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Abstract: Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Cou-

plers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabiliza-

tion is deduced quantitatively: we let δω/ω0 be the relative frequency error, then we discover that the sensitivity of

field to perturbation is proportional to
√

δω/ω0 without PCs and to δω/ω0 with PCs. Then we adapt the circuit

model of symmetrical PCs for the case of asymmetrical PCs. The circuit model shows how the slope of field distri-

bution is changed by rotating the asymmetrical PCs and illustrates that the asymmetrical PCs have the same effect

as the symmetrical ones in stabilization.
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1 Introduction

DTL is a kind of standing-wave structure and oper-
ates at TM010 mode. In this mode, the slope of dis-
persion curve is zero, which means the field distribution
of this structure is sensitive to perturbations, such as
beam loading, machining and installation errors [1–3].
We can reduce the effect of the perturbations by inserting
the PCs, which are used to introduce resonant coupling
mode and increase the slope of dispersion curve at the
operating point [4]. The tuning for DTL consists of the
following tasks: resonant frequency of the structure, sta-
bilization and distribution of accelerating electric field.
Generally speaking, we can adjust slag tuners to get res-
onant frequency, insert the PCs into the right length to
improve the stability of the field and rotate the PCs to
adjust the field distribution precisely [5].

In order to reduce the interaction, the adjacent PCs
are on different sides of the drift tube and all PCs are per-
pendicular to the stem. Both symmetrical and asymmet-
rical PCs can make the field stable. During the stabiliza-
tion state, field distribution is flat when using symmet-
rical PCs, but we can get a tilted field distribution with
asymmetrical ones and the rate of slope can be changed
by rotating the PCs [6]. Fig. 1 shows the structure of
DTL and the asymmetrical PCs.

References [7–9] propose an equivalent circuit model
for the DTL with the symmetrical PCs; further, this arti-

cle improves the model so that field distribution and sta-
bilization with asymmetrical PCs will be analyzed and
the rate of the tilting field can be estimated.

Fig. 1. DTL and the post couplers (PCs).

2 The equivalent circuit for general pe-

riodic structure

General periodic structure can be represented by the
circuit in Fig. 2, which is composed of equivalent paral-
lel admittance Yn and series impedance Zn. By selecting
the loop with Yn−1, Zn and Yn, we can get the recurrence
formula of current In.

−(In−1−In)/Yn−1+InZn+(In−In+1)/Yn=0. (1)
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Fig. 2. The equivalent circuit for DTL without PCs.

The character of the periodic structure means Yn−1=
Yn=Y , Zn=Z, then the recurrence formula can be sim-
plified.

{

In+1−(2+Y Z)In+In−1=0 Y 6=0.

In+1=In=In−1 Y =0.
(2)

Y can not be equal to 0 in Eq. (1), and the situation
of Y = 0 is considered in Eq. (2). There are different
solutions for other situations of Y Z.

1) Y =0: from Eq. (2) we know that In+1=In=In−1.
It is open circuit state and current through every cell is
equal to each other. We call this situation the flat-mode.

2) Z = 0 and Y 6= 0: the solution is In = In−1+∆I .
Current to the next cell will be added by the same ∆I ,
which is the current through admittance Y . Now the
current distribution is an oblique line and we call this
situation the tilt-mode.

3) Y Z 6=0: the solution is

In=In−1e
±iφ, cosφ=1+Y Z/2. (3)

Y Z can be complex and φ also can be complex. This is
the most general solution, but in an ideal state in DTL,
power loss is not considered, and Y , Z are near to 0 (that
will be explained in Chapter 3). Then we will concen-
trate on several situations closely related to tuning.

4) |Y Z+2|<2 and Y Z is real: the solution is

In=In−1e
±iφ, cosφ=1+Y Z/2. (4)

This is a special situation of Case 3). Here φ is real, and
it is the phase difference between adjacent cells. This so-
lution represents the transmission electromagnetic wave
and φ is the phase shift between adjacent cells. We call
this situation the transmission-mode.

5) |Y Z+2|>2 and Y Z is real: the solution is

In=In−1r, r=
2+Y Z±

√

(2+Y Z)2−4

2
. (5)

It is also a special situation exception of Case 3). The
amplitude of current attenuates according to the expo-
nential rate, r is the current radio of adjacent cell. In
DTL, this solution means the electromagnetic wave cuts
off, and the amplitude of the field attenuates according
to the exponential rate. But if r is close to 1, the field
distribution would be similar to an oblique line within
suitable range. We call this situation the cutoff-mode.

Table 1 summarizes the important solutions.
As is known, Y and Z are as functions of the fre-

quency ω, so different frequencies correspond to differ-
ent modes. If the RF source frequency differs from
the structure resonant frequency by δω, then the field
distribution would deviate from the design value. For
the cutoff-mode, stabilization can be measured by the
r, which is the current radio of adjacent cell, and for
the transmission-mode, it can be measured by the phase
change of φ. Then we will prove this change is pro-
portional to δω/ω0 with PCs in the right position, and
proportional to

√

δω/ω0 without PCs. For example, the
operating frequency is 325 MHz, and the difference be-
tween the RF source frequency and the structure reso-
nant frequency is less than 30 kHz. In this case, the field
distribution would change by about 0.01% with PCs and
about 1% without PCs. We can see that PCs can im-
prove the stabilization significantly.

3 The equivalent circuit for DTL

DTL is a kind of quasi-periodic structure, but in this
paper we will approximately regard it as a periodic one.
The power loss is ignored, so there is no resistance in the
circuit.

