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Bound Dirac states for pseudoscalar Cornell potential: 3+1 dimensions
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Abstract: The Cornell potential consists of Coulomb and linear potentials, i.e.−a/r+br, that it has received a

great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with the

pseudoscalar Cornell potential under spin and pseudospin symmetry limits in 3+1 dimensions. The energy eigenvalues

and corresponding eigenfunctions are given in explicit forms.
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1 Introduction

Relativistic symmetries of the Dirac Hamiltonian
were discovered many years ago, but only recently these
symmetries have been recognized empirically in nuclear
and hadronic spectroscopy [1]. The cases in which the
mean field is composed of a vector (VV) and a scalar (VS)
potential are usually pointed out as a necessary condi-
tion for occurrence of spin and pseudospin symmetries in
nuclei. Within the framework of Dirac equation, pseu-
dospin symmetry used to feature deformed nuclei, su-
perdeformation, to establish an effective shell-model [2–
4] and spin symmetry is relevant for mesons [5]. Spin
symmetry occurs when the scalar potential S is nearly
equal to the vector potential VV or equivalently VS≈VV

and pseudospin symmetry occurs when VS≈−VV [6–9].
The radial Dirac equations containing central poten-

tials with only a pseudo-scalar Lorentz coupling has re-
ceived a great deal of attention in theoretical physics
[10–14]. McKeon and Van Leeuwen considered solutions
to the Dirac equation in the presence of an external pseu-
doscalar Coulomb potential and they found that no nor-
malizable bound state solutions exist [15]. de Castro
solved the Dirac equation for a pseudoscalar Coulomb
potential in a two-dimensional world [16] and also stud-
ied a relativistic extension of a quark confinement poten-
tial model of the Schrödinger theory [5] in 1+1 Lorentz
dimensions [17]. Yao et al. obtained the quantum states
of a trapped Dirac particle in the presence of a pseu-
doscalar potential [18]. Haouat and Chetouani examined
the supersymmetric path integrals in solving the problem
of a relativistic spinning particle interacting with pseu-

doscalar potentials [19] and solved the 3+1 dimensional
Dirac equation in the presence of the radial pseudoscalar
Hulthén potential by using the usual approximation of
the centrifugal potential [20]. They also derived a quasi-
classical quantization rule for the problem of a Dirac par-
ticle interacting with a pseudoscalar power potential in
(1+1) dimension using the stationary phase approxima-
tion [21]. Very recently, Thylwe discussed relativistic
bound states for a linear radial pseudo-scalar potential
model using accurate amplitude-phase computations and
a novel semiclassical (phase-integral) approach [22].

The Cornell potential, which consists of Coulomb

plus linear potentials, i.e. V (r)=−
a

r
+br, has received a

great deal of attention in particle physics. The Cornell
potential was used with considerable success in models
describing systems of bound heavy quarks [23–26]. The
potential includes the short distance Coulombic interac-
tion of quarks, known from perturbative quantum chro-
modynamics (QCD), and the large distance quark con-
finement, known from lattice QCD, via the linear term
[27,28]. It should be stressed that a specific situation can
emerge when the parameter b is simultaneously small,
and leads to a particular atomic description of a per-
turbed Coulomb problem [29]. Ghalenovi et al. studied
the strange, charmed and beauty baryons masses in the
Cornell potential by using the variational approach [30].

The purpose of this work is to solve the Dirac equa-
tion for the pseudoscalar Cornell potential in 3+1 di-
mensions. To this end, we shall first briefly introduce
the Dirac equation with pseudoscalar potential in view
of spin and pseudospin symmetries in Section 2. In Sec-
tion 3, we solve the Dirac equation with pseudoscalar
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Cornell potential under spin and pseudospin symmetries.
Finally, Section 4 contains a summary and concluding re-
marks.

2 Radial Dirac equations

The time-independent Dirac equation with a scalar
potential VS, a time-component of a vector potential VV,
and a pseudo-scalar potential VPS reads [22, 31]

dF

dr
=−

(κ

r
+VPS

)

F+((m+VS)+E−VV)G, (1)

dG

dr
=((m+VS)−E+VV)F+

(κ

r
+VPS

)

G, (2)

where κ=−(l+1)6−1 for l=0, 1, 2,··· and κ=l>1, l=1, 2,
3,··· where l is the orbital angular momentum quantum

number. In this article we assume VS =VV =0. By fol-
lowing the procedure introduced by Thylwe in Ref. [22],
Eqs. (1) and (2) can be written in matrix form with sepa-
rated diagonal and off-diagonal coefficient functions, i.e.

ψ̄=

(

F

G

)

, (3)

and

dψ̄(r)

dr
=





−
(κ

r
+VPS

)

m+E

m−E
κ

r
+VPS



ψ̄(r). (4)

By differentiating Eq. (4) and using the same equation
to eliminate the first derivative of ψ̄, one obtains

d2ψ̄(r)

dr2
+





E2−m2−
(κ

r
+VPS

)2

+V ′

PS−
κ

r2
0

0 E2−m2−
(κ

r
+VPS

)2

−V ′

PS−
κ

r2



ψ̄(r)=0. (5)

In this way, one obtains two separated component equations of the Schrödinger type as follows

ψ′′(±)(r)+
(

ε2−vκ(r)−v(±)
κ (r)

)

ψ(±)(r)=0, (6)

where

ε2 = E2−m2,

vκ =
(κ

r
+VPS

)2

, (7)

v(±)
κ = ±

(

V ′

PS−
κ

r2

)

,

and also the ψ(+) (ψ(−)) refers to the F (G) component.

