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Uncertainty of the beam energy measurement in the e+e−

collision using Compton backscattering *
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Abstract: The beam energy is measured in the e+e− collision by using Compton backscattering. The uncertainty

of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy

spread and energy drift on the systematic uncertainty estimation are also studied with the Monte Carlo sampling

technique. These quantitative conclusions are especially important for understanding the uncertainty of the beam

energy measurement system.
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1 Introduction

The upgraded Beijing electron-positron collider
(BEPC/) is a τ-charm factory with a center mass
of energy ranging from 2.0 to 4.6 GeV and a design
peak luminosity of 1033 cm−2s−1 at a beam energy of
1.89 GeV [1, 2]. The upgraded Beijing spectrometer de-
tector (BES0) with high efficiency and good resolution
for both charged and neutral particles was constructed
and started data taking in 2008 [3]. The BES0 research
region covers charm physics, charmonium physics, the
spectroscopy of light hadrons and τ-lepton physics [4].

After vast amounts of data are acquired and ana-
lyzed, the statistical uncertainties in analyses of physics
become smaller and smaller, while the systematic uncer-
tainties play more and more prominent roles [5–7], one
of which is the uncertainty due to the measurement of
beam energy. To reduce such an uncertainty, starting
from 2007, a high accuracy beam energy measurement
system (BEMS) was designed, constructed, and put into
operation at the end of 2010 [8–11], which is of great
importance for many physics analyses at BES0, such
as τ mass measurement, charmonium resonance scans,
and the determination of the branching ratio with the
uncertainty at a level of 1% to 2%. The measurement
procedure of BEMS can be recapitulated as follows [12]:
firstly, the laser source provides the laser beam and the
optics system focuses the laser beam and guides it to
make head-on collisions with the electron (or positron)
beam in the vacuum pipe, after that the backscattering

high energy photon will be detected by the High Purity
Germanium (HPGe) detector, which is the key instru-
ment of BEMS. The accuracy of beam energy depends
merely on the detection result of the backscattering pho-
ton.

The essence of the working principle of BEMS is the
Compton backscattering process (CBS). In order to un-
derstand the main feature of BEMS, the uncertainty of
this measurement process is addressed by virtue of ana-
lytical formulas, where some experimentally meticulous
details are neglected. These acquired quantitative re-
sults are of greatest consequence for the qualitatively un-
derstanding the actual uncertainty of BEMS. Moreover,
an experimentally special phenomenon is studied by the
simulation approach, which reveals a possible source of
systematic uncertainty of BEMS.

2 Energy formulas

Considered here is a special and crucial case of CBS,
that is the electron makes a head-on collision with the
photon, whose geometry is sketched in Fig. 1. The ener-
gies of the electron and photon before (denoted by sub-
script 1) and after (denoted by subscript 2) and the col-
lisions are denoted as ε1,2 (for electron) and ω1,2 (for
photon), respectively.

In light of the special theory of relativity, the energy
and momentum can be expressed as

ω=hν , pγ=
ω

c
, (1)
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Fig. 1. Geometry of electron (e) and photon (γ)
before (a) and after (b) the head-on collision. The
stright line denotes e while the wavy line γ.

for the photon and

ε=
mec

2

√

1−v2

c2

, pe=
εv

c2
, (2)

for the electron. In the above equations, h is the Plant
constant and me is the electron mass. With Eqs. (1) and
(2), it is readily able to obtain the kinematic for the elec-
tron and photon collision systems. According to the law
of energy and momentum conservation,

ω1+ε1=ω2+ε2, (3)

and

−ω1

c
+

ε1v1

c2
=

ω2

c
+

ε2v2

c2
,

or

−ω1+
ε1v1

c
=ω2+

ε2v2

c
. (4)

Based on the Eqs. (3) and (4), it can be obtained with
simple algebra

ω2=
ε2
1

(

1+
v1

c

)2

2ε1

(

1+
v1

c

)

+
m2

ec
4

ω1

. (5)

