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Diffusion Monte Carlo calculations of

three-body systems *

LÜ Meng-Jiao(½�q)1;1) REN Zhong-Zhou(?¥³)1,2 LIN Qi-Hu(�ãÑ)1

1 Department of Physics, Nanjing University, Nanjing 210093, China
2 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China

Abstract: The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We

develop a program and use it to calculate the property of various three-body systems. Regular Coulomb

systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic

systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-

body systems consisting of a core and two external nucleons. Our results agree well with experiments and

others’ work.
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1 Introduction

The three-body problem plays an important role

in atomic physics, molecular physics, and nuclear

physics. The study of the Coulomb three-body sys-

tems in quantum physics dates back to the 1930s

when physicists were trying to explain the helium

spectrum. Many years have passed, but progress is

still being made in this field. New systems such as

exotic three-body atomic systems have aroused the

great interest of physicists recently [1]. New wave

functions are also being found [2]. The study of the

three-body problem is also very common in nuclear

physics [3, 4]. Tritium is a typical three-body system

that was studied using Monte Carlo methods long ago

[5]. Some exotic nuclei such as 6He and 11Li are also

studied from a three-body perspective [6–11].

The fundamental difficulty in these fields is to

solve the coupled three-body Schrödinger equation.

The variational method with the trial wave function

is one of the most common ways to solve this problem

[12]. Some of these variational wave functions can be

analytical and simple [2], while some of them are more

sophisticated with a large number of variational pa-

rameters [13]. Another way is to solve the correspond-

ing Faddeev equations, which is widely used both in

scattering and bound problems [14, 15]. The diffusion

Monte Carlo method is also very powerful in solving

three-body problems such as Positronium-atom com-

plexes [16], mesic molecules [17], light nuclei [18, 19],

and medium nuclei [20].

We write a program to study three-body systems

with diffusion Monte Carlo methods. We first study

regular Coulomb systems such as a hydrogen molecu-

lar ion p+p+e−, followed by the extension to muonic

systems. Those calculations are carried out without

Born-Oppenheimer approximation. We also apply

the diffusion Monte Carlo method to nuclei which are

considered as Yukawa three-body systems.

2 Theoretical framework

The Hamiltonian of a three-body system can be

written as:

H =−
∑

i

~
2

2mi

∇2
i +

∑

i<j

Vij , (1)
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wheremi is the mass of each component and Vij is the

two-body potential. The exact wave function of the

three-body system is written as ψ(R, t), where R is

the 3N -dimensional configuration coordinate. Then

a new wave function

f(R, t) =ψ(R, t)ψT(R, t) (2)

is introduced, where ψT(R, t) is a trial wave function

which could be generated by variational Monte Carlo

method. This function satisfies the equation [21],

−
∂
∂ t
f(R, t) =

∑

i

−
~

2

2mi

∇2
if(R, t)

+
∑

i

~
2

mi

∇·

[

∇iψT(R)

ψT(R)
f(R, t)

]

+[EL(R)−ET(t)]f(R, t). (3)

Here EL is the local energy given by

EL(R) =
ĤLψT(R)

ψT(R)
, (4)

where

ĤL =−
∑

i

~
2

2mi

∇2
i +

∑

i<j

Vij . (5)

ET(t) is a shift energy which plays a role of normal-

ization factor. Eq. (3) could be solved iteratively in

an integral form,

f(R′, t+τ) =

∫
dRG̃(R′,R, τ)f(R, t), (6)

where τ is the time step between iterations. In short-

time approximation the Green’s function G̃(R′,R, τ)

has the form [21],

G̃(R′,R, τ) =
∏

i

1

(2πσ2
i )3/2

exp

[

−
(R′−µi(R))2

2σ2
i

]

×exp[−τ(EL(R′)+EL(R)−2ET)/2],

(7)

where

σ2
i = τ~

2/mi, (8)

and

µi(R) = R+σ2
i ∇i ln |ψT(R)|. (9)

To simulate this short-time Green’s function in the

calculation, initial walkers will be generated accord-

ing to the trial function ψT first. Then the walkers

will diffuse and drift to new positions according to

the Gaussian distribution

1

(2πσ2
i )3/2

exp

[

−
(R′−µi(R))2

2σ2
i

]

