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Abstract: We present an explicit connection between the symmetries in a Very Special Relativity (VSR)

and isometric group of a specific Finsler space. It is shown that the line element that is invariant under the

VSR symmetric group is a Finslerian one. The Killing vectors in Finsler space are constructed in a systematic

way. The Lie algebras corresponding to the symmetries of VSR are obtained from a geometric famework. The

dispersion relation and the Lorentz invariance violation effect in the VSR are discussed.
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1 Introduction

In the past few years, two interesting theories

have been proposed for investigating the violation of

Lorentz Invariance (LI). One is the so called Dou-

bly Special Relativity (DSR) [1–5]. This theory

takes Planck-scale effects into account by introduc-

ing an invariant Planckian parameter into the the-

ory of special relativity. Another is the Very Special

Relativity (VSR) developed by Cohen and Glashow

[6]. This theory suggested that the exact symmetry

group of nature may be isomorphic to a subgroup

SIM(2) of the Poincare group. And the SIM(2)

group semi-direct product with the spacetime trans-

lation group gives an 8-dimensional subgroup of the

Poincare group called ISIM(2) [7]. Under the sym-

metry of ISIM(2), the CPT symmetry is preserved

and many empirical successes of special relativity are

still functioned.

Recently, physicists found that both of the the-

ories mentioned above are related to Finsler geome-

try. Girelli, Liberati and Sindoni [8, 9] showed that

the modified dispersion relation (MDR) in DSR can

be incorporated into the framework of Finsler geom-

etry. The symmetry of the MDR was described in

the Hamiltonian formalism. Also, Gibbons, Gomis

and Pope [10] showed that the Finslerian line ele-

ment ds = (ηµνdxµdxν)(1−b)/2(nρdxρ)b is invariant un-

der the transformations of the group DISIMb(2) (1-

parameter family of deformations of ISIM(2)).

Finsler geometry as a natural generalization of

Riemann geometry could provide new insight into

modern physics. The model of gravity and cosmol-

ogy based on Finsler geometry is in good agreement

with recent astronomical observations. An incomplete

list includes the following: the flat rotation curves of

spiral galaxies can be deduced naturally without in-

voking dark matter [11]; the anomalous acceleration

[12] in the solar system observed by Pioneer 10 and 11

spacecrafts could account for a special Finsler space-

Randers space [13]; the secular trend in the astronom-

ical unit [14, 15] and the anomalous secular eccentric-

ity variation of the Moon’s orbit [16] could account

for the effect of the length change of unit circle in

Finsler geometry [17].

Thus, the symmetry of Finslerian spacetime is
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worth investigating. The way of describing space-

time symmetry in a covariant language (the symme-

try should not depend on any particular choice of

coordinate system) involves the concept of isometric

transformation. In fact, the symmetry of spacetime is

described by the so-called isometric group. The gen-

erators of the isometric group are directly connected

with the Killing vectors [18]. Actually, the symmetry

of deformed relativity has been studied by investigat-

ing the Killing vectors [19, 20]. In this paper, we

present an explicit connection between the symme-

tries in the VSR and isometric group of Finsler space.

It is shown that the line element that is invariant un-

der the VSR symmetric group is a Finslerian one.

The Killing vectors in Finsler space are constructed

in a systematic way. The Lie algebras corresponding

to the symmetries of VSR are obtained from a ge-

ometric framework. The dispersion relation and the

Lorentz invariance violation effect in the VSR are dis-

cussed.

Throughout this paper, the index is lowered and

raised by the Minkowskian metric ηµν = diag (1,−1,

−1,−1) and its matrix reverse, respectively.

2 Killing vectors in Finsler space

Instead of defining an inner product structure over

the tangent bundle in Riemann geometry, Finsler ge-

ometry is based on the so-called Finsler structure F

with the property F (x,λy) = λF (x,y) for all λ > 0,

where x represents the position and y≡ dx

dτ
represents

the velocity. The Finsler metric is given as [21]

gµν ≡
∂

∂yµ

∂
∂yν

(

1

2
F 2

)

. (1)

Finsler geometry has its genesis in integrals of the

form ∫r

s

F

(

x1, · · · ,xn;
dx1

dτ
, · · · , dxn

dτ

)

dτ. (2)

So the Finsler structure represents the length element

of Finsler space.