For BES0, the optimal energy point is at 1.89 GeV, the
velocity of electron with such a high energy is very close
to that of light (c), in other words, v1/c ≈ 1 with the
negligible error. With such an approximation, Eq. (5) is
recast as

ω2=
ε2
1

ε1+
m2

ec
4

4 ω1

. (6)

In BEMS, ω1 is provided by the laser and ω2 is mea-
sured by the HPGe detector, and ε1 is the beam en-
ergy that is to be determined with high accuracy. From

Eq. (5), it is worked out

ε1=
ω2

2
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√

1+
m2

e c4

ω1 ω2



+
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e

2ω2

(
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√

1+
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e c4

ω1 ω2

) , (7)

or from Eq. (6), it is acquired

ε1=
ω2

2



1+

√

1+
m2

e c4

ω1 ω2



. (8)

3 Uncertainty formulas

The starting point of the uncertainty analysis of this
section is the two formulas obtained in the previous sec-
tion, viz. Eqs. (7) and (8). For brevity, in this section
we adopt the nature unity where c=1 (the subscript e
is also suppressed for electron mass) and begin with the
comparatively simple case, that is Eq. (8), by virtue of
which it is immediately obtained

∂ε1

∂m
=

m

2ω1

· 1
√

1+
m2

ω1ω2

,

∂ε1

∂ω1

= − m2

4ω2
1

· 1
√
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ω1ω2

, (9)
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.

On the strength of Eq. (8), Eq. (9) can be rewritten in a
more concise forms as follows

∂ε1
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=

ε1

m
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∂ε1
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ε1

2ω2
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1

√

1+
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ω1ω2









.

The compact expression for the uncertainty evaluation
is as follows:

δε1

ε1

=
f+

2
·δω2

ω2

⊕f−

2
·δω1

ω1

⊕f−·
δm

m
, (11)
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with factors f± defined as

f±=1± 1
√

1+
m2

ω1ω2

. (12)

Now we turn to Eq. (7). A similar process as that for
Eq. (8) could lead to fairly cumbersome derivative ex-
pressions of ε1 with respect to ω2, ω1, or m, which have
been degraded into appendix A. Herein we present an-
other recipe. Comparing Eqs. (7) and (8), it is clear that
Eq. (8) is just the first term of Eq. (7), therefore it is nat-
ural to find an uncertainty expression for Eq. (7) which
could incorporate the result acquired based on Eq. (8).
To this end, we return to Eq. (5). If a function of ε1,
g(ε1), is introduced, Eq. (5) becomes

ω2=
g2(ε1)

2g(ε1)+
m2

ω1

. (13)

with

g(ε1)=ε1

(
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v1

c

)

=ε1+
√

ε2
1−m2. (14)

Then it is readily obtained by

g(ε1)=ω2·
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√

1+
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ω1 ω2



, (15)

and

ε1=
g

2
+

m2

2g
. (16)

Noticing the similarity between Eqs. (8) and (15), it is
immediately obtained

δg

g
=

f+

2
·δω2

ω2

⊕f−

2
·δω1

ω1

⊕f−·
δm

m
. (17)

Next, from Eq. (16), it also easy to get

δε1

ε1

=
g2−m2

g2+m2
·δg
g
⊕ 2m2

g2+m2
·δm
m

. (18)

4 Statistical and systematic uncertain-

ties

Analytical formulas acquired in the previous section
are the foundation for the uncertainty analysis relevant
to CBS. In principle, there are two types of uncertainty:
statistical and systematic. In a nutshell, the statisti-
cal are those types of uncertainties that have a random
spread, and their uncertainties decrease with augment of
data; the systematic includes everything else. In prac-
tice, it is not always easy to distinguish two types of

uncertainty, and sometimes it is rather difficult to iden-
tify the feature of systematic uncertainty. For example,
as to each term in the error formulas such as Eqs. (11)
and (18), it could include both statistical and systematic
uncertainties. From a pragmatistic point of view, we lay
stress on the relative magnitude of each term instead of
focusing on its feature, and try to figure out the leading
contribution for the uncertainty evaluation.

