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A geometric factor calculation method based on the isotropic

flux assumption *
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Abstract: One of the instruments onboard the China Seismic Electromagnetic Satellite (CSES) is the Low Energy

Particle Detector (LEPD). The primary objective of LEPD is to provide measurements of the fluxes, energy spectra

and pitch angles of 100 keV to 10 MeV electrons and protons from 2 to 50 MeV in the Earth’s magnetosphere. The

geometric factor is one of the principle parameters of a detector, which converts the physical quantity–count rate

to the particle quantity-flux. In this paper, we calculated the geometric factor of LEPD via computer modeling

of an isotropic radiation environment. It was first demonstrated that the radiation intensity related should obey

a cosine-law, then a general sampling method of generating this distribution via GPS of GEANT4 was explained.

Furthermore, combined with flux normalization, a comparison of the geometric factor calculation of a set of 2-layer

detectors with different shapes (cylinder, truncated cone and rectangle) was performed. Results show a generally

good agreement between simulation and analytical calculations for the cylinder and truncated cone detectors, and

the result of the rectangular one, for which there is no accurate analytical formula, is consistent with the previous

simulated results by others. As a practical instance of the 2-layer rectangle detector, the geometric factor of LEPD

is 10.336±0.036 cm2
·sr for 10 MeV proton and 8.211±0.032 cm2

·sr for 8 MeV electron.
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1 Introduction

The possible interrelation between high-energy par-
ticle fluxes (energy about several tens of MeV) and
the seismicity of Earth was first observed in MARIA
experiment onboard Salyut-7 orbital station in 1985
[1]. Later on, more satellite-borne experiments were
carried out to study how seismic activity influences
terrestrial surroundings and the ionosphere and mag-
netosphere in particular. Such experiments include:
ELECTRON onboard INTERCOSMOS-BULGARIA-
1300 and METEOR-3 [2, 3], MARIA-2 onboard MIR [4],
GAMMA-1 onboard GAMMA [5], and PET of SAMPEX
[6], etc. Results of these experiments confirmed the cor-
relation between short-term sharp increases of particle
intensities and seismic processes, moreover the tempo-
ral and spacial correlation between the earthquakes and

the fluctuations of particle intensity was found [7]. As
a result, more effort was devoted into this area to study
the possibility of developing this phenomena as an earth-
quake prediction method. A new advance in this field is
related to the proposed China Seismic Electromagnetic
Satellite (CSES), the goals for which are to systemat-
ically study the electromagnetic waves linked to earth-
quakes, and to evaluate prognostic capabilities of the cos-
mic precursors of earthquakes. The scientific payload of
the CSES is therefore composed of several types of sen-
sors measuring electric field, magnetic field, plasma and
particles. One of the instruments onboard the CSES is
the Low Energy Particle Detector(LEPD), which is in-
tended for the measurement of the fluxes of energetic
electrons in the energy range: 100 keV–10 MeV, and
protons in the energy range: 2–50 MeV. The polar orbit
of the satellite (500 km altitude, heliosynchronous) and
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its lifetime of 5 years will allow the survey of all the seis-
mically active regions of the globe.

The LEPD instrument is designed to have a large
geometric factor and a high energy resolution. The in-
strument (see Fig. 1) has a ±37◦ field of view. The beam
path elements include a 40 µm aluminum window, two
double-sided silicon strip detector (DSSD), and a CsI(Tl)
scintillator. The two DSSD detectors are solid-state sili-
con detectors, which are square (50 mm×50 mm) in shape
with thickness of 142 µm and 300 µm, respectively. The
CsI(Tl) crystal is the calorimeter of this detector, dimen-
sion of which is 70 mm×70 mm×12 mm(T). The DSSDs
and the CsI(Tl) together compose the ∆E-E telescope
[8], a typical method for electron and proton identifica-
tion in this energy range, and these three detectors are
surrounded by a set of plastic scintillators that are used
to veto uninterested entries. The detailed introduction
of the electronics for LEPD and the experimental mea-
surements of DSSDs were introduced by Wu et al [9].

Fig. 1. Structure of LEPD.