. (10)

Then a branching technique is adopted to give the

probability to kill or multiply the walkers at new con-

figurations. The number of copies generated from

each old walker is INT(p+ ξ), where ξ is a random

number between (0,1), and,

p= exp[−τ(EL(R′)+EL(R)−2ET)/2]. (11)

Iteration times are denoted by t̂= t/τ . At each itera-

tion, the expectation value of energy is calculated by

the mixed estimator, which is defined as [21],

Emix(T ) =

T
∑

t̂=0

Π(t̂)

N(t̂)
∑

α=1

ĤLψT(Rα(t̂))

ψT(Rα(t̂))

T
∑

t̂=0

Π(t̂)N(t̂)

, (12)

where

Π(t̂) =

t̂
∏

m=0

e−τET(t̂−m). (13)

To make the population of walkers stable, the ET

should be adjusted by

ET(t̂+1) =Emix(t̂)− log
N(t̂)

N0

, (14)

where N(t̂) is the population at each iteration and

N0 is the initial one.

After many iterations, these walkers will dis-

tribute as ψT(R)ψ0(R), where ψ0 is the exact ground

state of the system. Emix(t) will also equal the exact

ground state energy. To avoid time-step error, the

results of different τ should be calculated and then

extrapolated to τ = 0.

3 Numerical results and analyses

We calculate different systems of atoms,

molecules, ions, and nuclei with the diffusion Monte

Carlo method. In these calculations, except for nu-

clei, the trial wave functions have variational form:

ψT =
∏

i<j

eαlrij . (15)

For nuclei, the trial wave functions are taken as:

ψT =
∏

i<j

eαlrij +γ
∏

i<j

eβlrij . (16)

The parameters {αl}, {βl} and γ are optimized by

a variational Monte Carlo program. The number of

initial walkers is taken to be 2000. Each system is

calculated with eight different τ . For each τ , the it-

eration continues until the error bar of energy, taken

from the average of last 10000 mixed estimators, is
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smaller than expected. The final result is then con-

structed by extrapolation from the results of different

τ to τ = 0.

3.1 Atoms, molecules and ions

We make diffusion Monte Carlo calculations of

some regular Coulomb three-body systems such as

atoms, molecules and ions. Our calculations are per-

formed without Born-Oppenheimer approximation.

The introduction of nuclear degrees of freedom will

increase running time, but it is acceptable for few-

body systems.

The calculation results are listed in Table 1. The

results from experiments or accurate variational cal-

culations are also listed for comparison. For systems

with only one heavy core, such as a helium atom,

variational calculation results are already very close

to the experimental values. But for systems with two

heavy cores, such as hydrogen molecular ion p+p+e−,

variational results are much higher than the experi-

mental value. This is not surprising because we only

use a quite simple trial wave function. However, this

simple wave function is good enough to be a diffusion

Monte Carlo program input.

Table 1. Results of regular Coulomb systems.

EVMC is the variational Monte Carlo result of

ground state energy from optimizing the trial

wave function. EDMC is the ground state en-

ergy result from the diffusion Monte Carlo cal-

culation. The compared results from others’

work or experiments are also listed. All values

are in atomic units.

system EVMC EDMC results in Refs.

e+e−e− −0.2372 −0.2614 −0.2620 Frolov [22]

p+e−e− −0.5061 −0.5273 −0.5274 Frolov [23]

p+p+e− −0.4759 −0.5938 −0.5974 Exp. [24]
4He2+e−e− −2.886 −2.902 −2.902 Exp. [25]
7Li3+e−e− −7.253 −7.275 −7.279 Ancarani [1]

Most of these diffusion Monte Carlo results agree

with experiment very well with an error of only 0.05%.

This proves that our program is accurate enough to

calculate three-body system combined by Coulomb

interaction. The result of a hydrogen molecular ion

has a larger error of about 0.6%. This larger error

may be due to the fact that it has two heavy cores

and the trial wave function with the form of Eq. (15)

is not a good description of the system.

