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Parameterization of general Z-γ-Z′ mixing

in an electroweak chiral theory *
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Abstract: A new general parameterization with eight mixing parameters among Z, γ and an extra neutral

gauge boson Z′ is proposed and subjected to phenomenological analysis. We show that in addition to the

conventional Weinberg angle θW , there are seven other phenomenological parameters, G′, ξ, η, θl, θr, r and l,

for the most general Z-γ-Z′ mixings, in which parameter G′ arises due to the presence of an extra Stueckelberg-

type mass coupling. Combined with the conventional Z-Z′ mass mixing angle θ′, the remaining six parameters,

ξ, η, θl −θ′, θr −θ′, r and l, are caused by general kinetic mixing. In all eight phenomenological parameters,

θW , G′, ξ, η, θl, θr, r and l, we can determine the Z-Z′ mass mixing angle θ′ and the mass ratio MZ/MZ′ . The

Z-γ-Z′ mixing that we discuss are based on the model-independent description of the extended electroweak

chiral Lagrangian (EWCL) previously proposed by us. In addition, we show that there are eight corresponding

independent theoretical coefficients in our EWCL, which are fully fixed by our eight phenomenological mixing

parameters. We further find that the experimental measurability of these eight parameters does not rely on

the extended neutral current for Z′, but depends on the Z-Z′ mass ratio.
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1 Introduction

One of the simplest and more popular gauge ex-

tensions of the Standard Model (SM) is to add an

extra U(1) group associated with the Z′ gauge bo-

son to the electroweak gauge group SU(2)L⊗U(1)Y,

which constitutes one of the “hot spots” in high en-

ergy physics today. The extra gauge boson Z′ is the

carrier of a new gauge force corresponding to the

smallest gauge group extensions that play a crucial

role in cosmology, GUT, SUSY and various strong

coupling new physics theories associated with new

physics beyond the SM (for the latest review, see

Ref. [1]). As long as a Z′ particle exists, it will shift

observables from the present physics by mixing with

the standard electroweak neutral gauge bosons, γ and

Z. The corrections, however, depend on the details of

the model set-up, and especially on the way the neu-

tral gauge bosons mix. A model-independent way to

figure out these mixings is through phenomenological

requirements and constraints. Usually, theorists only

consider minimal Z-Z′ mass mixing [2]. A massless

photon constrains any possible extension of the mass

mixings matrix to be of Stueckelberg-type [3]. How-

ever, theory and phenomenology do not forbid gen-

eral three-body Z-γ-Z′ kinetic mixing. In the litera-

ture, only a few examples have been considered, such

as the special kinetic mixings given in Refs. [4] and

[5]. A general model-independent description of Z-γ-

Z′ mixing is needed to enable data analysis and the

experimental searches for Z′ to be more specific and

effective, particularly in light of the progress made in

the LHC experiments. With this motivation, we are

prompted to study the most general gauge boson
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mixing. In fact, a general description of the Z′ inter-

action with SM particles has already been given in

our previous work [3, 6], in which Z′ is regarded as

a gauge boson of a broken U(1)′ symmetry and the

conventional EWCL is extended to include this extra

broken U(1)′ symmetry from the original SU(2)L ⊗
U(1)Y →U(1)em to SU(2)L⊗U(1)Y⊗U(1)′ →U(1)em.

In Ref. [3], the bosonic part up to order p4 of the

most general EWCL involving this Z′ boson and dis-

covered particles has been proposed, and describes

the most general Z-γ-Z′ mixing. In Ref. [6], various

Z-γ-Z′ mixings that have appeared in the literature

are shown to be included in our EWCL formalism

and are further classified into five simple groupings.

However, the expressions given in Refs. [3, 6] for these

Z-γ-Z′ mixings are complex and are not suitable for

phenomenological investigations.

The purpose of this paper is to improve this short-

coming by setting up a more general parameteriza-

tion for all Z-γ-Z′ mixings to facilitate present and

future phenomenological analysis in the EWCL given

by Ref. [3]. We will discuss the physical meaning, ori-

gin and experimental measurability of these param-

eters within new parameterization. We show that

there are eight independent degrees of freedom and

all complexities of the mixing can be absorbed into

eight phenomenological parameters, θW , G′, ξ, η, θl,

θr, r and l, for which all but the traditional Wein-

berg mixing angle θW and the Stueckelberg-type cou-

pling G′ combine with the conventional Z-Z′ mass

mixing angle θ′, and the remaining six parameters,

ξ, η, θl − θ′, θr − θ′, r and l, are caused by general

kinetic mixing. We will explicitly construct quanti-

tative relations among these mixing parameters and

those related to theoretical coefficients appearing in

the underlying EWCL.

This paper is organized as follows. In Section 2,

we give a short review of the relevant parts associ-

ated with the Z-γ-Z′ kinetic and mass mixings from

the EWCL given in Ref. [3], and introduce the mixing

matrix. In Section 3, we explain the physical mean-

ing and origin of the eight parameters describing the

mixing matrix by diagonalizing the mass-squared and

kinetic matrices, and construct the relations among

the various mixing matrix elements and coefficients in

our EWCL. In Section 4, we first discuss the experi-

mental measurability of the parameters arising in our

new parameterization, and then express the EWCL

coefficients related to Z-γ-Z′ mixing in these eight pa-

rameters, which transfer the measurability from the

mixing parameters to the relevant EWCL coefficients.