Table 1. Some parameters related to BCS.

central value
parameter

(value scope)
relative error reference

me 0.51099828 MeV 2.153×10−8 [13]
ω1 0.114426901 eV 8.739×10−9 [10, 14]
ω2 (2–7) MeV 5 ×10−5 [10, 12]

To begin with, we estimate the deviation from 1
for the factor f± defined in Eq. (12). With me =
0.51099828 MeV, ω1 = 0.114426901 eV, and ω2 ranges
from 2 to 7 MeV, the corresponding deviation is within
the scope ±(0.94–1.75)‰. Therefore, it is accurate
enough to approximate f± as 1. Then, according to the
values listed in Table 1, the relative errors of me and
ω1 are three orders of magnitude lower than that of ω2,
which means the leading contribution for the uncertainty
of BCS is the first term in Eq. (11), that is to say we have
the relation

δε1

ε1

≈ 1

2

δω2

ω2

, (19)

with fairly high accuracy (the additional uncertainty is
much less than 10−3).

Equation (19) indicates that the feature of the elec-
tron (positron) beam (denoted by ε1 and δε1) is totally
determined by that of the backscattering photon (de-
noted by ω2 and δω2), and vice versa. With the use of
BEMS, ω2 is determined by the position of the Compton
edge while δω2 by the slope of the edge1). Herein, the
existent of an edge slope is just due to δε1, the energy
spread of accelerator. It is noticeable en passant that
ε1 and δε1 are constants during measurement. For the
certain beam energy (fixed ε1), the energy spread (δε1)
is solely determined by the structure of the accelerator
itself and therefore must be fixed in common sense [15].
However, during the data taking of the J/ψ sample per-
formed in 2012, a peculiar phenomenon is found. As
shown in Fig. 2, it is noticed that the cross sections
vary with the decrease of beam current, which means
there are some variations of beam status during energy
measurement2). Such variations imply the variant en-
ergy, or energy spread, or both of them. The effects,
as being elucidated in the next section, can lead to an
energy shift in the measurement of beam energy. This is
a crux matter for the uncertainty analysis of BEMS.

1) The details of measurement of ω2 and δω2 are delineated in the next section.

2) For BEPC/, in order to control the fluctuation of beam current, a feedback system is added which may affect the stability of energy
spread. This means the energy spread may change for the fixed beam energy.
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Fig. 2. The relation between beam current and the
“relative” cross section with data taken at J/ψ
resonance. The horizontal scale is denoted by
“Ie×Ip/A2 ” which means the product of the elec-
tron current (Ie) and the positron current (Ip),
whose unit is the square of Ampere. The ra-
tio of the number of inclusive hadronic events to
that of the two-gamma events (both from online
database), which is proportional to the observed
cross section, is denoted as “relative” cross sec-
tion.

5 Effects of variations of energy spread

and energy drift on measured energy

This section is devoted to the investigation of effects
of variations of energy spread and drift on measured en-
ergy. Two cases are considered: 1) assuming there is no
energy drift, the energy shift is only due to the variation
of energy spread; 2) assuming energy spread is fixed, the
energy shift is only due to the energy drift. The Monte
Carlo simulation approach is adopted for the following
study.

5.1 Simulation of Compton edge

The backscattering photons from a head-on collision
with the electron (positron) beam will form a sharp edge
in a detective spectrum. The pure sharp edge at certain
energy (denoted by ω) is approximated by the normal-
ized function [16]

h(x)=[p3+p2(x−p0)]Θ(p0−x). (20)

Here, the product p2(x−p0) is small compared to p3; for
p2 =0 and p3 =1, h(x) reduces to the normal step func-
tion. The function h(x) is then folded with a Gaussian
of standard deviation

g(x)=
1√

2πp1

e
− x2

2p2
1 . (21)

The resulting function for the variable position and
height of the edge is given by

f(x)=

∫+∞

−∞

dt h(t)g(x−t). (22)

Anyway, due to the existence of a background, a linear
function p4(x−p0)+p5 is added to f(x) to describe the
shape of the background. Therefore, the final synthetic
function has the form:

g(x,~p) =
1

2
(p2(x−p0)+p3)·erfc

[

x−p0√
2p1

]

− p1p2√
2π

·exp

[

− (x−p0)
2

2p2
1

]

+p4(x−p0)+p5, (23)

with [17]

erfc(z)≡ 2√
π

∫
∞

z

du e−u2

.