Geometric factor calculations have an important ap-
plication in the data analysis of a wide variety of experi-
ments involving space-borne detectors. In this paper, we
introduced a method of geometric factor calculation on
assumption that the space-borne detector is located in an
isotropic environment, which refers to uniformity of par-
ticle flux in all directions. In order to construct such an
environment, we first demonstrated what kind of angular
distribution the radiation intensity should have. Then a
method based on it was applied in the calculation of the
geometric factor of a 2-layer detector. The meaning of
this method is the truncated cone and circular cylinder
type detectors have rather accurate analytic formula [10],
whereas the rectangle detector only has an approximate
and complicated formula [11] that is applicable for lim-
ited situations.

2 Method

Isotropic radiation has the same intensity regardless
of the direction of measurement [12]. As a result, any
point inside the incident surface should get a constant
value of intensity

dN

dΩdAeff

=Constant, (1)

where dN stands for particles emitted in a solid angle dΩ

and from an effective area dAeff. On the basis of Eq. (1),
demonstration of the radiation intensity’s distribution is
given as follows.

2.1 The cosine-law

Meaning of the parameters that appeared in Fig. 2
are listed as below

1) dA: an arbitrary surface element on the incident
surface;

2) dA0: an arbitrary surface element on the detector;
3) θ: the angle between the surface normal of dA and

the direction of dA0;
4) α: the angle between the surface normal of dA0

and the direction of dA;
5) dA⊥: the projected area of dA seen looking along

dA0;
6) dA0⊥: the projected area of dA0 seen looking along

dA;
7) r: distance from dA to dA0;
8) I(θ, φ): radiation intensity ((particles)s−1

·cm−2
·

sr−1) is defined as a function of polar angle θ and az-
imuthal angle φ in the spherical coordinates of the source
surface element dA;

Fig. 2. Solid angles of dA0 and dA subtended to
each other.

If we take dA0 as a research object, then dA can be
treated as a point, so the solid angle of dA0 subtended
to dA is given as

dΩ0=
dA0cosα

r2
. (2)
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Correspondingly, the solid angle of dA subtended to
dA0 is given by

dΩ=
dAcosθ

r2
. (3)

Thus numbers of emitted particles in the solid angle
dΩ0 should be

dN =I(θ,φ)dΩ0dA. (4)

Assuming I0 is the radiation intensity, which means
the constant term of Eq. (1)

dN

dΩdAeff

=
I(θ,φ)dΩ0dA

dΩdA0⊥

=I0. (5)

We obtain
I(θ,φ)=I0cosθ. (6)

As a result, the radiation intensity has a cosine distri-
bution. The cosine-law refers to the fact that the radia-
tion intensity from a surface area in a particular direction
is proportional to the cosine of the angle between that
direction and the surface normal. This is also illustrated
in Fig. 3. Each wedge in the diagram represents an equal
angle dΩ, and the emission rate is proportional to the
area of the wedge. So the maximum rate appears when
θ=0◦, and diminishes while θ increases and finally is zero
when θ=90◦.

Fig. 3. Radiation intensity (s−1
· cm−2

· sr−1) in a
normal and off-normal direction for cosine-law.

2.2 The probability density function

Under the known condition of the cosine distribution
for radiation intensity, the probability density distribu-
tions for polar angle and azimuthal angle can be deduced.

Suppose the number of emitted particles from the
source surface element dA is N0, then it can be calcu-
lated by integrating the cosine law

N0=

∫2π

0

dφ

∫π

2

0

I0cosθsinθdθ. (7)

Therefore I0 = N0/π, since emitted particles in solid
angle dω is

dn=I(θ,φ)dω=
N0

π
cosθsinθdθdφ. (8)

If we label dnφ as the number of emitted particles in
the region of any allowed θ value and in the azimuthal
angular range φ–φ+dφ, and mark dnθ as the counterpart
of any allowed φ value and in the polar angular range
θ–θ+dθ, then the probability density function is given
by

f(φ) =
1

N0

dnφ

dφ
,

f(θ) =
1

N0

dnθ

dθ
, (9)

where

dnφ =
N0

π
dφ

∫π

2

0

cosθsinθdθ,

dnθ =
N0

π
cosθsinθdθ

∫2π

0

dφ, (10)

thus

f(φ) =
1

2π
, φ∈[0,2π],

f(θ) = sin(2θ), θ∈
[

0,
π

2

]

. (11)

The probability distribution of θ is shown in Fig. 4.