Section 5 then presents a summary.

2 Review of the kinetic and mass mix-

ings from EWCL

We begin the discussion by first reviewing the

EWCL of Z′ established in Ref. [3]. The general

Lagrangian describing the gauge symmetry breaking

SU(2)L⊗U(1)Y⊗U(1)′ →U(1)em independent of the

details of the symmetry breaking can be constructed

in terms of 2× 2 non-linear Goldstone field Û , with

the following covariant derivative

DµÛ = ∂µ Û +igWµÛ− iÛ
(

g′ τ3

2
+ g̃′

)

Bµ− ig′′ÛXµ,

where Wµ, Bµ and Xµ are gauge bosons correspond-

ing to SU(2)L, U(1)Y and U(1)′, respectively. Here,

carets are used to distinguish the extended U(1)′

breaking quantities from the traditional electroweak

breaking quantities in Ref. [7]. g, g′, g′′ and g̃′ are the

SU(2)L coupling, the conventional U(1)Y coupling,

the U(1)′ coupling and the special Stueckelberg-type

gauge coupling, respectively.

In the paper by [3], the bosonic part of the La-

grangian up to order p4 is presented. Because of our

interest here in the Z′ mixing effects, we focus only

on the neutral gauge boson mixing parts, which can

be divided into a mass part LM

LM = −1

4
f 2tr[V̂ 2

µ ]+
1

4
β1f

2
(

tr[T V̂µ]
)2

+
1

4
β2f

2tr[V̂µ]tr[T V̂ µ]+
1

4
β3f

2
(

tr[V̂µ]
)2

U=1

===
f 2

8
(1−2β1)(gW 3

µ−g′Bµ)2

+
f 2

2
(1−2β3)(g

′′Xµ+ g̃′Bµ)2

+
f 2

2
β2(g

′′Xµ + g̃′Bµ)(gW 3,µ−g′Bµ)

≡ 1

2
VT

µ M2
0Vµ (1)

and the kinetic part LK

LK = −1

4
B2

µν −
1

2
tr[W 2

µν ]− 1

4
X2

µν

+
1

2
α1gg′Bµνtr[TW µν ]+

1

4
α8g

2 (tr[TWµν ])
2

+gg′′α24Xµνtr[TW µν ]+g′g′′α25BµνXµν

U=1

===−1

4
BµνBµν −

1

4
XµνXµν

−1

4
(1−α8g

2)(∂µ W 3
ν −∂ν W 3

µ)2
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+

(

1

2
α1gg′Bµν +gg′′α24X

µν

)

(∂µ W 3
ν −∂ν W 3

µ )

+g′g′′α25BµνXµν ≡−1

4
VT

µνK0Vµν . (2)

Here, T ≡ Û †τ3Û and V̂µ ≡ (D̂µÛ)Û † are SU(2)L co-

variant operators. In LM, the first term is the conven-

tional non-linear σ model term and the fourth term

is a new non-linear σ model term due to the presence

of the U(1)′ Goldstone boson. The second term is the

conventional custodial symmetry breaking term, and

the third term is the mixing of the second and fourth

terms. For LK, with the exception of the standard

kinetic terms for the U(1)Y, SU(2)L and U(1)′ gauge

bosons, the terms with coefficients α1, α24 and α25 are

the kinetic mixing terms between U(1) and the diag-

onal part of the SU(2)L gauge fields, between U(1)′

and the diagonal part of the SU(2)L gauge fields,

and between the U(1) and U(1)′ gauge fields, respec-

tively. The term with coefficients α8 is the correction

term for the diagonal part of the SU(2)L gauge field.

These coefficients parameterize the most general ki-

netic mixing among the Z-γ-Z′ bosons. For conve-

nience, all these terms have been abbreviated into

matrix forms in the unitary gauge Û = 1 in the gauge

boson vector VT
µ = (W 3

µ , Bµ, Xµ), the field strength

tensor Vµν ≡ ∂µVν − ∂ν Vµ, the mass-squared matrix

M2
0 and the kinetic matrix K0. From M2

0 and K0,

we see that three body Z-γ-Z′ mixing is controlled by

11 dimensionless coefficients: four gauge couplings, g,

g′, g̃′ and g′′, three mass-mixing low-energy constants

β1, β2 and β3, and four kinetic-mixing low-energy con-

stants, α1, α8, α24 and α25. Among these, only nine

play roles in the sense that we can redefine nine new

coefficients by absorbing β1 and β3 as follows

g′ =
ḡ′

√
1−2β1

, g =
ḡ√

1−2β1

,

g′′ =
ḡ′′

√
1−2β3

, g̃′ =
¯̃g′

√
1−2β3

, (3)

β2 = β̄2

√

1−2β1

√

1−2β3,

αa = gg′ᾱ1, αb = g2ᾱ8, αc = gg′′ᾱ24,

αd = g′g′′ᾱ25.
(4)