The parameters in Eq. (23) are: p0-edge position; p1-
edge width; p2-slope left; p3-edge amplitude; p4-slope
right; p5-background. Parameter p0 gives the informa-
tion about the average electron beam energy during the
data acquisition period, while p1 is mostly coupled with
the electron beam energy spread.

In the simulation, the following form is adopted

f(x) =
1

2
a2[q+a1(x−ω)]·erfc

[

x−ω√
2σ

]

−qa1a2√
2π

·exp

[

−
(

x−ω√
2σ

)2
]

+b2[q+b1(x−ω)], (24)

where ω is the position of the Compton edge that is used
to determine the beam energy; σ is the edge width that is
related with the beam energy spread (σs); q is the unity
parameter that is used to determine the unity of x (q=1,
the unity of x is MeV while q =1000, the unity of x is
keV).

Table 2. Input parameters for Compton edge simulation.

parameter value

me/MeV 0.51099828

ω0/eV 0.114426901

Ecm/MeV 3096.916

∆/MeV 1

ε/MeV 1548.418

σs/MeV 0.707107

ω/keV 4190.521

σ/keV 3.8272

q 1000

a1 −0.1

a2 0.3

b1 −0.2

b2 0.1
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The relation between ω and ε is as follows1)

ω=
ε2

ε+
m2

e

4 ω0

, ε=
ω

2



1+

√

1+
m2

e

ωω0



;

and the relation between σs and σ is as follows2)

σ=2·ω
ε
·σs.

In addition, it should be noted that ε = Ecm/2 and
σs =∆/

√
2, where Ecm is the center-of-mass (C.M.) en-

ergy, and ∆ is the spread of Ecm. For the energy at J/ψ
resonance, the input parameters for the Compton edge
simulation are tabulated in Table 2.

5.2 Relation between the observed cross section

and energy spread

The cross section of the process e+e− → J/ψ → f
(where f denotes some final state) is described by the
Breit-Wigner formula

σBW(s)=
12π·ΓeΓf

(s−M 2)2+Γ 2
t M 2

, (25)

where
√

s is the C.M. energy (
√

s=Ecm), Γe and Γf are
the widths of J/ψ decaying into e+e− and f, Γt and M
are the total width and mass of J/ψ. Taking the initial
state radiative correction into consideration, the cross
section becomes [18]

σr.c.(W )=

∫xm

0

dxF (x,s)
1

|1−Π(s(1−x))|2 σBW(s(1−x)),

(26)

where xm = 1−s′/s,
√

s′ is the experimentally required
minimum invariant mass of the final state f after losing
energy due to multi-photon emission; F (x,s) has been
calculated in many references [18–20] and Π(s(1−x))
is the vacuum polarization factor. The e+e− colliders
have finite energy spread. The energy spread function
G(

√
s,
√

s′) is usually a Gaussian distribution:

G(
√

s,
√

s′)=
1√
2π∆

e−
(
√

s−
√

s′)2

2∆2 , (27)

where ∆ describes the C.M. energy spread of the ac-
celerator,

√
s and

√
s′ are the nominal and actual C.