Fig. 4. Probability distribution of polar angle θ [13].

2.3 Implementation

To ensure the source density is homogeneous every-
where, the incident position should have a uniform dis-
tribution. In GEANT4 [14] simulation, with the proba-
bility density function, one can achieve the desired dis-
tribution by sampling or by invoking build-in functions
via GPS (General Particle Source) [15], nevertheless they
are identical in nature.

In this section, the above distribution is implemented
generally by using GPS, which is part of the GEANT4
toolkit for Monte-Carlo, high-energy particle transport.
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Specifically, it allows the specifications of the spectral,
spatial and angular distribution of the primary source
particles.

A sphere which encircles the detector completely was
set as the incident surface to simplify the mathematics.
1) Position sampling

(1) Random numbers
In a spherical coordinate system, the probability den-

sity function of random variables θ and φ obey uniform
distribution

f(θ) =
1

2
sinθ, θ∈[0, π], (12)

h(φ) = 1, φ∈[0, 2π]. (13)

Then, according to the method of inverse function of
continuous random variable, in the interval [a, b], con-
tinuous random variable x should be sampled as Eq. (14)
to obey its probability density function f(x).

ξ=

∫x

0

f(t)dt

∫b

a

f(t)dt

, (14)

where ξ is a uniform random number in the interval [0, 1].
Thus

θ=arccos(1−2ξ), φ=2πξ. (15)

(2) Position coordinates
With the specified radius of sphere R, θ and φ sam-

pled in step (1), the position coordinates (x, y, z) are
given by

x = R×sinθ×cosφ,

y = R×sinθ×sinφ, (16)

z = R×cosθ.

(3) New coordinates base vector
A new coordinate base vector is needed, which can

be used to perform the coordinate transformation for
the direction vector from the detector system into the
local incident sphere coordinate system. The new axes
are defined as follows:

Z axis is the vector of (x, y, z); X axis is achieved by
vector product of the new Z vector and the Z vector of
the detector system; Y axis is the vector product of the
new X vector and the new Z vector. After unitization,
the new coordinate base vectors are given as (S1, S2, S3).
2) Angular sampling

(1) Random numbers
As demonstration shows, the probability density

function of the polar angle is determined by Eq. (11),

ξ =

∫θ

0

sin(2t)dt

∫
π/2

0

sin(2t)dt

, (17)

ξ =

∫φ

0

1

2π
dy, (18)

thus we have

sinθ=
√

ξ, cosθ=
√

1−ξ, φ=2πξ. (19)

(2) Direction Vector P

The three components of direction vector P are given
by

px=−sinθ×cosφ,

py=−sinθ×sinφ,

pz=−cosθ.

(3) Final incident direction vector F

In this step, the new axis vector (S1, S2, S3) men-
tioned in step 3) of position sampling is used.

A=







S1.x S2.x S3.x

S1.y S2.y S3.y

S1.z S2.z S3.z






. (20)

The matrix composed by coordinate base vectors is
an orthogonal matrix,

A×AT=I. (21)

When an orthogonal matrix multiplies a vector, the
modulus of the vector doesn’t change, but its direction
does.

Consequently, the effect of multiplication between the
new coordinate base vectors (S1, S2, S3) and the direc-
tion vector is just a rotation of the latter by a certain
angle, and this gives the final incident direction vector
(fx, fy, fz).







fx

fy

fz






=







S1.x S2.x S3.x

S1.y S2.y S3.y

S1.z S2.z S3.z













px

py

pz







=







px×S1.x+pyS2.x+pzS3.x

px×S1.y+pyS2.y+pzS3.y

px×S1.z+pyS2.z+pzS3.z






. (22)

3) The resultant position and angle distribution
In Fig. 5, from left to right they are the position dis-

tribution projected on XY , ZX , ZY plane, the angular
distribution of θ versus φ, and cosθ versus φ.
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Fig. 5. The distribution of position and angle been sampled for isotopic radiation (from left to right they are the
position distribution of incident X coordinate versus Y coordinate, incident Z coordinate versus X coordinate,
incident Z coordinate versus Y coordinate, and the angular distribution of θ versus φ, and cosθ versus φ).

It is seen from Fig. 5 that the position distribution is
uniform on the sphere, and φ is uniform in [0, 2π], while
θ is not uniform in [0, π], but cos(θ) is uniform in [0, 1]
which is just in accord with the definition of isotropy.