Then, M2
0 and K0 of these nine redefined coefficients

become

M2
0 = f 2























ḡ2

4
− ḡḡ′

4
+

ḡ¯̃g′β̄2

2

ḡḡ′′β̄2

2

2ḡ¯̃g′β̄2− ḡḡ′

4

ḡ′2

4
+ ¯̃g′2− ḡ¯̃g′β̄2 ḡ′′ ¯̃g′− ḡ′ḡ′′β̄2

2

ḡḡ′′β̄2

2
− ḡ′ḡ′′β̄2

2
+ ḡ′′ ¯̃g′ ḡ′′2























, (5)

K0 =−1

4









1−αb −αa −2αc

−αa 1 −2αd

−2αc −2αd 1









. (6)

Furthermore, there exists a scale symmetry for M2
0

and K0, i.e. these are invariant under the following

transformation determined by an arbitrary parameter

ζ,

ḡ→ ζḡ, ḡ′ → ζḡ′, ḡ′′ → ζḡ′′, ¯̃g′ → ζ ¯̃g′, f → 1

ζ
f, (7)

with β̄2, αa, αb, αc, αd unchanged. Since the dimen-

sional coefficient f does not enter into the final mixing

matrix, the above scale symmetry implies that among

the nine redefined theoretical coefficients, only eight

of these are independent, and span the largest mix-

ing space for an extra neutral gauge boson Z′. We

take these eight theoretical coefficients as ḡ/ḡ′, ¯̃g′/ḡ′′,

ḡZ/ḡ′′, β̄2, αa, αb, αc, αd with

ḡZ ≡
√

ḡ2 + ḡ′2 . (8)

These will provide all the combinations of extra

neutral vector boson corrections to low-energy EW

physics via mixing. As discussed in Ref. [6], if we

then input a different set of values for these coeffi-

cients, then the effective theory can recuperate the

various Z′ models that have been presented in the

literature. The mixing can be disentangled by diag-

onalizing the mass-squared matrix M2
0 and kinetic

matrix K0 simultaneously, i.e. through introducing

in a 3×3 real matrix U , which relates the interaction

eigenstate (W 3
µ , Bµ, Xµ) to the mass eigenstate (Zµ,

Aµ, Z ′
µ) in the following manner









W 3
µ

Bµ

Xµ









= U









Zµ

Aµ

Z ′
µ









. (9)
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The U matrix has to fulfill conditions

UTM2
0U = diag(M 2

Z ,0,M 2
Z′), UTK0U =−1

4
I. (10)

In Refs. [3, 6], we have already discussed the exact

form of U , although in practice its physical meaning

tends to get lost due to its complex form, and is not

suitable for presenting phenomenological arguments.

Here, we simplify its expression by re-parameterizing

it as follows,

U ≡







s
W

ξ+c
W

cll s
W

a s
W

η+c
W

srr

c
W

ξ−s
W

cll c
W

a c
W

η−s
W

srr

(s
W

cll−c
W

ξ)G′
−sll −c

W
aG′ (s

W
srr−c

W
η)G′ +crr






= U0U1, (11)

U0 ≡







c
W

s
W

0

−s
W

c
W

0

s
W

G′
−c

W
G′ 1






, U1 ≡







lcl 0 rsr

ξ a η

−lsl 0 rcr






, (12)

in which there are three angle parameters, θW , θr and

θl, establishing the trigonometric values ci ≡ cosθi,

si ≡ sinθi for i = W , l and r, and six other mixing

parameters, G′, a, ξ, η and r, l; nine in total. Among

these nine parameters, a = a(θW , θr, θl, G′, ξ, η,

r and l), is a single relation determining one of the

other eight parameters; a detailed dependence will be

given later in (59). Thus only eight of the nine pa-

rameters in (11) are independent, and the degrees of

freedom just match the number of independent theo-

retical coefficients for electroweak gauge boson mixing

that we counted before. In fact, because of the mass-

less photon, parameter a is a normalization constant

and plays the role of rescaling the photon field, which

does not cause observable effects in the two-point ver-

tices involving electroweak gauge bosons. Note that

in the SM tree diagram limit, U0 is a pure Weinberg

rotation with G′ = 0, and U1 is a unit matrix with

θl = θr = ξ = η = 0 and l = r = a = 1.

3 Phenomenological parameters in

terms of diagonalization and EWCL

coefficients

Next, we explain the physical meaning and origin

of the eight parameters, θW , G′, ξ, η, θr, θl, r and

l, by diagonalizing the mass-squared matrix M2
0 and

kinetic matrix K0. First, G′ is defined in such a way

that it relates to the Stueckelberg-type coupling ¯̃g′ as

G′ ≡
¯̃g′

ḡ′′
=

g̃′

g′′
. (13)

i.e. G′ is derived from the Stueckelberg coupling as

the ratio of the Stueckelberg coupling and conven-

tional U(1)′ coupling. In our EWCL formalism, the

deviation from SM has two sources: a Stueckelberg-

type interaction for Bµ and the extra U(1)′ interac-

tion from gauge boson Xµ, with G′ the relative ratio

of the interaction strengths between these two types

of sources. Theoretically, G′ can take arbitrary real

numbers, in particular G′ =∞ and G′ = 0 correspond

to g′′ = 0, g̃′ finite and g̃′ = 0, g′′ finite, respec-

tively. However, phenomenological analysis shows

that a very large G′ is not physically realistic, as

Ref. [8] gives G′ = g̃′/g′′ = 1.9/149 ≈ 0.013. If we

ignore G′, then the rotation matrix U0 then reverts

to the standard Weinberg rotation with Weinberg an-

gle θW defined as

cW ≡ ḡ

ḡZ

, sW ≡ ḡ′

ḡZ

, or, tanθW =
ḡ′

ḡ
=

g′

g
. (14)