M. energy respectively. So the experimentally measured
resonance cross section (observed cross section) is the
radiatively corrected Breit-Wigner cross section folded
with the energy spread function:

σexp(
√

s)=

∫
∞

0

σr.c.(
√

s′)G(
√

s′,
√

s)d
√

s′, (28)

where σr.c. is defined by Eq. (26).
The numerical calculation indicates that the radia-

tive correction reduces the maximum cross section of
J/ψ by 52%; the energy spread further lowers down the
cross section by an order of magnitude depending on the
value of the energy spread. Both the radiative correc-
tion and the energy spread shifts the maximum height
of the resonance peak to above the resonance nominal
mass. In actual experiments, data are naturally taken at
the energy which yields the maximum inclusive hadron
cross section. When the energy spread changes, both the
maximum cross section and the position of energy for the
maximum cross section change correspondingly.

Fig. 3. The relation between the energy spread ∆ and the maximum observed cross section σm (a), and the energy
shift δE and the observed cross section σ (b).

1) The relation is just Eqs. (6) and (8), with the correspondence ω=ω2, ε=ε1, ω0=ω1 and ω=ω2.

2) The relation is just Eq. (19), with the correspondence ε=ε1, σs=δε1, ω=ω2 and σ=δω2.
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Fig. 4. The relation between beam current and the “relative” cross section, Rσ (denoted by diamond in (a)) and
“relative” energy spread R∆ (denoted by solid circle in (a)). The horizontal scale is denoted by “Ie×Ip/A2” which
means the product of electron current (Ie) and positron current (Ip), whose unit is the square of Ampere.

Fig. 5. The relation between beam current and the “relative” cross section, Rσ (denoted by diamond in (a)) and
energy drift δE (denoted by solid circle in (a)). The horizontal scale is denoted by “Ie×Ip/A2” which means the
product of the electron current (Ie) and positron current (Ip), whose unit is the square of Ampere.

5.3 Relation of the cross section with energy

spread and energy drift

The minimization subroutine program DMINFC
from CERNLIB [21] is used to find the position of en-
ergy (Emax) for the maximum cross section and the
corresponding maximum cross section (σm) itself cor-
responding to distinctive energy spread (∆). The en-
ergy shift (δEmn) is defined as the difference between
the maximum energy (Emax) and the nominal energy
(Enom=3096.916 MeV), that is

δEmn=Emax−Enom,

and the fit curve for δEmn against ∆ is

fδEmn(x)[keV]=1.1117·x[MeV]+98.567, (29)

and the fit curve for σm against ∆ is (refer to Fig. 3(a))

fσm(x)[pb−1]=3.3885/x0.82322−0.24237, [x: MeV]. (30)

In Fig. 4(a), the ordinate is the ratio of the number
of inclusive hadronic events to that of the two-gamma

events, which is proportional to the observed cross sec-
tion and denoted as the “relative” cross section (Rσ) in
this monograph; in Fig. 4(b), the ordinate is the ratio of
the two energy spread, denoted as the “relative” energy
spread (R∆). The fit curve for R∆ against Ie×Ip is

fR∆
(x)=0.96451+4.5012·x−46.612·x2+129.44·x3. (31)

Figure 3(b) shows the relation between the observed
cross section σ and energy drift δE, which is defined as
follows

δE=E−Emax,

where Emax = 3096.9981 MeV corresponding to the en-
ergy spread 1 MeV. The fit curve is

fσ(x)[pb−1]=3.1391·e−0.42638·x2

, [x: MeV]. (32)

The ordinate of Fig. 5(a) is the same as that of
Fig. 4(a); the ordinate of Fig. 5(b) is the energy drift,
denoted as δE. The fit curve for δE against Ie×Ip is

fδE
(x)=−0.38548+23.955·x−216.47·x2+561.15·x3. (33)
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As a matter of fact, in order to obtain the relation
between Rσ and R∆ (δE), the special normalization is
adopted. The nitty-gritty is elaborated in appendix B.
Here, fR∆

(x) in Eq. (31) and fδE
(x) in Eq. (33) reflect

the possible variations of energy spread or energy drift
within one beam injection, and can be treated as a prob-
ability function for the variation of R∆ and δE. There-
fore, the variable x should take the value between 0 and
1. In the following simulation, the acceptance-rejection
technique [22, 23] is adopted for distribution sampling.