To investigate the Killing vector, we should con-

struct the isometric transformations of the Finsler

structure. It is convenient to investigate the isomet-

ric transformations under an infinitesimal coordinate

transformation for x,

x̄µ = xµ +εV µ, (3)

together with a corresponding transformation for y,

ȳµ = yµ +ε
∂V µ

∂xν
yν , (4)

where |ε| � 1. Under the coordinate transformation

(3) and (4), to first order in |ε|, we obtain the expan-

sion of the Finsler structure,

F̄ (x̄, ȳ) = F̄ (x,y)+εV µ ∂F

∂xµ
+εyν ∂V µ

∂xν

∂F

∂yµ
, (5)

where F̄ (x̄, ȳ) should equal F (x,y). Under the trans-

formation (3) and (4), a Finsler structure is called

isometry if and only if

F (x,y) = F̄ (x,y). (6)

Then, deducing from the expression (5), we obtain

the Killing equation in Finsler space,

V µ ∂F

∂xµ
+yν ∂V µ

∂xν

∂F

∂yµ
= 0. (7)

3 Symmetries of VSR

The VSR preserves the law of energy-momentum

conservation [6]. It implies that the translation in-

variance should be contained in the symmetries of

the VSR. The left symmetries of the VSR include

four possible subgroups of the Lorentz group. We

introduce the notation T1 = (Kx +Jy)/
√

2 and T2 =

(Ky−Jx)/
√

2, where J and K are the generators of ro-

tations and boosts, respectively. The four subgroups

of the Lorentz group are given as [22]

i) T (2), the Abelian subgroup of the Lorentz group,

generated by T1 and T2, with the structure

[T1,T2] = 0; (8)

ii) E(2), the group of two-dimensional Euclidean mo-

tion, generated by T1, T2 and Jz, with the structure

[T1,T2] = 0, [Jz,T1] =−iT2, [Jz,T2] = iT1; (9)

iii) HOM(2), the group of orientation-preserving sim-

ilarity transformations, generated by T1, T2 and Kz,

with the structure

[T1,T2] = 0, [T1,Kz] = iT1, [T2,Kz] = iT2; (10)

iv) SIM(2), the group isomorphic to the four-

parametric similitude group, generated by T1, T2, Jz

and Kz, with the structure

[T1,T2] = 0, [T1,Kz] = iT1, [T2,Kz] = iT2,

[Jz,Kz] = 0, [Jz,T1] =−iT2, [Jz,T2] = iT1. (11)

We will show that there is a relation between the

isometric group of the Finsler structure [10],

F = (ηµνy
µyν)(1−n)/2(bρy

ρ)n , (12)

and symmetries of the VSR. Here, n is an arbi-

trary constant, ηµν is the Minkowskian metric and
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bρ = ηµρbµ is a constant vector. It is referred to as

the VSR metric. By making use of the Killing equa-

tion (7), we obtain the Killing equation for the VSR

metric,

yν ∂V µ

∂xν

(

(1−n)yµ(bρy
ρ)n +n(ηαβyαyβ)1/2bµ(bρy

ρ)n−1

(ηαβyαyβ)(1+n)/2

)

= 0. (13)

Eq. (13) has such solutions,

V µ = Qµ
νxν +Cµ, (14)

bµQµ
ν = 0, (15)

where Qµν is a constant skew-symmetric matrix and

Cµ is an arbitrary constant vector. If one requires

that the transformation group for the vectors is no

other than the Lorentz group or a subgroup of the

Lorentz group, formula (14) together with the con-

straint (15) is the only solution of the Killing equation

(7) for the VSR metric.

Taking the light cone coordinate [7] ηαβyαyβ =

2y+y−−yiyi (with i ranging over the values 1 and 2)

and supposing bµ = {0,0,0, b−}(b− = 1), we know that

in general Q−

µ 6= 0. This means that the Killing vec-

tors of the VSR metric (12) do not have non-trivial

components Q+− and Q+i. The isometric group of

a Finsler space is a Lie group [20]. The non-trivial

Lie algebra corresponding to the Killing vectors (14),

which satisfies the constraint (15), is given as

[Jz,T
i] = iεijT

j, [Jz,P
i] = iεijP

j ,

[Ti,P
−] = −iPi, [Ti,P

j ] =−iδijP
+,

(16)

where ε12 = −ε12 = 1, ε11 = ε22 = 0 and P± =

(P0±Pz)/
√

2. It is obvious that the generators of the

isometric group of the VSR metric are generators of

E(2) and four spacetime translation generators. This

result induces the E(2) scenario of VSR from the VSR

metric (12). The HOM(2) scenario of VSR could be

induced in the same approach, for HOM(2) algebra

isomorphic to E(2) algebra.