The Weinberg angle originates from the mixing of

field W 3,µ and Bµ and the Weinberg rotation enables

the part of the mass matrix associated with γ and Z

to be diagonalized if the Z′ particle and the Stueck-

elberg coupling are neglected. Once the Stueckelberg

coupling ¯̃g′ shows up, there will be off diagonal ma-

trix elements involving γ-Z and γ-Z′ mixings. To dis-

entangle these mixings, we add G′ terms to the U0

matrix, and after the U0 rotation we find

UT
0 M2

0U0 = f 2















1

4
ḡ2
Z 0

1

2
ḡZḡ′′β̄2

0 0 0

1

2
ḡZḡ′′β̄2 0 ḡ′′2















. (15)

This is a typical Z-Z′ mixing matrix. We apply a fur-

ther matrix Ũ0 with rotation angle θ′ to diagonalize

(15), i.e.

Ũ0 =









c′ 0 s′

0 1 0

−s′ 0 c′









,

ŨT
0 UT

0 M2
0U0Ũ0 = diag(M 2,0,M ′2) (16)
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with c′ = cosθ′,s′ = sinθ′. We find that this fixes the

rotation angle θ′ as follows

tanθ′ =
∆g−

√

∆2
g +16ḡ2

Zḡ
′′2β̄2

2

4β̄2ḡ′′ḡZ

,

∆g = ḡ2
Z−4ḡ′′2.

(17)

Hence θ′ originates from the Z-Z′ mass mixing, its

role is to disentangle this mixing, and it appears in

most of the new physics models involving the Z′ bo-

son. With the zero eigenvalue in (16) corresponding

to the massless photon, the two other nonzero eigen-

values in (16) are

M 2

f 2
=

1

4
ḡ2
Zc′2 + ḡ′′2s′2−s′c′ḡZḡ′′β̄2,

M ′2

f 2
= ḡ′′2c′2 +

1

4
ḡ2
Zs′2 +s′c′ḡZḡ′′β̄2 .

(18)

Here, M and M ′ are just the Z and Z′ masses if

there are no Stueckelberg and kinetic mixings. For

g′′ = g̃′ = 0, (15) is already diagonal with eigenvalues

1

4
f 2ḡ2

Z,0,0,

and there is no need to apply further rotation; clearly,

θ′ = 0 is given by (17), resulting in a unit matrix Ũ0.

This further simplifies the eigenvalues of (18) to

M 2/f 2 =
1

4
ḡ2
Z,

and M ′2/f 2 = 0. Here, M ′ = 0 implies that the mass

of Z′ is zero and Z′ decouples from Z and γ.

After diagonalizing the mass-squared matrix M2
0,

the next logical step is to further diagonalize the ki-

netic matrix K0. Considering that after the rotation

U0Ũ0, which diagonalizes M2
0, the kinetic matrix K0

is already transformed to a symmetric form

ŨT
0 UT

0 K0U0Ũ0 =









k1 k2 k3

k2 k4 k5

k3 k5 k6









(19)

with

k1 = 1−2sWs′c′G′ +s2
W c′2G′2 +2cW sW c′2αa

−c2
W c′2αb +(4cW s′c′−4cWsW c′2G′)αc

+(−4sWs′c′ +4s2
W c′2G′)αd, (20)

k2 = cW s′G′−cW sW c′G′2 +(s2
W −c2

W )c′αa

−cW sW c′αb +[2sW s′+2(c2
W −s2

W )c′G′]αc

+(2cW s′−4cW sW c′G′)αd, (21)

k3 = −sW (s′2−c′2)G′ +s2
W s′c′G′2 +2cW sW s′c′αa

−c2
W c′s′αb +[2cW (s′2−c′2)−4cW sW s′c′G′]αc

+[2sW (c′2−s′2)+4s2
W s′c′G′]αd , (22)

k4 = 1+c2
W G′2−2cWsW αa−s2

W αb

+4cW sW G′αc +4c2
W G′αd , (23)

k5 = −cW c′G′−cW sW s′G′2 +(s2
W −c2

W )s′αa

−cW sW s′αb− [2sW c′−2(c2
W −s2

W )s′G′]αc

−(2cW c′ +4cW sW s′G′)αd , (24)

k6 = 1+2sW s′c′G′ +s′2s2
W G′2 +2cWsW s′2αa

−c2
W s′2αb−(4cW s′c′+4cW sW s′2G′)αc

+(4sW s′c′ +4s′2s2
W G′)αd. (25)

Note that as long as we have a nonzero Stueckel-

berg coupling G′, then the rotated kinetic matrix

ŨT
0 UT

0 K0U0Ũ0 is not diagonal, even if the kinetic mix-

ing coefficients αa, αb, αc and αd all vanish. For the

special case, g′′ = g̃′ = 0, the matrix elements reduce

to k3 = k5 = 0 and k6 = 1.