5.4 Fitted energy for different cases

5.4.1 Effect due to variant energy spread

The simulation for the Compton edge is performed

for two cases: 1) for the fix energy spread, the sampling
of the edge is according to distribution formulated in
Eq. (24); 2) for the variate energy spread, the sampling
of the edge is also according to the distribution formu-
lated in Eq. (24) but with variate σ, that is the fix value
of σ is replaced by variant σ(x), i.e.

σ(x)=σ·fR∆
(x),

where fR∆
(x) is the distribution in Eq. (31), and x is

a random number in between 0 and 1. The simulated
distributions for two cases are shown in Fig. 6(a).

The fitted results based on the simulated distribu-
tions for two cases are given in Table 3, and the fit curves

Fig. 6. The comparison of simulations of the Compton edge for different cases: fix and variant energy spread (a);
fix and variant energy drift (b). The fit results for different cases: fix energy (c) and variant energy spread (d); fix
energy (e), with energy drift (f). Herein, Ecm is distinctive for (c) and (d) as indicted in Table 4. The circle plots
denote the fix cases while the box plots the variant cases; the curve is the best fit result. There are 0.5 Million
counts in each sample.
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Table 3. The fit results of beam energy for differ-
ent cases of energy spread: fix energy spread and
variant energy spread.

parameter fix σ variant σ

χ2 83.64406 77.50543

ε/MeV 1548.300±0.082 1548.413±0.115

∆/MeV 1.1215±0.0480 1.0924±0.0573

a1 −0.12464±0.01937 −0.10374±0.03012

a2 5.8016±0.0281 5.7938±0.0285

b1 −2.0528±0.0807 −2.0300±0.0819

b2 1.9456±0.0134 1.9471±0.0133

Table 4. The fit results of beam energy for different
cases of energy drift: fix energy and with energy
drift. The input Ecm=3096.9981 GeV instead of
Ecm=3096.916 GeV.

parameter fix ω variant ω

χ2 86.93219 76.01074

ε/MeV 1548.339±0.078 1548.572±0.100

∆/MeV 1.1211±0.0469 1.0631±0.0517

a1 −0.12588±0.01884 −0.11371±0.02701

a2 5.7998±0.0280 5.7678±0.0283

b1 −2.0572±0.0804 −2.0276±0.0822

b2 1.9461±0.0134 1.9384±0.0132

for two cases is displayed in Fig. 6(c) and (d). The dif-
ference for fitted beam energy is about 0.113 MeV, or
0.226 MeV for C.M. energy.

5.4.2 Effect due to energy drift

The simulation for the Compton edge is performed for
two cases: 1) for the fix energy, the sampling of the edge
is according to the distribution formulated in Eq. (24);
2) for the variant energy, the sampling of the edge is also
according to the distribution formulated in Eq. (24) but
with variant ω, the fix value of ω is replaced by variate

ω(x), i.e.

ω(x)=ω·fδE
(x) ,

where fδE
(x) is the distribution in Eq. (33), and x is a

random number between 0 and 1. The simulated distri-
butions for the two cases are shown in Fig. 6(b).

The fitted results based on the simulated distribu-
tions for two cases are given in Table 4, and the fit curves
for the two cases is displayed in Fig. 6(e) and (f). The
difference for the fitted beam energy is about 0.233 MeV,
or 0.466 MeV for C.M. energy.

6 Summary

In this monograph, the energy relation between the
Compton backscattering photon and high energy elec-
tron is derived analytically, based on which the formula
for an uncertainty estimation of measured energy is ob-
tained. The leading contribution of uncertainty is figured
out by utilizing the present experimental information.

By virtue of the experimentally available information,
the special phenomenon between the beam current and
cross section is explored in detail by the simulation ap-
proach. The quantitative results indicate that for C.M.
energy, the maximum energy shift is up to 0.226 MeV
due to variant energy spread and 0.466 MeV due to vari-
ant energy drift. These effects of energy shift studied
herein disclose so to speak a significantly possible source
of systematic uncertainty for BEMS, which in turn has
the far-reaching meaning for the further analysis of the
physics error.