3 Cornell pseudoscalar potential

Let the Cornell potential be defined as

VPS=ηlr−
ηc

r
, (8)

where ηl, ηc>0 are the coupling constants. Then from Eq. (7), we have

vκ=
(κ

r
+ηlr−

ηc

r

)2

=
κ2

r2
+η2

l r
2+

η2
c

r2
+2κηl−

2κηc

r2
−2ηlηc, (9)

v(±)
κ =±

(

V ′

PS−ηl−
ηc

r2

)

, (10)

and

ψ′′(±)
κ (r)+

(

−η2
l r

2−
κ(κ±1)+ηc(ηc∓1)−2κηc

r2
−ε2−ηl(2κ∓1)+2ηlηc

)

ψ(±)
κ (r)=0. (11)

3.1 Spin symmetry limit

The exact spin symmetry occurs in the Dirac equa-
tion when

d∆

dr
=

d(VV−VS)

dr
=0

or ∆ = Cs =constant [32–35]. Here, we are taking
Σ = VV+VS = 0, Cs = 0 and pseudoscalar potential as

Cornell potential in Eq. (11). Using dimensionless trans-
formation as x=

√
ηlr, Eq. (11) for the upper component

becomes

d2ψ(+)

dx2
−
[

x2+
κ(κ+1)+ηc(ηc−1)−2κηc

x2
+ξ2

]

ψ(+)=0,

(12)
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where ξ2=(2κ−1)−
ε2

ηl

−2ηlηc. To obtain the solution of

Eq. (12), by using transformation s=x2, we rewrite it as
follows

d2ψ(+)

ds2
+

1

2s

dψ(+)

ds
−

1

4s2
[s2+ξ2s+a(a+1)]ψ(+)=0, (13)

where a(a+1)=κ(κ+1)+ηc(ηc−1)−2κηc. This second dif-
ferential equation can be solved by the Nikiforov-Uvarov
method [36]. Following Eqs. (28–35) in Ref. [37], one can
obtain the energy equation as

(2n+1+
√

4a(a+1)+1)+ξ2=0, (14)

or equivalently

E=±[m2+ηl(2a−1)+2ηl(2n+a+3/2)+2η2
l ηc]

1

2 . (15)

To find the eigenfunction of the spin symmetry case, we
follow Eqs. (36)–(39) in Ref. [37] and we obtain the upper
spinor as

ψ(+)
nκ (x)=Ne−

1

2
x2

xa+1L
a+ 1

2
n (x2), (16a)

or equivalently

ψ(+)
nκ (r)=Ne−

1

2
ηlr

2

(
√
ηlr)

a+1L
a+ 1

2
n (ηlr

2), (16b)

where N is normalization constant determined as [38]

N=

√

√

√

√

√

2n!
(

n+
1

2
a+

3

2

)

!

. (17)

The lower spinor can be obtained from (1) as

ψ(−)
nκ =

1

m+E

[

dψ(+)
nκ

dr
+
(κ

r
+ηlr

)

ψ(+)
nκ

]

. (18)

3.2 Pseudospin symmetry limit

Ginocchio showed that there is a connection between
pseudospin symmetry and the time component of a vec-
tor potential and the scalar potential are nearly equal,
i.e., S(r)≈−V (r) [1, 39, 40]. Also, Meng et al. derived
that if

d[V (r)+S(r)]

dr
=

dΣ(r)

dr
=0

or Σ(r)=Cps =constant, pseudospin symmetry is exact
in the Dirac equation [41,42]. In this subsection, we are

taking ∆=VV−VS =0, Cps =0 and pseudoscalar poten-
tial as Cornell potential. Under the pseudospin symme-
try case, solution of the Dirac equation can be obtained
from the previous subsection ones by doing ψ(+)↔ψ(−),
κ→−κ, E→−E, Σ→∆ and Vp →−Vp. Therefore the
energy equation can be obtained as

(2n+1+
√

4ã(ã−1)+1)+ξ̃2=0, (19)

where ξ̃2=(2κ+1)−
ε2

ηl

−2ηlηc and ã(ã+1)=κ(κ−1)+ηc(ηc+

1)−2κηc. We can also write the energy eigenvalues as

E=±[m2+ηl(2ã+1)+2bηl(2n+ã+1/2)+2η2
l ηc]

1

2 . (20)

On the other hand, the corresponding lower spinor eigen-
functions can be obtained as

ψ(−)
nκ (x)=Ñe−

1

2
x2

xãL
ã− 1

2
n (x2), (21a)

or equivalently

ψ(−)
nκ (r)=Ñe−

1

2
ηlr

2

(
√
ηlr)

ã
L

ã− 1

2
n (ηlr

2), (21b)

where Ñ is normalization constant determined as [38]

Ñ=

√

√

√

√

√

2n!
(

n+
1

2
κ+

1

2

)

!

. (22)

The upper spinor can be obtained from (2) as

ψ(+)
nκ (r)=

1

m−E

[

dψ(−)
nκ (r)

dr
−
(κ

r
+ηlr

)

ψ(−)
nκ (r)

]

. (23)

4 Conclusions

In this paper, we have investigated the exact energy
levels and corresponding wave functions of the Dirac
equation with the pseudoscalar Cornell potential under
spin and pseudospin symmetry limits in 3+1 dimensions.
We found that the Cornell potential with pseudoscalar
potential has an exact solution however there is no exact
solution when the Cornell potential is studied as scalar
or vector potential [26, 30].

We would like to thank the kind referee for positive

suggestions which have improved the present paper.
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