3.2 Muonic systems

We also calculate some muonic three-body sys-

tems. Unlike regular three-body systems, the Born-

Oppenheimer approximation will cause serious error

when the electrons are replaced by muons. In these

systems, the motion of nuclei cannot be omitted, since

the mass of a muon is comparable to a proton or light

nuclei. Therefore our diffusion Monte Carlo calcula-

tions of muonic systems are performed without Born-

Oppenheimer approximation. The calculation results

are listed in Table 2. Results for comparison are also

listed.

Table 2. Results of muonic systems. EVMC is

the variational Monte Carlo result of ground

state energy from optimizing the trial wave

function. EDMC is the ground state energy

result from the diffusion Monte Carlo calcula-

tion. The compared results from others’ work

or experiments are also listed. All values are

in atomic units.

system EVMC EDMC results in Refs.

µ
+e−e− −0.5023 −0.5228 −0.5251 Frolov [23]

µ
+

µ
+e− −0.4685 −0.5832 — —

µ
+

µ
−

µ
−

−49.21 −54.07 — —

p+
µ
−

µ
−

−92.71 −96.97 −97.57 Frolov [26]

p+p+
µ
−

−87.78 −101.8 −96.86 Bailey [27]

He2+µ
−

µ
− −579.1 −582.3 −582.4 Ancarani [1]

Some of the muonic systems in our calculations

have been rarely studied before such as µ
+
µ

+e−. So

only diffusion Monte Carlo results are given. Some

of these systems have been calculated with accurate

variational methods in others’ work. Our results of

these systems agree very well with them. A bigger

difference can be found in the calculation of system

p+p+
µ

−, and our result is lower than the result in

Ref. [27]. Considering that our diffusion Monte Carlo

results are always a little bit higher than the accurate

values, this difference is very strange and should be

confirmed by more theoretical work or experiments.

3.3 Nuclei

In a three-body model, a nucleus can be treated

as a system composed of a core and two external nu-

cleons [28]. This is particularly useful in the study of

exotic nuclei with neutron halos. Three typical halo

nuclei, 11Li, 14Be and 17B, were studied by equivalent

two-body methods and Faddeev equations before [9–

11]. We investigate these nuclei with the diffusion

Monte Carlo method. The two-body Yukawa poten-

tial is taken from Ref. [10]. The calculation results

and various compared values are listed in Table 3.

Our results of ground state energy are lower than

the equivalent two-body methods, but agree with the

Faddeev equation well. Considering that the equiva-

lent two-body methods are variational methods, our
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Table 3. Results of some exotic nuclei. E is

the ground state energy. Rm is the matter

root-mean-square radius. The lines denoted

by (F&R) are the results from equivalent two-

body methods [9]. The lines denoted by (Fad-

deev) are the results from Faddeev equations

[11].

system E/MeV Rm/fm

11Li (DMC) −0.59 2.83

(Faddeev) −0.54 2.95

(F&R) −0.35 3.18

(exp.) −0.35(±0.05) 3.10(±0.17)

14Be (DMC) −1.18 2.78

(Faddeev) −1.07 2.85

(F&R) −1.12 2.90

(exp.) −1.12(±0.20) 3.10(±0.30)

17B (DMC) −1.09 2.73

(Faddeev) −1.01 2.76

(F&R) −0.84 2.81

(exp.) −1.49(±0.20) 3.00(±0.40)

results and Faddeev results are better. These results

show that the diffusion Monte Carlo method can be

as precise as Faddeev equations in the calculations

of three-body systems. However, the diffusion Monte

Carlo method can be also used to calculate many-

body systems, which is difficult for Faddeev equa-

tions.

4 Conclusion

In this paper, diffusion Monte Carlo algorithm

with importance sampling technique is formulated

for systems consisting of components with different

masses. A mixed estimator is used to obtain the av-

erage of physical quantities. We write a program and

study various systems with this method. We calculate

the ground state energy of regular and exotic three-

body systems. These calculations are all performed

without Born-Oppenheimer approximation. Our re-

sults agree very well with experiments and with other

high precision variational methods. We also produce

the properties of some three-body systems which are

rarely studied before. Halo nuclei are investigated as

three-body systems. The results are better than the

equivalent two-body method but almost the same as

that from the Faddeev equations. All these results

have proven the accuracy of our program and the

power of diffusion Monte Carlo method in studying

three-body systems.
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