
ing all particles spin up and |Ψb〉=|0···0〉 representing all
particles spin down, while at the critical point, the two

phases coexist equally where |Ψpt〉=
√

2

2
(|1···1〉+|0···0〉)

is the so-called N -qubit maximally entangled GHZ state.
Hence the critical point is an isolated intermediate-
coupling point consistent with the result of Fig. 2. The
n-spin entanglement entropy Sn as a function of the pa-
rameter γ is as illustrated in Fig. 3. When 0<γ <1 or
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γ>1, Sn takes the value of 0 independent of the param-
eters γ and the spin number n. When γ=1, Sn takes the
value of 1. It follows that at the critical point, the MPS
|Ψ〉 has larger entanglement entropy and it accounts for
the aforementioned long-range correlation.

Fig. 3. The entanglement entropy of n-spin under
the thermodynamic limit, Sn as a function of the
dimensionless parameter γ. The entanglement en-
tropy Sn takes the value of 1 only at the phase
transition point γ=1, if not, Sn=0.

2.2.4 The dynamics of the specified system

Here we undertake the study of the Hamiltonian of
the specified system. In general, the condition of the
k-spin reduced density matrix having null space is that
dk>D2. Here it only needs k>2. The MPS |Ψ〉 is the GS
of any Hamiltonian which is a sum of local positive oper-
ators supported in that null-space. Thinking along this
line, we can always construct a local Hamiltonian such
that a given MPS is its GS. Without the loss of gen-
erality, such a Hamiltonian is mathematically expressed
as

H=
∑

i

ui(Pk), (13)

with Pk being the projector onto the null-space of ρk and
ui >0 its translation to site i. In terms of the proposed
system in the thermodynamic limit, the Hamiltonian is
described by

H=















































Ha=

N
∑

i=1

2−σz
i −σz

i+1 0<γ<1,

Hpt=

N
∑

i=1

I−σz
i σz

i+1 γ=1,

Hb=

N
∑

i=1

2+σz
i +σz

i+1 γ>1.

(14)

By construction, the GS energy is always zero, i.e., it is
evidently analytic in γ and moreover |Ψ〉 is its unique

GS for either side of the critical point discussed in Refs.
[1, 8, 31]. The analyticity of the Hamiltonian ground
state energy and the uniqueness of its GS for either side
of the critical point immediately imply that a nonana-
lyticity in the physical quantities can only be caused by
a vanishing energy gap at the transition points.

2.2.5 The long-wavelength behavior

In order to have a comprehensive and deeper under-
standing of the kind of MPS QPT, we study below the
scaling property. Specifically, we resort to a renormaliza-
tion group approach to characterize the long-wavelength
behavior of the specified system. Similar to the stan-
dard Kadanof Blocking scheme, the coarse-graining pro-
cedure for matrix product states could be achieved by
merging the representative matrices of neighboring sites
as A → A(pq) ≡ ApAq and subsequently performing a
fine-grained transformation A → A′ to select out new
representatives [32]. The transfer matrix in every step
transforms as E → E ′ ≡ E2 and an iterative process
hence leads to a fixed point E∞ ≡ Efp in which only
the vector(s) of largest eigenvalue(s) can survive. In
terms of the MPS |Ψ〉 under consideration, the normal-
ized transfer operator of the fixed point is, respectively,
Efp = |λR

a 〉〈λL
a | and Efp = |λR

b 〉〈λL
b | for 0 < γ < 1 and

γ > 1, and the corresponding representative matrices of
the fixed point are obtained as {Ai

fp}= {Ai
a(fp),i = 1,2}

and {Ai
fp}={Ai

b(fp),i=1,2} where

{Ai
a(fp)}=

{[

1 0

0 0

]

,

[

0 0

0 0

]}

(15)

which represent all particles spin up and

{Ai
b(fp)}=

{[

0 0

0 0

]

,

[

0 0

0 1

]}

(16)

all particles spin down. When γ =1, the corresponding
fixed point of the MPS |Ψ〉 is characterized by the nor-
malized Efp

pt = |λR
a 〉〈λL

a |+|λR
b 〉〈λL

b | and the corresponding
representative matrices of the fixed point are

{Ai
pt(fp)}=

{[

1 0

0 0

]

,

[

0 0

0 1

]}

(17)

which represent the two phases coexisting equally de-
scribed by the so-called N -qubit maximally entan-
gled GHZ state and stands distinctly for an isolated
intermediate-coupling phase transition point. That is to
say, the fixed point state |Ψfix〉 of the specified system is
described by

|Ψfp〉=



























|Ψa(fp)〉=|1···1〉 0<γ<1,

|Ψb(fp)〉=|0···0〉 γ>1,

|Ψpt(fp)〉=
√

2

2
(|1···1〉+|0···0〉) γ=1.

(18)
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The results reconfirm the above conclusions about the
kind of phase transition.

3 Conclusions

In conclusion, MPSs provide an effective tool for in-
vestigating novel types of quantum phase transitions.
Here we present a new kind of quantum phase transi-

tion in matrix product states of one-dimensional spin-
1

2
chains and find that in the thermodynamic limit, both
sides of the critical point are respectively described by
phases |Ψa〉=|1···1〉 representing all particles spin up and
|Ψb〉= |0···0〉 representing all particles spin down, while
the phase transition point is an isolated intermediate-
coupling point where the two phases coexist equally,

which is described by the so-called N -qubit maximally
entangled GHZ state

|Ψpt〉=
√

2

2
(|1···1〉+|0···0〉).

At the critical point, the physical quantities including
the entanglement are not discontinuous and the MPS
has long-range correlation and N -qubit maximal entan-
glement due to its coherent and collective properties. We
believe that our work is helpful for having a comprehen-
sive understanding of the quantum phase transitions in
matrix product states of one-dimensional spin chains and
of potential directive significance to the preparation and
control of one-dimensional spin lattice models with sta-
ble coherence and N -qubit maximal entanglement.
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