With these results, we introduce the matrix Ũ1

to further diagonalize the rotated kinetic matrix

ŨT
0 UT

0 K0U0Ũ0

Ũ1 ≡ Ũ−1
0 U1 =









lcos(θl−θ′) 0 r sin(θr −θ′)

ξ a η

−l sin(θl−θ′) 0 r cos(θr −θ′)









,

(26)

which changes the diagonal matrix diag (M 2, 0, M ′2)

to diag (M 2
Z , 0, M 2

Z′) with

M 2
Z = M 2l2

{

cos2(θl−θ′)

+
cos(θl−θ′)sin(θr −θ′)sin(θl−θ′)

cos(θr −θ′)

}

, (27)

M 2
Z′ = M ′2r2

{

cos2(θr −θ′)

+
cos(θr −θ′)sin(θr −θ′)sin(θl−θ′)

cos(θl−θ′)

}

, (28)

as long as we take

tan(θl−θ′)

tan(θr −θ′)
=

M 2

M ′2
. (29)
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i.e.

ŨT
1 ŨT

0 UT
0 K0U0Ũ0Ũ1 = UT

1 UT
0 K0U0U1 = UTK0U

= −1

4
diag(1,1,1). (30)

We see that the parameters in (26) play the role of

generating the most general kinetic mixing. In par-

ticular, ξ and η originate from Z-γ and Z′-γ mixings,

respectively, while l, r, θl−θ′ and θr−θ′ originate from

the most general Z and Z′ redefinition and mixing,

which need four independent parameters (two from

redefinition and the other two from kinetic mixing).

The θ′ appearing in (26) in the combinations of

θl−θ′ and θr−θ′ is needed to subtract out Z-Z′ mass

mixing from general Z-γ-Z′ mixing, leaving only the

pure kinetic mixing. If there are no kinetic mixings,

then

a = l = r = 1, G′ = ξ = η = 0, θl = θr = θ′. (31)

By further requiring no Z-Z′ mass mixing by taking

θ′ = 0 in the above result, we recover the SM tree

diagram limit mentioned previously.

Using (30), we then find

1

a2
= k4, (32)

which only rescales the photon field to a normal-

ized kinetic form. Equation (29) gives one relation

between the angle combinations θl − θ′ and θr − θ′,

(30) further fixes tan(θl − θ′) through the following

quadratic equation
{

k2k5

k4

−k3

}

M 2M ′2 tan2(θl−θ′)

M 4
+

{

k3−
k2k5

k4

}

+

{(

k1−
k2

2

k4

)

M ′2 +

(

k2
5

k4

−k6

)

M 2

}

tan(θl−θ′)

M 2

= 0. (33)

There are two solutions from the above equation: one

of these is chosen so that it vanishes in the limit

k1 = k4 = k6 = 1, k2 = k3 = k5 = 0 for fixed M 2

and M ′2, and the other nonzero solution corresponds

to the Z mass vanishing and γ receiving a nonzero

mass. Combining the solution of (33) with Equation

(29), we obtain θl − θ′ and θr − θ′. r and l can be

determined by

1

l2
= cos2(θl−θ′)

{

(

k6−
k2

5

k4

)

tan2(θl−θ′)

+2

(

k2k5

k4

−k3

)

tan(θl−θ′)+k1−
k2

2

k4

}

, (34)

1

r2
= cos2(θr −θ′)

{

(

k1−
k2

2

k4

)

tan2(θr −θ′)

+2

(

k3−
k2k5

k4

)

tan(θr −θ′)+k6−
k2

5

k4

}

. (35)

With l, r, θl − θ′ and θr − θ′, ξ known, and η re-

expressible

ξ

l
=

k5 sin(θl−θ′)−k2 cos(θl−θ′)

k4

, (36)

η

r
= −k2 sin(θr −θ′)+k5 cos(θr −θ′)

k4

. (37)

As an example, we give the explicit result for the spe-

cial case g′′ = g̃ = 0 (the present situation is the 0/0

case, here in the limiting procedure we let g̃ approach

zero first, and then take g′′ to zero, because as we

mentioned before G′ is small from purely phenomeno-

logical estimations), where the above considerations

program gives the result:

θl = θr = θ′ = G′ = η = 0, (38)

1

a2
= k4,

1

l2
= k1−

k2
2

k4

, r = 1, ξ =−k2l

k4

, (39)

M 2
Z = M 2l2, M 2 =

1

4
ḡ2
Zf 2, M 2

Z′ = M ′2 = 0. (40)

Up to this stage, once we know the coefficients in

mass-squared matrix M2
0 and kinetic matrix K0, i.e.