3 Application

Geometric factor (G) [10] is defined as the counts
(Nd) received by a detector per unit time interval di-
vided by the spatial differential flux j (cm−2

· s−1
· sr−1).

G=
Nd

j
. (23)

Before simulation commences, flux normalization
should be done to make one-to-one correspondence re-
lationship between the number of incident particles and
the flux.

3.1 Normalization

On condition of isotropic radiation environment and
a spherical incident surface, the number of particles Nr

traversing the sphere is determined by an integral of the
differential flux j over the source area and the solid angle
[16].

Nr=

∫∫
jdsdΩ=π

∫
jds=4π

2R2j. (24)

By counting the received Field of View (FOV) inci-

dents on the detector Nd, we obtained the ideal geometric
factor by Eq. (23). The so-called FOV incidents are cho-
sen on condition that the spatial line determined by the
position coordinates and direction vector of the incident
point intersects with both layers of the detector.

Table 1 lists the results of comparison for 4 differ-
ent simple detectors (shown in Fig. 6). Within the error
range, it agrees well with the formula and other method.

Table 1. Comparison of the geometric factors cal-
culation for 4 different detectors.

type Gana/(cm2
·sr) Gsim/(cm2

·sr)
A 9.870 9.769±0.111
B 0.709 0.764±0.031
C 5.289 5.262±0.081
D 0.482 0.518±0.026

Gana=geometric factor calculated analytically
Gsim

2)=geometric factor given by simulation

A. 1-layer circle detector with radius R=1 cm;
B. 2-layer circular cylinder detector with radius R=

1 cm, and θ=30◦;
C. 2-layer truncated cone detector with radius R1 =

1 cm, R2=2 cm, and θ=30◦;
D. 2-layer rectangular detector with side length a=

2 cm, b=1 cm, and θ=30◦.
A practical instance of the 2-layer rectangular detec-

tor is a space dark matter detector with dimension of

1) Eq. (24) is applicable under the isotropic flux assumption

2) flux=104 cm−2· s−1
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a=150 cm, b=60 cm and the distance between the layers
is 72 cm. The result of the geometric factor of this detec-
tor presented in the thesis [17] coincides with our result,
which is 0.60 m2

·sr and 0.621±0.028 m2
·sr respectively.

Fig. 6. Schematic diagram of the type B, C, D detectors.

3.2 Geometric factor for LEPD

By using the above simulation method we calculated
the geometric factor of LEPD (Fig. 7).

The solid line stands for the ideal geometric factor
of this detector, the dashed-dotted line and the dashed
line respectively represent the actual geometric factor of
electron and proton varies with its kinetic energy. As a
result, the difference between the dashed-dotted line (or
dashed line) and the black solid line is mainly caused by
the detection efficiency of LEPD, which can be explained
by the following:

Because protons and electrons out of the interested
energy range can penetrate the 12 mm-thick CsI(Tl) and
hit the surrounding plastic scintillators (PS), entries with
deposited energy in the PS larger than a typical thresh-
old (e.g.∼100 keV) would be vetoed. Therefore, the geo-
metric factors for protons with energy more than 50 MeV
and electrons more than 10 MeV declines. However, the
major reason for the small value of geometric factor in
the lower energy range is different for electrons and pro-
tons: the former are caused by multiple-scattering and
the latter are due to a weaker penetrating power. Both
these effects lead to a poor detection efficiency.

Fig. 7. Geometric Factor of LEPD.

4 Summary

In this paper, we demonstrated that it is the cosine
distribution that radiation intensity should have to con-
struct a global isotropic radiation environment around
the detector in simulation, and deduced the probabil-
ity density function correspondingly. This method was
applied in the geometric factor calculation of a set of
2-layer detectors and of LEPD. Results of the former
showed that simulation agrees with formula, and the
simulation method is independent of layer shape; it is
rather suitable for the 2-layer rectangular detector, as
there’s no accurate analytical formula for this type. Re-
sults for the latter show that LEPD has a large geometric
factor in the interested energy range, and the maximum
value is 10.336±0.036 cm2

·sr for 10 MeV proton and
8.211±0.032 cm2

·sr for 8 MeV electron.
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of High Energy Physics, Chinese Academy of Sciences.
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