3.1 The equivalent circuit for DTL without PCs

In the circuit model in Fig. 3, C0 is the capacitance
between two drift tubes; L0 is the inductance of the drift
tube; Cs is the capacitance between drift tube and tank;
Ls is the inductance of the stem. There are two resonant
units in the circuit: one consists of L0 and C0 and the
other is made up by Ls and Cs. Define ω0=1/

√
L0C0

Table 1. Solutions for Eq. (2).

condition name for solution current relation

Z=0 and Y 6=0 tiltmode In=In−1+∆I

Y =0 platmode In=In−1

|Y Z+2|<2 and Y Z is real transmissionmode In=In−1e±iφ, cosφ=1+
Y Z

2

|Y Z+2|>2 and Y Z is real cutoffmode In=In−1r, r=
2+Y Z±

√

(2+Y Z)2−4

2
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and ωs =1/
√

LsCs. As we know, ωs is much lower than
ω0, the operating frequency. So we can regard Ls and Cs

as a capacitance C parallel in the circuit [7].

C=Cs

ω2−ω2
s

ω2
. (6)

Fig. 3. The equivalent circuit for DTL without PCs.

Voltage of the capacitance C0 can be considered as
the product of cell length and average accelerating field:
un =LcellEn,ave , so the current in through C0 is related
to the field: in=jωC0un=jωC0LcellEn,ave.

The operating frequency is equal to the resonant fre-
quency of DTL, which means ω=ω0, so Z=0, Y =jω0C.
According to Table 1, it is the tilt-mode and the slope
of field is decided by boundary condition, which is the
end cavities frequency of DTL. In practice, we can tilt
the field by changing the frequency of the end cavities.
When the operating frequency is shifted by δω, by linear
approximation we can get

Y Z=
C

C0

ω2
0−(ω0+δω)2

ω2
≈−2

C

C0

δω

ω0

. (7)

For δω/ω�1, so |Y Z|�1, if δω>0, then Y Z<0, ac-
cording to Table 1, the field would stay in transmission-
mode and

∆φ≈
√

2Cδω/(C0ω0);

δω>0, the field is in cutoff-mode and

∆r≈±
√

2Cδω/(C0ω0).

Because C/C0 is constant, the sensitivity of the field to
perturbation is in proportion to

√

δω/ω0, and the stabi-
lization is poor.

3.2 The equivalent circuit for DTL with sym-

metrical PCs

Cp in Fig. 4 is the capacitance between PC and drift
tube and Lp is the inductance of PC, then we define
ωp = 1/

√

LpCp. By inserting PCs, we introduce a new
resonant mode, and the stabilization can be acquired
if this mode is completely coupled with the operation
mode. Coupling condition can be proposed by solving

the dispersion equation [1]

cosφ=1+
Y (ω)Z(ω)

2
. (8)

It exactly means the parallel admittance Y =0. Corre-
sponding to Table 1, it is the flat-mode and the distri-
bution of field is unrelated to boundary conditions.

ω2
p=

C

C+Cp

ω2
0 . (9)

When the difference between the RF source frequency
and the structure resonant frequency is δω, by linear ap-
proximation we can get

Y Z≈−4
C(C+Cp)

C0Cp

δω2

ω2
0

. (10)

|Y Z|�1 and Y Z<0, so the structure operates in the
transmission-mode and

∆φ≈ δω

ω

√

C(C+Cp)

C0Cp

. (11)

The sensitivity of field to perturbation is in proportion to
δω/ω, and the stabilization is improved compared with
that without PCs.

Fig. 4. The equivalent circuit for DTL without PCs.

3.3 The equivalent circuit for DTL with asym-

metrical PCs

While rotated, the tip position of asymmetrical PCs
changes, so the positions of Cp and Lp in circuit change
at the same time, as Fig. 5(b). ∆-Y transform is taken
for the box in Fig. 6(b), so we can get a simple circuit
with the same form of Fig. 2. Because of δL/L0 � 1,
when PCs are tuned to satisfy Eq. (9), we can get

Y Z≈
(

CδL

C0L0

)2

. (12)
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Fig. 5. The circuit for DTL with symmetrical PCs
(a) and with asymmetrical PCs (b).

The structure works in the cutoff-mode, and r ≈
1±CδL/(C0L0). Because r (defined in Chapter 2) is quite
close to 1, which means the distribution of the current
would look like a tilt line whose slope would be affected
by the end cavities and the value of δL. The slope of the
amplitude of the electric field can be adjusted by vary-
ing the value of δL, that means rotating PCs. Then we
analyze the stabilization with the above method. If

δω

ω
�1,

δL

L0

�1,
δω

ω
/
δL

L0

�1, (13)

is satisfied, the result will be obvious. ∆r ≈ ±Cδω/
(C0ω0), it illustrates that asymmetrical PCs have the
same effect as the symmetrical ones in stabilization.

Fig. 6. The result for ∆-Y transform.

4 Conclusion

On the basis of the equivalent circuit model, the char-
acter of the stabilization and distribution of the electric
field in DTL was analyzed in this article. Firstly, the
stabilization was described by the relationship between
field perturbation and frequency difference: the sensitiv-
ity of field to perturbation is in proportion to

√

δω/ω0

without PCs and to δω/ω0 with PCs. Secondly, the dif-
ference between the symmetrical and asymmetrical PCs
is that the electric field distribution is flat and unrelated
to the adjustment of the end cavities with the symmet-
rical PCs, but that attenuates according to exponential
rate with asymmetrical PCs. If r is close to 1, the field
distribution can be considered as an oblique line and the
slope of it can be changed by rotating the asymmetrical
PCs.
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