f and eight theoretical coefficients of EWCL ḡ/ḡ′,
¯̃g′/ḡ′′, ḡZ/ḡ′′, β̄2, αa, αb, αc, αd, we can obtain the fi-

nal phenomenological mixing parameters, θW , θr, θl,

G′, ξ, η, l and r, and the intermediate mixing angle

θ′ and photon normalization factor a. In particular,

the intermediate mass-squared ratio M 2/M ′2 is deter-

mined from (29) and the physical mass ratio MZ/MZ′

can be expressed as

MZ

MZ′

=
l

r

sin1/2(2θl−2θ′)

sin1/2(2θr −2θ′)
. (41)

This result offers hope in predicting the Z′ mass in

mixing parameters. Unfortunately, the mixing pa-

rameters themselves are not easy to test. In the next

section, we will discuss the experimental measurabil-

ity of the mixing parameters. Here we would rather

treat the above relation as an additional constraint

used in determining parameters for a given Z-Z′ mass

ratio.

Phenomenologically, a more important question

is, once we know the eight phenomenological mixing

parameters, θW , θr, θl, G′, ξ, η, l and r, from fitting

the experimental data, how can we obtain the cor-

responding eight theoretical coefficients, ḡ/ḡ′, ¯̃g′/ḡ′′,
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ḡZ/ḡ′′, β̄2, αa, αb, αc and αd? Considering that the

mixing parameter G′ = ¯̃g′/g′′ has already appeared in

M2
0, i.e. it is both a theoretical coefficient and a phe-

nomenological parameter, the remaining problem is

to fix the other seven coefficients, ḡ/ḡ′, ḡZ/ḡ′′, β̄2, αa,

αb, αc and αd, in eight phenomenological parameters,

θW , θr, θl, G′, ξ, η, l and r. Since the computation

details are very complex, here we only outline the

calculations. We choose seven equations, (14), (29),

(33), (34), (35), (36) and (37), for which the auxiliary

quantity θ′ is further determined by (17), M 2/M ′2 by

(18), and k1, k2, k3, k4, k5 and k6 by (23) to (25). By

solving these equations, we can in principle express

these theoretical coefficients in phenomenological pa-

rameters.

With the expressions of the EWCL coefficients of

the phenomenological parameters, and with the help

of (17) and (32), the conventional Z-Z′ mass mixing

angle θ′, the ratio MZ/MZ′ and a can all be expressed

in the eight phenomenological mixing parameters.

The above procedure yields completely general re-

sults. To the terms of order p4, we give explicit ex-

pressions for six phenomenological parameters, θr, θl,

ξ, η and l,r, in terms of theoretical coefficients ḡ′/ḡ,
¯̃g′/ḡ′′, ḡZ/ḡ′′, β̄2, αa, αb, αc, αd:

θr ≈ θ′ +
4sW ḡ′′2

∆g

G′+
sW (5ḡ2

Z+12ḡ′′2)

∆g

G′θ′2

−4cW (−2ḡ2
Zs2

W +∆g)ḡ
′′2

∆2
g

G′αa +
8sW ḡ′′2

∆g

αd

−4sW c2
W ḡ2

Zḡ′′2

∆2
g

G′αb−
8cW ḡ′′2

∆g

αc, (42)

θl ≈ θ′ +
sW ḡ2

Z

∆g

G′ +
sW (3ḡ2

Z +20ḡ′′2)

∆g

G′θ′2

−cW ḡ2
Z(−2ḡ2

Zs2
W +∆g)

∆2
g

G′αa

−sW c2
W ḡ4

Z

∆2
g

G′αb−
2cW ḡ2

Z

∆g

αc +
2sW ḡ2

Z

∆g

αd, (43)

r ≈ 1−sW G′θ′ +
2cW sW (ḡ2

Z +4ḡ′′2)

∆g

G′αc

+
2(c2

W ḡ2
Z +4(c2

W −2)ḡ′′2)

∆g

G′αd, (44)

l ≈ 1+sW G′θ′−sW cW αa +
c2

W

2
αb

−2cW sW (ḡ2
Z +4ḡ′′2)

∆g

G′αc

+
2s2

W (ḡ2
Z +4ḡ′′2)

∆g

G′αd, (45)

ξ ≈ −cW G′θ′ +(2c2
W −1)αa +cW sW αb

+
8(2c2

W −1)ḡ′′2

∆g

G3αc−
16cW sW ḡ′′2

∆g

G′αd, (46)

η ≈ cW G′− cW

2
G′θ′2 +

2sW (c2
W ḡ2

Z−2ḡ′′2)

∆g

G′αa

+
ḡ2
ZcW s2

W

∆g

G′αb +2sW αc +2cW αd. (47)

Here, θ′ ≈ −2ḡZḡ
′′β̄2/∆g, θW = arctan ḡ′/ḡ and G′ =

¯̃g′/ḡ′′. Moreover, we obtain

a ≈ 1+cW sW αa +
s2

W

2
αb−2cW sW G′αc

−2c2
W G′αd , (48)

θ′ ≈ ḡ2
Zθr −4ḡ′′2θl

∆g

. (49)