The above investigations are under the premise

that the direction of spacetime is arbitrary or the

transformation group for the vectors is none other

than the Lorentz group or subgroups of the Lorentz

group. This means that no preferred direction exists

in spacetime. If the spacetime does have a special

direction, the Killing equation (7) for the VSR met-

ric will have a special solution. The VSR metric was

first suggested by Bogoslovsky [23]. He assumed that

spacetime has a preferred direction. Following the as-

sumption and taking the null direction to be the pre-

ferred direction, we obtain the solution of the Killing

equation (13),

V µ = (Qµ
ν +δµ

ν )xν +Cµ, (17)

where Qµ
ν is an antisymmetrical matrix and satisfies

the constraint

Q+−n− =−n−. (18)

Here, n− is a null direction. One can check that the

Killing vectors (17) do not have non-trivial compo-

nents Q+i. This implies that the null direction is

invariant under the transformation

Λ−

−
n− ≡

(

δ−

−
+ε(nδ−

−
+Q−

−
)
)

n− = (1+ε(n−1))n−.

(19)

Here, Λµ
ν denotes the counterpart of the Lorentz

transformation. Therefore, if the spacetime has a

preferred direction in the null direction, the symme-

try corresponding to Q+− is restored. One can see

that the Killing vectors (17) have a non-trivial com-

ponent δµ
ν xν . This represents the dilations. Thus,

we know that the transformation group for the VSR

metric (12) contains dilations, while the null direc-

tion is a preferred direction. One could obtain the

Lie algebra for such a transformation group. In fact,

the non-trivial Lie algebra is just the algebra of the

DISIM(2) group proposed by Gibbons et al. [10],

[Kz,P
±] =−i(b±1)P±, [Kz,P

i] =−ibP i,

[Kz,Ti] =−iTi, [Jz,T
i] = iεijT

j,

[Jz,P
i] = iεijP

j , [Ti,P
−] =−iPi,

[Ti,P
j ] =−iδijP

+.

(20)

The DISIM(2) group is a subgroup of the Weyl

group. It contains a subgroup E(2) together with

a combination of a boost in the +− direction and a

dilation. It should be noted that the deformed gener-

ator Kz acts not only as a boost but also as a dilation.

The transformation acting by Kz is given as

x̄± = (exp(φ))
±1+b

x±, x̄i = (expφ)bxi, (21)

where exp(φ) =

√

1+v/c

1−v/c
. The transformations act-

ing by other generators of the DISIM(2) group are

the same with the Lorentz group.

If bµ in the VSR metric (12) has the form bµ =

{0, bx,0, b−} (bx = b− = 1), solutions of the Killing

equation (13) show that the Killing vectors just have

non-trivial components Q−y and Cµ. However, the

corresponding Lie algebra does not exist. For the
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generators corresponding to Q−y together with the

generators of translations cannot form a subalgebra

of the Poincare algebra. Consequently, we show that

the investigation of the Killing equation for the VSR

metric (12) could account for the E(2), HOM(2) and

SIM(2) (DISIM(2)) scenarios of the VSR.

The geodesic equation for the VSR metric is given

as [21]

dx2

dτ 2
= 0. (22)

It implies that the motion of the particle is a straight

line with constant speed. The relativistic momentum

could be defined as

pµ = m
dxµ

dτ
,

where m is the mass of the particle. In the four VSR

scenarios, only the SIM(2) scenario could preserve

the CPT symmetry. Here, we just focus the SIM(2)

scenario, for it is easier to be tested than other sce-

nario by high energy experiment.

The Lagrangian for VSR metric is given as

L= mF = m(ηµνy
µyν)(1−n)/2(bρy

ρ)n. (23)

The corresponding dispersion relation is of the form

ηµνpµpν = m2(1−b2)

(

bρpρ

m(1−b)

)2b/(1+b)

. (24)

The dispersion relation (24) is not Lorentz-invariant,

but it is invariant under the transformations of the

DISIM(2) group. Ref. [23] shows that the ether-

drift experiment gives a constraint |n|< 10−10 for the

parameter n of the VSR metric (12). In the SIM(2)

scenario, the bµ is set to be bµ = {0,0,0,1} in the light

cone coordinate. Then, deducing from the equation

F = 0, we get c = 1. Thus, the speed of light in

the SIM(2) (DISIM(2)) scenario of the VSR is the

same with Einstein’s special relativity.

4 Conclusion

In this paper, we have presented an explicit rela-

tion between the isometric group of a specific Finsler

space and symmetries of the VSR proposed by Co-

hen and Glashow (12). If the spacetime does not

have a preferred direction, we have shown that the

generators induced by Killing vectors are just isomor-

phic to the E(2) group or HOM(2) group semidirect

the spacetime translation. While one chose the null

direction to be the preferred direction, it is shown

that the symmetry of the space is isomorphic to the

DISIM(2) group proposed by Gibbons et al. [10].

Only the SIM(2) scenario of VSR preserves the CPT

symmetry. The kinematic in the DISIM(2) group

was investigated, and a corresponding dispersion re-

lation was obtained.

We would like to thank Prof. C. J. Zhu for useful

discussions.
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