Author acknowledges Dr. JianYong Zhang for his

providing information on the relation between beam cur-

rent and cross section.

Appendix A

The nature unity with c = 1 is adopted hereafter. The
velocity of the electron is denoted as β(= v/c) and its cor-
responding energy is often expressed as ε = mγ with γ =
1/
√

1−β2. According to Refs. [24, 25], the general relation
between ω1 and ω2 for the Compton scattering process is

ω2=
ω1(1−βcosφ1)

1−βcosφ2+
ω1

γm
(1−cos[φ1−φ2])

, (A1)

where φ1 is the angle between the incident photon and elec-
tron while φ2 is the angle between the backscattering photon
and electron. For a head-on collison, φ1 =180◦ and φ2 =0◦,
so Eq. (A1) becomes

ω2=
ω1(1+β)

(1−β)+
2ω1

γm

=

1+β

1−β
1

ω1
+

2

mγ(1−β)

, (A2)

Note the two relations

1+β

1−β
=γ2(1+β)2,

1

γ(1−β)
=γ(1+β),

and also the relation m2γ2=ε2
1, Eq. (A2) can be rewritten as

ω2=
ε2
1(1+β)2

2ε1(1+β)+
m2

ω1

, (A3)

and this is just Eq. (5), from which it yields

ε1=
ω2

2



1+

√

1+
m2

ω1 ω2



+
m2

2ω2

(

1+

√

1+ m2

ω1 ω2

) . (A4)
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Then the partial derivative with respect to ω1, ω2, and m can
be expressed by

∂ε1

∂m
=

ε1

m
·

(

1−
1

κ

)

+
m

ω2
·

1

κ(κ+1)
,

∂ε1

∂ω1

= −
ε1

2ω1
·

(

1−
1

κ

)

+
(κ−1)2

2κ
, (A5)

∂ε1

∂ω2

=
ε1

2ω2
·

(

1+
1

κ

)

−
m2

ω2
2

·
1

2κ
,

with

κ≡

√

1+
m2

ω1ω2
. (A6)

Based on the law of error propagation, the δε1 is obtained as
follows

(δε1)
2=

(

∂ε1

∂ω2

·δω2

)2

⊕

(

∂ε1

∂ω1

·δω1

)2

⊕

(

∂ε1

∂m
·δm

)2

. (A7)

Appendix B

In this appendix, σ, δ and x represent respectively the
relative cross section (Rσ), energy spread (R∆), and energy
drift (δE). Firstly,

σ1 =
p2

δp3
1

+p1,

σ2 =
p2

δp3
2

+p1.
(B1)

Some algebra yields

1

r
=

p2+a1

p2+ka1
·k,

with definitions

r=
σ2

σ1
, k=

a2

a1
, ai=p1·δ

p3
i (i=1,2).

Then it is easy to acquire

k=
p2

(p2+a1)r−a1
. (B2)

With the above relation, if σ1 and δ1 (equivalently a1) are
chosen, δ2 can be calculated from σ2. In our study, σ1 is
chosen as the maximum cross section, which guarantees k is
always greater than 1. As for δ1, 0.8 MeV, 1.0 MeV, and
1.2 MeV, are used to calculate the σ2, the shape of curves are
exactly the same. Without the loss of generality and actual-
ity, δ1 is set to be 1.0 MeV.

Secondly, we consider the relation between σ and x.

σ1 = p1·e
−p2·x

2
1 ,

σ2 = p1·e
−p2·x

2
2 .

(B3)

Some algebra yields

κ

p2
=η(η+2x1),

with definitions

κ=ln
σ1

σ2
, η=x2−x1 .

According to the root formula for the quadratic equation and
notice η>0, then

x2=
√

x2
1+κ/p2. (B4)

Let x1 correspond to σ1 and σ1 to the maximum cross section,
that is x1=0 and σ1=σmax, then we have

x2=

√

1

p2
·ln

σmax

σ2
. (B5)
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