Note that since (31) tells us that if there are no ki-

netic mixings, θl = θr = θ′, then the differences θl−θ′

and θr − θ′ reflect the effects caused by kinetic mix-

ing. Substituting (42) and (43) into (29), we find the

result for M 2/M ′2, which just matches the results

that we obtained from (18). Although our result here

already includes all possible mixing cases, pure Z-Z′

mass mixing is worthy of a special discussion. We find

that the limit G′ = αc = αd = 0 can not be taken at

the very beginning, since this will lead to θr = θl = θ′

from (42) to (43) and then limit problems 0/0 in (29)

for M 2/M ′2. To obtain the correct result, we first

need to maintain G′ and αc, αd with nonzero values

through completion of the computation of the ratio

M 2/M ′2, and then take its vanishing limit. This is

an interesting new phenomenon, i.e. nonzero G′ and

αc, αd extensions make it possible for M 2/M ′2 to be

expressed in the mixing parameters. In contrast with

the pure Z-Z′ mass mixing case from (18), we find that

just the mixing angle θ′ cannot fully fix the value of

M 2/M ′2, as we are left with β̄2 degrees of freedom

remaining.

4 Measurability of the parameters

and relevant EWCL coefficients

Compared with the coefficients in EWCL, our

eight parameters, θW , G′, ξ, η, θl, θr, r and l, are

closer to the experimental data and more easily de-

termined experimentally. Once these are known, the

relevant EWCL coefficients can be further determined

by establishing the relations between these parame-

ters and the EWCL coefficients. In this section, we

begin by discussing how these parameter values can
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be fixed in principle from the experiment, and then

construct the relations among the EWCL coefficients

and parameters.

Experimentally, with the exception of SU(2)L

coupling g, which can be determined from charged

currents, the main means to determine the mixing

parameters are by testing the structure of the electro-

magnetic and neutral currents. The corresponding

Lagrangian is gW 3
µJ3,µ + g′BµJµ

Y + g′′XµJµ
X , where

J3,µ is the third component of the conventional weak

isospin current, Jµ
Y is the hypercharge current, and

Jµ
X is the current coupled to the extra Xµ boson.

The physical bosons Z, γ, Z′, the Lagrangian of the

electro-magnetic and the neutral currents becomes

eJµ
emAµ + gZJµ

ZZµ + g′′Jµ
Z′Z ′

µ. With the help of (9),

we can read off

eJµ
em = gU1,2J

3,µ +g′U2,2J
µ
Y +g′′U3,2J

µ
X

= gsW a[J3,µ +Jµ
Y ]+g′′U3,2J

µ
X , (50)

gZJµ
Z = gU1,1J

3,µ +g′U2,1J
µ
Y +g′′U3,1J

µ
X

= g[(sW ξ+cW cll)J
3,µ

+(sW ξ−sW cll tanθW )Jµ
Y ]+g′′U3,1J

µ
X , (51)

g′′Jµ
Z′ = gU1,3J

3,µ +g′U2,3J
µ
Y +g′′U3,3J

µ
X , (52)

with Ui,j a general matrix element of mixing matrix

U , and we have used the result gU1,2 = g′U2,2 com-

bined with (11) and (14). In principle, once the ex-

periments finally fix the coefficients Ui,j , then from

(11), we can determine all eight parameters, θW , G′,

ξ, η, θl, θr, r and l. Considering the fact that Z′ has

not been discovered as yet in current experiments, we

divide the present experimental measurability of the

parameters into two stages.

1) Suppose we can measure eJµ
em and gZJµ

Z experi-

mentally but do not know what Jµ
Z′ and Jµ

X are. This

is the present SM situation as it stands and is inde-

pendent of details of the Z′ model. Then (50) implies

that we can determine gsW a and the electro-magnetic

coupling e now must be identified as e = gsWa. Com-

pared with the conventional relation in SM, we find

that an extra correction factor a appears in the rela-

tion. Considering that e and g can be measured from

electro-magnetic and charge currents, respectively, we

can then derive sW a. Further, from (51), we find

g(sW ξ + cW cll) and g(sW ξ− sW cll tanθW ). Then, in

this first stage, combined with known g, we can ob-

tain four combinations of the eight parameters: g,

sW a, sW ξ+cW cll and sW ξ−sW cll tanθW .

2) Suppose in addition to eJµ
em and gZJµ

Z , we

also know Jµ
X . This can be realized if we have

prior U(1)′ charges for the SM fermions, which is Z′

model-dependent. Then from (50) and (11), g′′U3,2 =

g′′(sW η + cW srr) is obtainable; and from (51) and

(11), g′′U3,1 = g′′(cW η−sWsrr) is calculable. We find

at this second stage that we can obtain two further

combinations of the eight parameters.

Therefore, before needing to measure g′′Jµ
Z′ , the

above two stages already enable us to evaluate seven

of the eight parameters. Using (41), the remaining

unknown parameter can be determined once we as-

sume a Z-Z′ mass ratio. Thus, even without the

knowledge of g′′Jµ
Z′ , and as long as the Z-Z′ mass ratio

is fixed, we can now measure all eight phenomenolog-

ical parameters.

In consequence, we can express the EWCL coeffi-

cients in these parameters. Up to order p4, the the-

oretical coefficients ḡZ/ḡ′′, β̄2, αa, αb, αc and αd in

phenomenological parameters θW , θr, θl,G
′, ξ, η, l

and r can be written as

ḡZ

ḡ′′
≈ 2(θl−θ′)

θr −θ′
, (53)

β̄2 ≈ − ḡ2
Zθr −4ḡ′′2θl

2ḡZḡ′′
, (54)

αa = − 1

4sW cW ḡ′′2∆g

{

8s2
W ḡ′′2∆g(l−1)

+sW (ḡ2
Zs2

W +2(c2
W −2)ḡ′′2)∆gG

′θ′

+(ḡ2
Zs2

W +(4−2c2
W )ḡ′′2)∆g(r−1)

−4cW sW ḡ′′2∆gξ

+cW (−ḡ4
Zs2

W −2ḡ′′2c2
W ∆g)G

′η
}

, (55)

αb = − 1

4c2
W ḡ′′2∆g

{

((1−2c2
W )ḡ2

Z +4ḡ′′2s2
W )∆g(r−1)

+sW (∆g−2c2
W ḡ2

Z +4c2
W ḡ′′2)∆gG

′θ′

+8ḡ′′2(1−2c2
W )∆g(l−1)−8sW cW ḡ′′2∆gξ

+cW (−ḡ4
Zs2

W −16ḡ′′4s2
W + ḡ2

Zc2
W ∆g)G

′η
}

, (56)

αc =
1

8sW cW ḡ′′2∆g

{

sW c2
W ∆2

gθ
′−c2

W sW ∆2
gθr

+s2
W c2

W (5ḡ2
Z+14sW ḡ′′2)∆gG

′θ′2

−8s2
W ḡ′′2(−ḡ2

Zs2
W +4ḡ′′2)G′(l−1)

+(s4
W ḡ4

Z−16ḡ′′4 +2ḡ′′2c4
W ḡ2

Z+8ḡ′′4c2
W )G′(r−1)
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+4sW cW ḡ′′2(ḡ2
Z(c2

W −2)+4ḡ′′2)G′ξ

+4s2
W cW ḡ′′2∆gη

}

, (57)

αd = − 1

8ḡ′′2∆g

{

(5ḡ2
Zs2

W +(12−14c2
W )ḡ′′2)∆gG

′θ′2

+sW ∆2
gθ

′+4ḡ′′2∆gG
′−8s2

W ḡ2
Zḡ′′2G′(l−1)

−sW ∆2
gθr + ḡ2

Z(−ḡ2
Zs2

W +(−4+2c2
W )ḡ′′2)G′(r−1)

+4sW cW ḡ2
Zḡ′′2G′ξ−4cW ḡ′′2∆gη

}

, (58)

where θ′ is given by (49) and ḡZ/ḡ′′ is given by (53).

The remaining two theoretical coefficients ḡ′/ḡ and
¯̃g′/ḡ′′, which are already determined in (14) and (13),

respectively, are not displayed with the above formu-

lae. Substituting the results back into (32) and com-

bining with (23), we further obtain

a = 1− 1

8c2
W ḡ′′2∆g

{

sW (s2
W ḡ2

Z−4ḡ′′2)∆gG
′θ′

+8s2
W ḡ′′2∆g(l−1)+(ḡ2

Zs2
W +4ḡ′′2)∆g(r−1)

−8sW cW ḡ′′2∆gξ−cW (ḡ4
Zs2

W −4ḡ2
Zḡ′′2c2

W

+16ḡ′′4)G′η
}

. (59)

The results (49) to (59) indicate that once we know

the eight phenomenological parameters, θW , G′, ξ, η,

θl, θr, r and l, the conventional Z-Z′ mixing angle

θ′, then the general Z-γ-Z′ mixing coefficients ḡ/ḡ′,

ḡZ/ḡ′′, G′, β̄2, αa, αb, αc and αd, and a are fixed,

where the a parameter, although it appears in the

phenomenological role as discussed earlier, is deriv-

able from the other eight parameters through (59).

5 Summary

To summarize our results, based on the extended

electroweak chiral Lagrangian previously proposed by

us, we have found that there are eight independent

degrees of freedoms to describe the most general Z-γ-

Z′ mixings that correspond to the eight independent

theoretical coefficients, ḡ/ḡ′, ¯̃g′/ḡ′′, ḡZ/ḡ′′, β̄2, αa,

αb, αc and αd, in our electroweak chiral Lagrangian.

For convenience in the phenomenological analysis, we

have proposed a new general parameterization involv-

ing these eight parameters that describes the Z-γ-Z′

mixings, including the conventional Weinberg angle

θW and a Stueckelberg-type coupling G′. Combined

with the conventional Z-Z′ mass mixing parameter θ′,

we find that parameters ξ, η, θl −θ′, θr −θ′, r and l

reflect the general kinetic mixings among the Z-γ-Z′.

With this parameterization, θW , G′, ξ, η, θl, θr, r

and l, we can fully determine the Z-Z′ mass mixing

angle θ′ and the mass ratio MZ/MZ′ . Experimentally,

with the knowledge of charge currents, neutral cur-

rents and the current for the extra gauge boson Xµ,

combined with mass ratio MZ/MZ′ , we can in princi-

ple measure all eight parameters.
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